
Tellus (1985). 37B. 4 6 4 9  

S H O R T  C O N T R I B U T I O N  

A note on time averages in turbulence with reference to 
geophysical applications 

By P. C. CHATWIN and C. M. ALLEN. Department ofApplied Mathematics and Theoretical Physics, 
Unicersity of Lirerpool, P.O. Box 147,  Lirerpool L69 3 B X ,  England 

(Manuscript received April 13: in final form July 23, 1984) 

1. Introduction 

The fundamental average in turbulence is the 
probability, or ensemble, average. Suppose that C' 
denotes any randomly fluctuating variable, such as 
temperature or one component of velocity, and let 
F ( x ,  I )  be its value at position x and time t in the 
nth of N realizations. The ensemble average. or 
mean, of I-( x, t ) ,  denoted by C( x, t )  satisfies 

and C(x, t )  can be estimated from experiments by 
determining the quantity in curly brackets for a 
large, but finite, value of N .  Note that each of the 
values of P) must be determined at the same 
position and time, and that (in general) C depends 
explicitly on all components of x, and on f .  

However, in certain circumstances, C is also 
equal to the limit of an integral. Thus suppose 
r(x, I )  is statistically stationary so that C is 
independent of t .  According to ergodic theory. C 
then satisfies 

Similarly, when C' is statistically homogeneous in 
one spatial coordinate, C is the limit of the integral 
of r over this coordinate. Although the rest of this 
note refers to time averages only, it will be obvious 
that all the conclusions apply equally when such 
spatial averages are used instead. 

Denote the fluctuation in T(x, I )  by c(x, t ) ,  so 

(3) 

An overbar will stand for the averaging operation 
on the right-hand side of ( I )  (and of (2) when this is 
equivalent); thus C(x, t )  = c(x, t ) .  It is an exact 
consequence of (1 )  and (3) that 

C(x, t )  = 0 (4) 

that 

C ( X ,  t )  = r(x, t )  - C(X, t ) .  

because 

= lim - C r y x ,  t )  - ~ ( x ,  I ) .  1 \ + x  ( N ' n:l 

which is identically zero. 
Unfortunately, the random variables of interest 

in geophysical fluid dynamics are but rarely 
statistically steady or statistically homogeneous. 
and the cost of performing sufficient repetitions for 
stable estimates of C to be obtained using ( I )  is 
invariably prohibitive. It is therefore standard 
practice (see e.g. Dyer, 1973; Pasquill, 1974; 
Officer, 1976) to consider C,(x, t )  defined by 

C,(& 1) = - J 1 + j r  T(x, s) ds, ( 5 )  

for some preselected finite value of T, and to regard 
C,.(x, t )  as equivalent to, or an estimate of, C(x, t ) .  

T 1-g 
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Associated with C, is the corresponding fluc- 
tuation c,(x, t )  satisfying 

c r ( x ,  I )  = uX. t )  - c,(x, 1). (6) 

During the preparation of a review article (Chatwin 
and Allen, 1985). it was noticed that it is assumed 
in many books and papers that (c,), is identically 
zero. where the suffix ( ), denotes the averaging 
operation on the right-hand side of ( 5 ) .  That this 
assumption is wrong was noted in that article, and 
vcry briefly discussed, but there was insufficient 
space for an adequate treatment. The error is 
potentially important, so a fuller treatment is given 
here. The discussion here is in one sense an 
extension of arguments given by Lester ( 1972): he 
stated that the Reynolds averaging techniques hold 
for equations like ( 5 )  only if r(x. t )  is a constant or 
a linear function of time: this is. of course. not 
usually the case in the regions of clear air 
turbulence that he was considering. Wyngaard 
(1073) also estimated averaging times of different 
parameters in the atmospheric surface layer: we 
believe. however, that the present account is 
justified by the potential practical importance of 
many non-stationary flows, an example of which is 
the recent increased interest in the dispersion of 
finite clouds of pollutant. 

An alternative method of treatment commonly 
used in atmospheric and oceanic turbulent flows 
and associated dispersion problems is the use of a 
spectral approach (Dyer, 1973; Pasquill. 1974). 
However one main advantage of spectral analysis 
is usually thought to be the simplification in the 
governing equations (replacing derivatives by 
simple algebraic expressions etc.), and this simpli- 
tication is lost when all Fourier components depend 
on .r and t as occurs when conditions are not 
statistically stationary or homogeneous. Accord- 
ingly. various data processing techniques must be 
applied to try and produce quasi-stationary series 
for different parameters (Soulsby. 1980). 

2. Some simple examples 

We begin by discussing some simple theoretical 

Suppose first that 
examples which illustrate the points made above. 

iyx, I )  = rI,{ I + ~ 1 1 2  t .  (7) 

where To is a constant and a is independent of t 

(but can depend on x and can be random). A 
straightforward application of ( 5 )  gives 

C,(x. 1) = rl,{ I + cu2 + &aT’* t 

c,(x, I )  = -&ro aT2 

(c,),(x. 1 )  = -&ro aT2. 

(8) 

so that. from (6), 

(9) 

Thus ( c , ) , ,  the time average of c, ,  also satisfies 

(10) 

since c ,  is itself independent of 1. From the point of 
view of turbulence. a more realistic example is 
perhaps given by 

r(x, t )  = ro{ 1 + a cos (wr - 4) 1. (1 1 )  

where w and 4 are further constants. Application of 
( 5 )  now gives 

C,(x, t )  = ro 1 + a c o s  (wt 

Hence, from (6). 

cr (x .  t )  = ro a cos (tot ~ 4) 

i 

and so. after the further averaging operation. 

