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ABSTRACT

The allocation of photosynthate among the plant components plays an important role in regulating plant

growth, competition and other ecosystem functions. Several process-based carbon allocation models have

been developed and incorporated into ecosystem models; however, these models have used arbitrary model

parameters and have never been sufficiently validated on a global scale. This study uses the Integrated Biosphere

Simulator (IBIS) model as a platform to integrate a carbon allocation model (resource availability model) with

satellite-derived leaf area index (LAI) dataset, which allows us to inversely predict the allocation parameters

for five deciduous vegetation types. Our results showed that the carbon allocation coefficients can be reliably

constrained by the satellite LAI product, and the new parameters substantially improved model performance

for simulating LAI and aboveground biomass globally. The spatial pattern of allocation coefficients among

plant parts is supported by a number of studies. Compared with the standard version of the IBIS model using

fixed allocation coefficients, the revised resource availability carbon allocation model tends to promote higher

root carbon allocation. Our study provides a method for inverting the parameters of the carbon allocation

model and improves the model performance in simulating the LAI and biomass.

Keywords: carbon allocation, resource availability, leaf area index, Bayesian inversion, Integrated Biosphere

Simulator

1. Introduction

Carbon allocation refers to the allocation of photosynthate

among plant parts (e.g. leaves, stems and roots), which

profoundly impacts plant growth, competition and the

terrestrial ecosystem carbon cycle (Friedlingstein et al.,

1999; Bonan, 2008; Malhi et al., 2011; McMurtrie and

Dewar, 2013). Climate change has substantially changed

carbon allocation processes as well as leaf area index (LAI),

vegetation height and rooting depth, which impact land

surface albedo; roughness; radiative exchange; and carbon,

water and energy fluxes (Gorissen et al., 2004; De Kauwe

et al., 2014). Those changes result in the profound feedbacks

to the climate system from terrestrial ecosystems (Bonan,

2008). Therefore, reliable estimations of carbon allocation

are crucial for understanding the terrestrial carbon cycle

and predicting future climate change.

Several methods have been used to estimate carbon allo-

cation among plant components within ecosystem models.

Some models, such as CASA (Potter et al., 1993), Integrated

Biosphere Simulator (IBIS) (Foley et al., 1996; Kucharik

et al., 2000) and Hyland (Levy et al., 2004), apply the

simplest approach to simulate carbon allocation processes

by assuming temporally and spatially constant allocation

coefficients among roots, stems and leaves. Obviously, this

method is too simplistic to accurately reproduce principal

processes and dynamics of carbon allocation (Gower et al.,

1999). Some process-based carbon allocation models have

been developed by incorporating physiological and bioche-

mical mechanisms. Several models estimate carbon allocation

based on allometric constraints (e.g. leaf mass/woody mass

or leaf mass/root mass ratios), such as FBM (Kindermann

et al., 1993), BIOME-3 (Haxeltine and Prentice, 1996),

Hybrid (Friend et al., 1997) and ED (Moorcroft et al., 2001).

The LPJ model (Sitch et al., 2003) uses a pipe model to

estimate leaf biomass, which states that there is fixed

proportionality between the leaf area and the sapwood
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cross-sectional area (equivalent to the quantity of transport

tissue) (Shinozaki et al., 1964a, 1964b). In addition to the

pipe model, the relative allocation to roots versus leaves and

sapwood in the LPJ model depends on experienced water

deficit. However, these carbon allocation models do not or

seldom integrate the regulations of comprehensive environ-

ment factors in carbon allocation simulations, such as light

and nutrients availabilities (Franklin et al., 2012; Doughty

et al., 2013).

There has been a long history of determining the growth

ratio response of plant components (e.g. roots, shoots) to

changes in water, nutrients and light availability (Wilson,

1988; Cannell and Dewar, 1994; Bazzaz and Grace, 1997).

