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ABSTRACT
The parable of Daisyworld places biological homeostasis on a non-teleological basis. However, one feature of Daisy-

world is that, at equilibrium, the system appears to require habitable but bare ground. The presence of bare ground is an
unavoidable consequence of the death rate parameter y. Here, we simplify Watson and Lovelock’s original formulation
by removing y and allowing instead the black and white daisies to infiltrate each others’ territory. This device furnishes

a model in which the area of bare ground asymptotically approaches zero. The infiltration process is modelled in terms
of a parameter that is ecologically interpretable as a quantification of the incumbent advantage enjoyed by the dominant

species.

1. Introduction

The parable of Daisyworld (Watson and Lovelock, 1983) out-
lined a plausible biological feedback mechanism whereby two
species of plant (white and black daisies) could regulate the
temperature of a planet. Since the original formulation a number
of authors have investigated making the model more ‘earth-
like’ and in general increasing the complexity of the interac-
tions between the daisies (Wood et al., 2008, and references
therein). However, in all these formulations the original model of
Watson and Lovelock is in essence retained, the various refine-
ments being built with this model at its core.

The original model had a number of assumptions and ap-
proaches built in to it, which have been carried forward into
subsequent analyses. In this paper, we investigate the potential
for a simple alteration to the core model that employs fewer
assumptions while preserving climatic control.

In the original formulation an arbitrary death rate y of 0.3
was chosen and has been used by other authors, although Cohen
and Rich (2000) found that in their models differences in death
rate had a smaller effect than other parameters. The use of a
positive death rate also implies that there will always be an
area of fertile ground devoid of vegetation. As a result, there
are areas of unoccupied, fertile ground, with neutral (or at least
intermediate) albedo and thus the classical daisyworld model is
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describing a condition in which the land cover switches between
the three states of black, white and bare. We were particularly
interested in the role of the bare habitable ground (~30% in the
original model): on the one hand, bare ground is necessary for
either white or black growth and hence homeostasis; but on the
other, bare ground is climatically inactive.

We would suggest that once initial colonization of the planet
surface had occurred, it is feasible for the whole planet to remain
vegetated, through a process such as a cyclical climax (Watt,
1947, 1955), or ‘climax microsuccession’ (Emborg et al., 2000).
In this situation one species replaces the other through invasion
or dispersal, as temperature changes.

On an Earth-type ecology, when individual plants die they
might leave bare ground—but the globally averaged incidence
of bare ground is small. Hubbell (2001), considering general
principles applicable to the dynamic modelling of ecologies,
states that

‘large landscapes are essentially always biotically saturated
with individuals. . . no significant amount of space or other lim-
iting resource goes unused for long. Small areas or patches of
resource may become unsaturated for short periods of time im-
mediately after disturbances, but at large landscape scales, the
surface of the Earth, to a first approximation, is completely and
permanently saturated’ [his emphasis].

It is thus reasonable to require any model to permit only
negligible amounts of bare ground in the steady state. Processes
such as desertification are not in scope here, as this violates the
central assumption of Daisyworld’s habitable zone being ‘well
watered and laden with nutrients’ (Wood et al., 2008).
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1.1. Species interaction in Daisyworld

The other perhaps idiosyncratic feature of the original Daisy-
world is that the two daisies do not compete directly with one
another; their only interaction is via their effect on the planetary
temperature. The replacement of one species occurs through the
occupancy of ground left vacant by the death of the other species.

Here we re-examine the effects of direct inter-specific com-
petition, at least in the sense that one species directly replaces
the other. As conditions change one species can invade the space
occupied by the other through superior fitness to the changing
conditions.

The fundamental time dependence of Daisyworld is the
growth rate of the two species:

Uy = Oy (.X,Bw - 7/) (1)

dy =ay(xBy — ), 2

where «,, o) are the areas covered by white and black
daisies, respectively, x the area of bare ground, B, =1 —
0.003265 (T; — Topt)2 is the growth rate of the daisies (subscript
i € {w, b} denotes the different types of daisy considered); T;
the local temperature of the daisies and y the death rate. All ter-
minology follows Watson and Lovelock (1983). Here, the two
roots of B; = 0 are denoted T ypper and T'oyer: these represent the
limits outside which neither species of daisy can grow.

Areas are non-dimensionalized with the area of the planet and
are thus between 0 and 1 inclusive.

To simplify the system still further, consider a monochromatic
Daisyworld in which white daisies are absent. Then

oy = ap[(1 — ap)Bp — 7] 3

and the system clearly has a stable stationary state in which
ap =1 — y /By, implying that there is bare habitable ground' of
area >y. Watson and Lovelock, and many subsequent authors,
chose y = 0.3.

One might argue that a positive y is relevant to a model based
on using the death rate of individuals within a population, but
not to a model which, as in this case, tracks changes in growth
via area covered. We argue here that a model based on species
replacement is simpler to analyse.