(c,),(x, t )  = ro a cos (wt - 4) ~ [ r;:;T) 
Thus ( c , ) ,  is non-zero in both of these exam- 

ples, and it can be readily confirmed that this is true 
for other simple cases. The reason why (c,), is 
non-zero in general can be seen by applying the 
averaging operation directly to  (6), obtaining 

From (5). C,(x,s) depends on the values of 
r(x.s‘) only for times s‘ such that s - fT < 
s‘ < s + f7. Thus, on the right-hand side of ( 1  5). 
the value of C , ( x , f )  depends on the values of 
T(x,s’) only for times s’ such that f - j T <  
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s’ < t + fT, whereas the integral involves values of 
C,(x, s) for all times s such that t - fT < s < t + f T  
and hence on values of T(x, s‘) for all times s‘ such 
that t - T < s’ < t + T. Equality of the two terms 
on the right-hand side of (15) therefore requires 
exceptional behaviour of T(x, s’) for times s‘ such 
that t - T < s’ < t fT and I + fT < s’ < t + T. 
Granted that is a random process, such equality 
will occur almost never (but note that the earlier 
argument does not depend on randomness). 

Finally it is worth emphasizing here that the 
averaging operation in (2) is fundamentally differ- 
ent from that in ( 5 )  because: 

(i) the operation in (2) can be applied only when 
r is statistically stationary; 

(ii) the value of Tin  (2) can be made arbitrarily 
large. 
These simple theoretical examples were chosen 
because we feel that they best illustrate the basic 
point we are making. However, we now present 
some geophysical applications which reinforce our 
views. 

If the geophysical flow is stationary, then there 
will be a spectral gap and an average over a time T 
can be taken. A typical example in the marine 
environment would be if there were a relatively long 
steady phase during the tidal cycle where the flow is 
quasi-stationary (Soulsby, 1980) but not during the 
accelerating or decelerating phases when the flow is 
not steady. In the atmospheric environment, there 
are some instances where the flow is stationary, 
e.g., Leyi and Panofsky (1983) analysed experi- 
mental data from Boulder Tower and found a 
“gap” in the spectrum for the particular case where 
there was very stable air and light winds. Similarly, 
Sreenivasan et al. (1978) derived a detailed 
accuracy analysis for moments of velocity and 
scalar fluctuations of data measured in the marine 
surface layer in Bass Strait, Australia. They stress 
that it is the observed stationarity in their data set 
that enables a meaningful definition of integral 
scales and high-order moments to be made. 

However, many geophysical flows are not 
stationary; in estuaries there is often no long period 
of steady flow during the tidal cycle. Similarly, 
Caughey et al. (1979) reported that the stable 
atmospheric boundary layer observed in Minne- 
sota shortly after the evening transition was “far 
from stationary”. In both these cases, the types of 
error which are discussed in this note will be 
introduced. 

3. Discussion 

The demonstration that a basic mathematical 
error exists in many authoritative accounts of the 
fundamental equations of turbulence and turbulent 
diffusion is not the main reason for writing this 
note. Rather the justification is that the error has 
important practical implications which can be 
illustrated by considering the case when r is the 
concentration of a scalar satisfying the equation 

ar 
- + V .  ( y r )  = K V ~  r, 
at 

where Y = Y(x, t) is the random velocity field and 
K is the molecular diffusivity. Let U =  U(x, t) and 
u = u(x, t )  be the ensemble average and fluctu- 
ation of Y, defined by equations analogous to (1) 
and (3). The standard Reynolds procedure then 
yields the exact equation 

In deriving (1  7) of course, no assumption about the 
statistical steadiness or homogeneity of Y or r is 
necessary. 

Now apply the time averaging operation in ( 5 )  to 
eq. (16), obtaining (since ( ), and spatial differ- 
entiation obviously commute) 

Although it is not true that (aC,/ar), = (ac,/ar), 
it can be shown that (arlat)r = (aC,/at) since 

(‘)r 1 

21- 1 
-_  - 

using (5 ) .  In the term (YY)r it is normal to write 
r = C, + cr and Y = U7 + u, (where U7 and ur 
are defined by the obvious analogues of ( 5 )  and 
(6)), obtaining 

( y r ) T =  (uTcT)T  + (u$7)7 + (‘TCr)7 

+ (urCr)r (19) 

The work in the previous section makes it obvious 
that neither (Urc,), nor (urC,), is identically 
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zero, and nor is ( U ,  C,),  equal to  (U, C T ) .  The 
"standard" equation, viz .  

which is the obvious analogue of (1  7). is therefore 
riot a correct equation, nor is it clear that the errors 
involved in using it are small. For it is difficult to 
assert, or even believe, that the magnitudes of 
( U F , ) ~  and (u,C,), are much less than that of 

Therefore, the only justifications that can be 
provided for (20) are its superficial analogue to  
(17), and its consequent status as a manageable 

(u ,  c7 > 7 .  
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model equation. Two steps seem desirable in 
subsequent investigations. These are: 

(i) careful measurements designed to  quantify 
the various terms in (19); 

(ii) a search for other model equations that may 
be as  useful as (20). 

In investigating (i) it will be necessary t o  take 
account also of the dependence of the statistical 
properties of C, and c, on T; such dependence is 
inevitable as  shown in (9) and (13). 
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