Therefore, a growing body of studies highlights environ-

mental parameters, including resource availability (i.e.

water, nutrient and light), that greatly influence carbon

allocation (Tilman, 1988). A plant in an optimal environ-

ment achieves maximum growth by allocating all new

photosynthesis products to leaves (Monsi and Saeki, 1953;

Chapin, 1991). In nature, however, environmental stresses

compromise this allocation pattern and compel plants to

invest in stems for light capturing and roots for obtaining

water and nutrients (Friedlingstein et al., 1999). Based

on the principle of environmental resource availability,

Friedlingstein et al. (1999) developed a global allocation

scheme that estimates the allocation of photosynthate

among leaves, stems and roots depending on availability

of water, light and mineral nitrogen. The philosophy of

the resource availability model (RACA) is that carbon

allocation results from the response that regulates carbon

investments to help capture the most limiting resources

(i.e. water, light or nutrients). Compared with the previous

method, this method has a strong theoretical basis and

has been used in numerous ecosystem models, including

CTEM (Arora and Boer, 2005), ORCHIDEE (Krinner

et al., 2005) and aDGVM (Scheiter and Higgins, 2009).

However, the carbon allocation parameters to plant parts

for non-limiting conditions are not well constrained.

Furthermore, it is difficult to validate the carbon allocation

model on a large scale (Friedlingstein et al., 1999).

In this study, IBIS model was modified to incorporate

dynamic allocation based on RACA. We used satellite-

based LAI to inversely predict the carbon allocation para-

meters and validate a resource availability model because

LAI is tightly related to carbon allocation in terrestrial

ecosystem models and provides unprecedented spatial

coverage and resolution for validating the carbon alloca-

tion model on a large scale. The primary objectives of this

study are to (1) inversely predict the parameters of resource

availability allocation model, (2) assess the performance of

the modified version of IBIS and (3) analyse the variation

characteristics of carbon allocation coefficients changing

along with resource availabilities.

2. Materials and methods

2.1. Resource availability carbon allocation method

Sharpe and Rykiel (1991) initially developed a relationship

for describing the regulation of resource availability to a

given plant part:

A /
P

XiP
Xi þ

P
Yj

(1)

where A is the allocation of photosynthate to a given part

(i.e. leaves, stems and roots). Xi and Yj are the availabilities

of two resources (e.g. light, water and nutrients) that lead

to increase or decrease in carbon allocation to that part,

respectively. For example, for plant roots, water avail-

ability is a Y-type resource, and root allocation will

decrease if water is sufficient because it is not needed to

promote root growth to enhance water uptake.

In this study, we used the allocation equations proposed

by Friedlingstein et al. (1999). The allocation coefficients

of leaves (aleaf), stems (astem) and roots (aroot) are

expressed as

aroot ¼ 3r0

L

Lþ 2minðW ;NÞ
(2)

astem ¼ 3s0

minðW ;NÞ
2LþminðW ;NÞ

(3)

aleaf ¼ 1� astem� aroot (4)

where min (W, N) is the minimum availability of water (W)

and nitrogen (N), and r0 and s0 are the allocation fractions

of roots and stems under the non-limiting condition,

respectively. The two carbon allocation parameters (i.e. r0
and s0) were inversely predicted using the Monte Carlo

Markov Chain (MCMC) method in this study.

We used the original equation to calculate the nitrogen

constraint equation and revised the equations for water

and light constraints. For each month, we used the cloud

fraction to estimate the light availability (L) as

L ¼ 1� cld (5)

where cld is the monthly total cloud fraction.

The ratio of evapotranspiration (ET) to potential eva-

potranspiration (PET) is used to indicate water availability

(Mu et al., 2013). The monthly water availability (W) is

calculated by

W ¼ ET

PET
(6)

The ET was calculated using a revised remote-sensing

Penman Monteith (Revised RS-PM) model (Yuan et al.,

2010; Chen et al., 2014). The PET was calculated according

to the Penman Monteith model (Monteith, 1965).
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Nitrogen availability (N) is calculated by combining the

temperature (Ts) andmoisture (Ws) limitations (Friedlingstein

et al., 1999). The temperature limitation was calculated based

on a standard Q10 equation (Potter et al., 1993), and the

moisture limitation was modelled following the method of

Parton et al. (2001).

N ¼ Ts �Ws (7)

Ts ¼ Q
ðT�30

10
Þ

10 (8)

Ws ¼
1

1þ 30� e�8:5ðPPT=PETÞ
(9)

where T is the monthly mean air temperature (8C), PPT is

the monthly precipitation (mm) and Q10�2.