A steady state solution of eq. (3) has a net growth rate of zero.
The interpretation of Watson and Lovelock (1983) is a non-zero
growth rate and a non-zero mortality term, of equal magnitude
but opposite sign.

2. Daisyworld with no bare habitable ground

Simply setting ¥ = 0 is one solution to the problems discussed
above, but is not helpful, since doing so destroys the climate

! Watson and Lovelock allow for the possibility that the planet included
a certain proportion of infertile ground. We follow standard practice and
specify that all ground is fertile; in their terminology p = 1.
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feedback mechanism of bichromatic Daisyworld. Essentially the
system ‘remembers’ the initial conditions, that is, the ordered
pair {o,,(0), o,(0)}. If the planet becomes fully occupied, that
is, oy, + o = 1, the system remains frozen in a steady state:
neither black nor white daisies can grow or die.

To restore the feedback mechanism there are two obvious pos-
sibilities: either make y > 0, but arbitrarily small; or, leave y =
0 and somehow allow a species of daisy to infiltrate area already
occupied by different species of daisy and by doing so, exclude
any competitor species. However, the process of infiltration thus
described is different from colonization of bare ground: the es-
tablished species possesses an incumbent advantage which may
be considerable. From a landscape perspective, plant species are
often able to colonize bare ground more easily than they can ar-
eas where another species is already established. However, there
are many examples of systems in which one dominant species
can replace an incumbent, without the need for bare ground.”

Suppose the ratio of colonization rate into bare ground, to the
colonization rate into occupied ground is constant: call it I'".

Considering the general case of an arbitrary number of
species, we see that two infiltration processes occur simultane-
ously: each species infiltrates all the others at its specific growth
rate and each species is infiltrated by the others at their specific
growth rate. Symbolically:

%= +r<ﬂi2a,- —Zﬁjaj) @)

J# J#

=3B AT (B o= Bia ], 5
J J

where I' is the ratio of ‘infiltration’ into area occupied by the
other species, to rate of extension into bare but fertile ground.?
In this case, we have specified y = 0 as being the simplest case
but investigation of y > 0 might be interesting.

If the case of zero unoccupied ground and zero death rate is
considered, that is, x = 0, y = 0, then Y_ ¢; = 0 which results
in a full planet remaining fully occupied.

In bichromatic Daisyworld, the steady state may be found by
observing that a fully occupied planet has only a single degree of
freedom; the steady state is then identified by requiring «,, = 0.
This implies that 8, = B,,.

Compare this to the approach of Watson and Lovelock in
which the steady state is identified by solving the simultaneous

2 Examples drawn from terrestrial ecology include Beech forests
(Stewart et al., 1991), in which the filling of canopy gaps is dependent
on the differential responses of the species to gap formation.

3 Egs. (4) and (5) differ from those of Cohen and Rich (2000) and Pujol
etal. (2005), in which the infiltration terms for «;, say, are all proportional
to B;. In contrast, eq. (4) effectively considers infiltration terms to be
proportional to the competitor’s rate of growth: We suggest that a given
species’s area can be reduced more effectively by a vigorously growing
species than a nonvigorously growing species.
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equation pair corresponding to ‘white growth equals white
death’ and ‘black growth equals black death’, with y = O(1).
Then because the death rates of both species are defined to be
equal, black growth equals white growth.

We submit that our approach is more intuitive than Watson
and Lovelock’s original formulation; if nothing else, we have
one fewer free parameter. Observe that the numerical value of
I" is immaterial; to render the steady state reachable it is only
required that I" > 0.

The system of Cohen and Rich (2000) has some similarities to
the one presented here. However, we remove one free parameter,
rather than add four, and we retain the desirable behaviour of
the free fertile ground area approaching zero as time approaches
infinity.

In the general case of polychromatic Daisyworld, steady states
are found by considering o; = 0 fori =1, ..., n. These corre-
spond to B; = B, or all growth rates are identical. Steady states
may not exist for such systems and one might expect cyclic
behaviour.

The numerical consequences of our reformulation are not im-
mediately obvious, although the biology-climate coupling might
be expected to be stronger because all the planet is climatically
active. We reiterate our emphasis on conceptual simplification
that our approach furnishes.

2.1. Monochrome Daisyworld

It is instructive to consider the case for Daisyworld inhabited
solely by black daisies. The steady states in Watson and Love-
lock’s formulation are given by the solutions of

(1 — ap) (1 = 0.003265{Top — [T, + q'(Ap — Ag) ety — DIP)
=7 ©)

where A;,i € {a, b, g} is the albedo of the daisies or bare
ground, 7, is the planetary temperature and ¢’ is a diffusion
constant. This is a cubic equation in «;, which, although for-
mally soluble in radicals, has no readily interpretable analyti-
cal formula. Compare the approach proposed here in which the
equation is simply 8, = 0. Thus the black daisies’ area increases,
warming the planet, until the temperature is sufficiently high to
inhibit further growth. It is worth emphasizing the narrative clar-
ity of this process and contrasting it with the more complicated
algebra required for eq. (6).