2.2. LAI simulation

To retrieve accurate carbon allocation parameters, we elimi-

nated the impacts of the uncertainties of phenology and

LAI simulations using the satellite data. Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) Land Cover

Dynamics (MCD12Q2) product (i.e. Global Vegetation

Phenology product) was used to identify the start (To) and

end dates (Te) of the growing season of the five deciduous

vegetation types from 2000 to 2010 (Fig. 1). Moreover,

based on the global satellite-based LAI data, the dates and

magnitude of maximum LAI (Tm) were determined. For

simulating LAI that was calculated using the RACA model

(LAIRACA), a linear increase from 0 to 25% of maximum

LAI was assumed to occur within the first 15 d of the

growing season. After that, the specific leaf area method

was used to simulate LAI increases until to Tm [eq. (10)].

From Tm to Te, new photosynthate would not allocate

to leaf part, and LAI decreased from simulated maximum

LAI to zero following the curves of leaf falling retrieved

from satellite LAI data. In comparison with LAIRACA, fol-

lowing the same method, we also simulated LAI (LAIIBIS)

using IBIS with the constant carbon allocation coefficients

(Table 1).

LAI ¼ NPP� aleaf � SLA (10)

where NPP is the net primary productivity; a satellite-

based light-use efficiency model (i.e. EC-LUE, Yuan et al.,

2007, 2010) was used to calculate gross primary production

(GPP), and then NPP was calculated as half of GPP (Fung

et al., 2005; Waring and Running, 2010); aleaf is the carbon

allocation coefficient of leaves; SLA is the specific LAI

(25m2 kg C�1, Foley et al., 1996).

2.3. Datasets

Regional NPP and resource availabilities were estimated

based on the satellite observed monthly vegetation attri-

butes and monthly surface meteorology inputs. The biweekly

GIMMS NDVI with 8-km spatial resolution from 2000

to 2006 has been corrected for calibration, view geometry,

volcanic aerosols and other effects not related to vegetation

Fig. 1. Plant functional types map of deciduous trees and shrubs derived from MODIS land cover data. Areas in white represent open

water and other areas outside the study area.
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changes (Pinzon et al., 2005; Tucker et al., 2005). We selec-

ted the maximum value of two 16-d periods from each month

as the monthly NDVI value for each pixel to minimise the

atmospheric and cloud contamination effects (Holben, 1986).

The AVHRR GIMMS LAI products, with 16-km resolu-

tion from 2000 to 2006, are based on a monthly maximum

value composed of AVHRR spectral reflectance data to

mitigate cloud cover, smoke and other atmospheric aerosol

contamination effects (www.cybele.bu.edu; Myneni et al.,

1997).

We used input datasets of total cloud fraction (cld),

net radiation (Rn), wind speed (Ws), vapor pressure deficit

(VPD), pressure (P), air temperature (Ta), relative humidity

(Rh), precipitation (PPT) and photosynthetically active radia-

tion (PAR) from the MERRA (Modern Era Retrospective-

Analysis for Research and Applications) archive for

2000�2006 (Global Modeling and Assimilation Office,

2004). MERRA is a NASA reanalysis for the satellite era

using a new version of the Goddard Earth Observing

System Data Assimilation System Version 5 (GEOS-5) at a

resolution of 0.58 latitude by 0.678 longitude. The gridded

AVHRR GIMMS NDVI data were resampled to the spatial

resolution of MERRA.

This study inversely predicted the carbon allocation

parameters over five deciduous vegetation types, including

tropical broadleaf drought-deciduous trees (TrBD), tempe-

rate broadleaf cold-deciduous trees (TeBD), boreal broadleaf

cold-deciduous trees (BoBD), boreal conifer cold-deciduous

trees (BoND) and cold-deciduous shrubs (ShrD) (Fig. 1).

We combined the MODIS land cover product (MOD11)

with the Köppen-Geiger climate classification scheme to

derive a global plant functional type (PFT) distribution

map (Liu et al., 2014). The global PFT categories map with

1-km resolution was resampled to MERRA’s resolution,

and the PFT of the MERRA grid were determined using

the type of PFT in the PFT categories map that had the

greatest area in each MERRA grid.

We compiled an extensive database of biomass values

for validating the performance of the modified version of

IBIS model (Fig. 2). The biomass observations of decid-

uous forests are collected by Luo (1996) in China and

Usoltsev (2010) in Eurasia. The biomass data of deciduous

shrubs covers Australia (Barrett et al., 2001), New Zealand

(Watt et al., 2003), China (Shang-guan and Zhang, 1989;

Luo et al., 2002, 2005), the United States of America

(Bradley et al., 2006) and Spain (Cerrillo and Oyonarte,

2006).

2.4. Parameter inversion method

The MCMC method is used to inversely predict the carbon

allocation model parameters for non-limiting conditions

using satellite-based LAI. The posterior probability density

functions (PDFs) for model parameters were generated

from prior PDFs with LAI observations using a MCMC

sampling technique. This study used the Metropolis-Hastings

(MH) algorithm (Metropolis et al., 1953; Hastings, 1970) as

the MCMC sampler. We first specified ranges for carbon

allocation model parameters using prior knowledge. The

initial, lower and upper values were 0.3, 0.1 and 0.49 for

both r0 and s0, respectively. We then used the MCMC

method to generate high-dimensional PDFs of model

parameters via a sampling procedure (Xu et al., 2006;

Yuan et al., 2012a). After we ran the model 100,000 times,

the model parameters estimated by the MH algorithm

converged to stationary distributions (Yuan et al., 2012b).

We randomly selected half of the grid cells of each PFT for

the inversion of RACA model parameters and used the

other half of the grid cells for the validation of the RACA

model parameters.

3. Results

3.1. Carbon allocation parameters and model

performance

For all five vegetation types, carbon allocation coefficients

of leaves (l0), stems (s0) and roots (r0) under the non-limiting

environmental condition were well constrained within the

prior parameter ranges (Fig. 3). All three inversely pre-

dicted parameters indicated significant differences among

different PFTs (Table 2). The largest l0 was found for

TrBD, with a mean value of 0.42090.004 (mean value9

standard deviation), and the lowest for ShrD, with a mean

value of 0.29690.018. In contrast, TrBD and ShrD showed

Table 1. Carbon allocation coefficients and specific leaf area parameters used in IBIS

Plant function type Allocation to leaf

(aleaf)

Allocation to

stem (astem)

Allocation to

root (aroot)

Specific leaf area

(SLA, m2 kg C�1)

Tropical broadleaf drought-deciduous trees 0.30 0.50 0.20 25

Temperate broadleaf cold-deciduous trees 0.30 0.50 0.20 25

Boreal broadleaf cold-deciduous trees 0.30 0.50 0.20 25

Boreal conifer cold-deciduous tree 0.30 0.50 0.20 25

Cold-deciduous shrubs 0.45 0.20 0.35 25
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the lowest and the highest r0, with mean values of 0.1679

0.008 and 0.31790.004, respectively.

The RACA model substantially improved the accuracy

of LAI simulations of all five vegetation types (Fig. 4). The

LAI simulated using the RACA model (LAIRACA) showed

significantly lower root-mean-square error (RMSE) and

higher R2 than those using the original IBIS carbon alloca-

tion coefficients (i.e. LAIIBIS). Compared with the LAIIBIS,

the RMSEs of LAIRACA were reduced � 64, 67, 61, 62 and

68% for TrBD, TeBD, BoBD, BoND and ShrD, respec-

tively (Fig. 4a), and the R2 of LAIRACA were increased �
215, 169, 74, 42 and 144% for TrBD, TeBD, BoBD, BoND

and ShrD, respectively (Fig. 4b).

The maximum LAI simulated using the resource avail-

ability carbon allocation model (LAIRACA) showed com-

parable magnitude with satellite-based maximum LAI

(LAIRS). The spatial distribution of the differences between

the simulated maximum LAI and LAIRS showed that

LAIRACA performed much better than the maximum LAI

simulated by the original IBIS (LAIIBIS) (Fig. 5a and c).

LAIRACA increased the percentage of errors around zero

and decreased large positive and negative errors (Fig. 5b

and d). For example, 82.2% of the difference values between

LAIRACA and LAIRS were distributed in the range of �0.5

to 0.5, which was much larger than the value (19.5%)

between LAIIBIS and LAIRS.

Moreover, we investigated if the revised carbon alloca-

tion model can improve the accuracy of biomass simula-

tions. Over the 650 sites globally, the results show that the

IBIS model with the resource availability carbon allocation

model (IBISRACA) significantly improved the performance

of simulating aboveground biomass of all five vegetation

types, except for TrBD (Fig. 6). Compared with the bio-

mass simulated by the original IBIS model, the RMSE

values of biomass estimates simulated by the IBISRACA

model were decreased by 62, 73.6, 35 and 20% for TeBD,

BoBD, BoND and ShrD, respectively.