Solving B, = 01is equivalent to solving T, = T ypper OF T ypper =
T,=T,+q (A— A),where A =a,A, +a,A, is the planetary
albedo. This gives

Tuper = To + q' (Ag — Ap) (1 — o). 7
The overall equation for «,, is therefore

SL 1/4
Tupper = |:7 (] - Ag +ab(Ag - Ah))]

+ 4/ (Ay — A — ), ®

where A = o, A, + a, A, is the effective albedo representing a
weighted average of A, and A,, the ground albedo.

This is a fourth-order polynomial in «;, which, although it has
a formal solution in radicals, is best solved numerically in the
sense that the analytical solution is difficult to interpret.

Observe the simplicity and compelling narrative implicit in
eq. (8). Consider a habitable planet with o, << 1. If L > 1, the
area covered by black daisies increases, heating the planet until
By =0 (i.e. Ty = T ypper; the solution to eq. (8)), at which point
further growth ceases.

Whether the daisies ‘control’ 7, in this case is moot: the black
area increases until the black daisies become too hot to retain a
positive growth rate. It might be better to consider this process
more in terms of black daisies causing ‘thermal pollution’ which
eventually inhibits further growth. Analogous processes occur
in monochrome white daisyworld, in which the white daisies
cool the planet until their growth is inhibited.

3. Bichromatic Daisyworld

If both types of daisies are present, then the steady state is
characterized by 8, = B,. This implies that T, and T} are
equidistant from T oy, as the growth curve is symmetrical. The
resulting equations are

T'=SL/o-(1—A) &)
Top =Te£q' (A= Aup) (10)
Ty + T, = 2Ty (11)
o + oy, = 1. (12)

One interesting consequence is

/

q
T, = Topl - E

and the system may be solved by solving the single equation

(Ay — Ap) (ot — 0tp) 13)

SL
7 [(1 - Aw) + o (Aw - Ab)]

, 4
= [Tom - %(Aw — A1 — 2ab>] (14)

(compare eq. 8). This equation is readily solved using numerical
methods; the left and right hand sides correspond to the plane-
tary temperature as determined from the overall albedo and the
temperature as determined by solving eq. (13).

Figure 1 shows the temperature as a function of solar lumi-
nosity L for bichromatic Daisyworld in both Watson and Love-
lock’s formulation and that presented here, using their value of
q' =20.

Note how ¢’ = 0implies T, = T o, which would be interpreted
as perfect homeostasis. Another interpretation of ¢’ = 0 would
be the perfect spatial intermingling of black and white daisies;
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Fig. 1. Temperature versus luminosity for Watson and Lovelock
(1983) and the present work. Observe the close agreement, in the biotic
regime, between the two formulations; also note the extended region of
homeostasis in the present work.

Watson and Lovelock 1983

area

0.5 1.0 1.5 2.0
luminosity

This work

area

0.5 1.0 1.5 2.0
luminosity

Fig. 2. Areas occupied by white and black daisies (open and closed
symbols, respectively) as a function of luminosity according to Watson
and Lovelock (1983) (upper figure) and the present work (lower figure).

the spatial aggregation implied by a nonzero value for ¢’ is
consistent with a neutral (Hankin, 2007) but not a unified neutral
(Hubbell, 2001), ecology.

Figure 2 shows the areas occupied by black and white daisies,
again as a function of L. Watson and Lovelock’s model predicts
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that the bare ground area x =1 — «;, — «,, is very close to y =
0.3 for almost the whole biotic range of L, while in the present
work x = 0 exactly whenever the daisies are present.

It is straightforward to show that d7,/dL < 0O in the biotic
range, which is the range

4 4
oT, < g Tuppcr

lower
- S(l - Aw) '

7S(1 —Ay) S L (15)

4. Discussion and conclusions

Daisyworld as presented by Watson and Lovelock (1983) in-
cluded a death rate parameter y whose value is conventionally
taken to be 0.3. A nonzero value for y yields an equilibrium
solution that includes a proportion ~30% of bare, fertile ground
which is climatically inactive yet necessary for the model to
function.

This paper has shown that one may remove y from Watson
and Lovelock’s original Daisyworld and add a species infiltra-
tion term I". The magnitude of I" (provided it is positive) does
not affect the equilibrium attained, which can be determined by
solving a single polynomial equation. This device has the advan-
tage that it reduces the number of free parameters in the model
by one, while retaining and extending biologically mediated cli-
matic control.
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