3.2. Spatial patterns of resource availabilities and

carbon allocation coefficients

Both light and water availabilities showed high spatial

heterogeneity (Fig. 7). For the annual mean (ANN) re-

source availabilities, there was light limitation in the

high-latitude northern hemisphere, equator and southern

South America, and water limitation south of 458 N (Fig. 7a

and b). The majority of the study area suffered from

nitrogen limitation (Fig. 7c). The resource availabilities

showed seasonal variations. The highest light, water and

nitrogen availabilities occurred in June�August (JJA) over

the high-latitude areas (Fig. 7g�i), whereas the lowest water
availabilities occurred in March�May (MAM) (Fig. 7e).

The light and nitrogen availabilities in September�November

(SON) (Fig. 7j and l) were consistent with those in MAM

(Fig. 7d and f). The highest nitrogen availabilities and

lowest light availabilities were found in DJF in the south-

ern hemisphere (Fig. 7m and o). The water availabilities

in DJF and SON (Fig. 7k and n) were lower than those in

MAM and JJA (Fig. 7e and h).

Fig. 2. The locations of biomass sampling plots collected in this study.
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The spatial and seasonal patterns of carbon allocation

ratios depended on the vegetation types (Fig. 8). The highest

allocation to stems and the lowest allocation to roots occurred

in the summer (i.e. JJA) in the high-latitude northern hemi-

sphere (Fig. 8h and i), whereas the highest root allocation and

lowest stem allocation occurred in MAM (Fig. 8e and f).

For ShrD in the southern hemisphere, the highest leaf

allocation and stem allocation, and the lowest root alloca-

tion occurred in the summer (i.e. DJF) (Fig. 8m�o). For
annual mean carbon allocation ratios, the root allocation

Fig. 3. Histogram to indicate frequency distribution of parameters derived from Bayesian Markov chain Monte Carlo inversion. l0, s0
and r0 are carbon allocation coefficients to leaf, stem and root for non-limiting condition. The insets show the frequency distributions of

parameters with smaller X-axis range.
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was larger than the leaf and stem allocation in ShrD and

TrBD (Fig. 8a�c). More carbon was allocated to leaves and

stems in TeBD and BoBD in eastern Asia. BoND allocated

more carbon to roots and leaves than to stems.

3.3. Carbon allocation coefficient variation with

resource availabilities

Figure 9 shows the theoretical changes in the carbon allo-

cation fraction of three plant components with environment

variables. The root allocation fraction decreased with the

reduction of light availability (Fig. 9c, f, i, l, and o), and

similarly, stem allocation decreased with the reduction of

belowground resource (i.e. water and nutrient) availabi-

lities (Fig. 9b, e, h, k, and n). When both belowground

resources and light are abundant, there is maximum allo-

cation to leaves (Fig. 9a, d, g, j, and m). Over the various

vegetation types, carbon allocation coefficients show simi-

lar changing patterns with resource availabilities; however,

the inversely predicted carbon allocation coefficients for

non-limiting conditions (i.e. r0, s0 and l0) determined their

magnitude.

4. Discussion

Our results showed that carbon allocation parameters

can be successfully constrained by satellite-based LAI.

The inversely predicted parameters are different than

those used in previous studies. For example, the CASA-

RACA (Friedlingstein et al., 1999) and ORCHIDEE model

(Krinner et al., 2005) defined the same carbon allocation

parameters (i.e. r0, s0 and l0) for all vegetation types.

Moreover, several ecosystem models used consistent carbon

allocation methods (Fig. 10), and the allocation coefficients

showed substantial differences with the inversely predicted

parameters in this study. Most of the ecosystem models

allocated the largest fractions of carbon to the stems for

all four deciduous vegetation types (Fig. 10a�d). However,

our results showed the lowest allocation coefficients for

stems (Fig. 10f�i). In shrublands, this study estimated the

carbon allocation coefficients of stems, leaves and roots to

be equal to 0.19290.099, 0.22290.059 and 0.58690.153,

respectively (Fig. 10j and Table 3). The carbon allocation

coefficients in other models showed large differences

among the three plant components (Fig. 10e).

Our study demonstrated that the RACA model signifi-

cantly improved the accuracy of LAI and biomass estimates.

The aboveground biomass in the original IBIS model was

overestimated. In forests, carbon allocated to stems mainly

contributed to the carbon sequestration because the woody

tissues have a long turnover time (Schulze et al., 2000). The

IBISRACA model allocated a lower fraction of carbon to

Fig. 4. Root-mean-square error (RMSE) (a) and coefficient of

determination (R2) (b) of LAI simulations based on two alloca-

tion methods. The LAIRACA refers to the LAI simulated by the

resource availability carbon allocation model. The LAIIBIS refers

to the LAI simulated by the original IBIS carbon allocation

coefficients. The letters above the bars indicate the significance of

the differences between the LAI estimates (pB0.05).

Table 2. Comparison of the inversely predicted carbon allocation coefficients under the optimal environments

Plant function type Leaf (l0)* Stem (s0) Root (r0)

Tropical broadleaf drought-deciduous trees 0.42090.004a 0.41390.009a 0.16790.008a

Temperate broadleaf cold-deciduous trees 0.33490.007b 0.38590.009b 0.28190.004b

Boreal broadleaf cold-deciduous trees 0.36390.003c 0.34490.004c 0.29290.003c

Boreal conifer cold-deciduous tree 0.40990.002d 0.33490.004d 0.25890.004d

Cold-deciduous shrubs 0.29690.018e 0.38790.020e 0.31790.004e

The letters indicate statistical significance of inversely predicted parameters among vegetation types (pB0.05). *The mean value with

standard deviation among all grid cells of each plant function type.

GLOBAL SIMULATIONS OF CARBON ALLOCATION COEFFICIENTS 7



Fig. 6. Root-mean-square error (RMSE) of aboveground biomass simulations by the IBIS model. IBISRACA denotes IBIS model

with resource availability carbon allocation model. The IBIS denotes the original IBIS model with constant carbon allocation coefficients.

The ‘n’ above the bars is the site number for model validation.

Fig. 5. Difference between the simulated maximum leaf area index (LAI) and satellite-based maximum LAI (LAIRS). (a) and (b) are the

spatial and frequency distributions of difference between the maximum LAI simulated using the resource availability carbon allocation

model (LAIRACA) and LAIRS, respectively. (c) and (d) are the spatial and frequency distributions of difference between the maximum LAI

simulated by the original IBIS (LAIIBIS) and LAIRS, respectively.
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stems than that in the original IBIS model (Tables 1 and 3).

This is how the RACA model improved the performance of

the IBIS model in simulating biomass.

The RACA model did not consider the observed allo-

metric relationships among plant components, such as

the power-law relationship between leaf biomass and the

remaining (i.e. stem and root) biomass (Reichle, 1981;

Janecek et al., 1989) and the pipe model (Shinozaki et al.,

1964a, 1964b; Morataya et al., 1999). However, no gross

inconsistencies among the biomass of plant components

appear in the IBISRACA model. The exponent values of

power-law equations between leaves and the remaining

biomass from the IBISRACA model (i.e. 1.41 for TeBD and

1.60 for BoBD; data not shown) were very close to the

observed exponent values (i.e. 1.60 for all of the woody

PFTs) in the FBMmodel (Janecek et al., 1989; Lüdeke et al.,

1994). Sapwood biomass was a fraction of stem biomass.

The sapwood fraction values in the IBIS model (mean

value is 0.06) were close to those in the IBISRACA model

(mean value is 0.07). Thus, the relationships between leaf

and sapwood biomass (or the pipe model) were similar to

the relationships between leaves and the remaining biomass

(data not shown).

There are a number of observed large-scale patterns

in nitrogen availability and carbon allocation that are

qualitatively comparable with our results. For example, the

spatial patterns of allocation coefficients among plant parts

show that the root allocation in shrublands is higher than

that in forests, which is supported by Gower et al. (1999)

and Zhou and Luo (2008). Our nitrogen-limited regions are

consistent with the study of Wang et al. (2010). However, it

should be noted that the method used to indicate nitrogen

availability is empirical and indirect and does not integrate

some major nitrogen cycle processes, such as the effect of

plant litter input, stoichiometry on soil N mineralization

and nitrogen deposition. Therefore, future studies should

incorporate the process-based nitrogen cycle model into the

allocation model.

This study only inversely predicted the carbon allocation

parameters over five deciduous vegetation types because

the deciduous plants have explicit seasonality of LAI,

and satellite-based LAI data can be used to inversely

predict the model parameters. For global-scale application,

it is imperative to constrain carbon allocation patterns

for other vegetation types. A recent study, for example,

used satellite-based fraction of absorbed photosynthetically

Fig. 7. Spatial distribution of the annual mean (ANN) light (L), water (W) and nitrogen (N) availabilities from 2000 to 2006 (a�c) and in

March�May (MAM) (d�f), June�August (JJA) (g�i), September�November (SON) (j�l) and December�February (DJF) (m�o).
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active radiation (fPAR) and eddy-covariance-based esti-

mates of carbon and water fluxes to constrain allocation to

roots versus shoots for savannah trees and grasses (Haverd

et al., 2015). Our study highlights the fact that increasing

field and experiment measurements, which are highly related

to carbon allocation, can be used to estimate allocation

parameters.

It is important to exclude the model errors of environ-

mental variables for improving the carbon allocation model.

So we used the satellite-based ET model to calculate ET

and the ratio of ET and PET to indicate water availability.

Water availability is one of the most important variables,

which regulates the carbon allocation of plants (Poorter

et al., 2012). IBIS can simulate ET and plant water

availability, however, compared with the IBIS, the satellite-

based ET model (i.e. Revised RS-PM) performs better in

simulating ET because remotely sensed data provide us

with temporally and spatially continuous information over

vegetated surfaces (Yuan et al., 2010). So the satellite-based

ET model can exclude the model errors of water avail-

ability. Moreover, many studies have showed that the ratio

of ET and PET, which is used in the carbon allocation

model, can reflect the water condition of the terrestrial

ecosystems (Jackson et al., 1981; Anderson et al., 2007;

Mu et al., 2013). However, the further model improvements

will use simulated water availability by IBIS. Therefore, it

is quite interesting and necessary to compare the difference

of water availability between these two methods. In addi-

tion, light availability is another important regulation of

the carbon allocation process. It is governed by at least

three important variables, including cloud cover, sun angle

and day length. Sun angle is related to the latitudes and day

length depends on time (day of year), and both of them

have been integrated into the models when calculating

daily potential solar radiation. The only variable randomly

varied with weather is cloud cover; therefore, the light

availability in this study only considered the cloud cover.

5. Summary and conclusions

In this study, we implemented a revised resource availability

carbon allocation model into the IBIS model for five deci-

duous vegetation types. The new carbon allocation model

was integrated with LAI simulations, allowing for inverting

Fig. 8. Spatial distribution of the annual mean (ANN) carbon allocation ratios to leaf (aleaf), stem (astem) and root (aroot) from 2000 to

2006 (a�c) and in March�May (MAM) (d�f), June�August (JJA) (g�i), September�November (SON) (j�l) and December�February
(DJF) (m�o).
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of the allocation parameters using a remotely sensed LAI

dataset. The results showed that the carbon allocation

coefficients of leaves (l0), stems (s0) and roots (r0) under

the optimal environmental conditions can be reliably cons-

trained by the remotely sensed LAI. The inversely predicted

parameters substantially improved model accuracy of the

Fig. 9. Allocation fractions for leaf, stem and root components as functions of light (L) and minimum value of water and nitrogen (WN)

availabilities for five deciduous plant functional types.
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LAI and aboveground biomass simulations globally.

The RMSE of LAI simulated by the new allocation model

was significantly decreased by approximately 61�68%.

The RMSE of aboveground biomass simulated by the

new allocation model was significantly decreased by ap-

proximately 20�73.6%. The spatial pattern of allocation

Fig. 10. Carbon allocation ratios (a�e) in a number of terrestrial ecosystem models (CASA (Potter et al., 1993); IBIS (Foley et al.,

1996; Kucharik et al., 2000); Hybrid (Friend et al., 1997); Post’s model (Post et al., 1997); CASA-DGVM (Potter and Klooster, 1999);

Biome-BGC (White et al., 2000); Hyland (Levy et al., 2004); CASACNP (Wang et al., 2010); VISIT (Ise et al., 2010). Carbon allocation

ratios of resource availability carbon allocation (RACA) model (f�j) were compared with the terrestrial ecosystem models. r0, s0 and l0 are

the carbon allocation ratios for plant grown under non-limiting conditions.
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coefficients among plant parts and nitrogen availability

is qualitatively comparable with a number of studies.

Compared with the standard version of IBIS using fixed

allocation ratios, the new allocation model tends to promote

higher root carbon allocation. This study presents a method

for inverting parameters of the carbon allocation model for

five deciduous vegetation types. For global-scale applica-

tion, it is imperative to constrain carbon allocation patterns

for other vegetation types in the future.
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