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ABSTRACT
Aerosols are a critical component of the climate system and a risk to human health. Here, the lockdown
response to the coronavirus outbreak is used to analyse effects of dramatic reduction in anthropogenic
aerosol sources on satellite-retrieved aerosol optical depth (AOD). A machine learning model is applied to
estimate daily AOD during the initial lockdown in China in early 2020. The model uses information on
aerosol climatology, geography and meteorological conditions, and explains 69% of the day-to-day AOD
variability. A comparison of model-expected and observed AOD shows that no clear, systematic decrease in
AOD is apparent during the lockdown in China. During March 2020, regional AOD is observed to be
significantly lower than expected by the machine learning model in some coastal regions of the North China
Plains and extending to the Korean peninsula. While this may possibly indicate a small lockdown effect on
regional AOD, and potentially pointing trans-boundary effects of the lockdown measures, due to
uncertainties associated with the method and the limited sample sizes, this AOD decrease cannot be
unequivocally attributed to reduced anthropogenic emissions. Climatologically expected AOD is compared to
a weather-adjusted expectation of AOD, indicating that meteorological influences have acted to significantly
increase AOD during this time, in agreement with recent literature. The findings highlight the complexity of
aerosol variability and the challenges of observation-based attribution of columnar aerosol changes.
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1. Introduction

Atmospheric aerosols are a key but poorly understood

component of the climate system (Boucher et al., 2013),

and as air pollutants also play a critical role for human

health (Shiraiwa et al. 2012; Lelieveld et al. 2019). Severe

air pollution episodes are a well-known problem in

China, a global hotspot of aerosol abundance, and pose a

major health risk to the population (e.g., Lelieveld et al.

2015; Yue et al. 2020). Also, climate-system effects of

aerosols are particularly pronounced in China and over

adjacent seas (Andersen et al. 2017; Hasekamp et al.

2019; Toll et al. 2019). Therefore, reaching a quantitative

understanding of the potential of anthropogenic aerosol

source changes on the atmospheric aerosol loading in this

region is relevant for both policy makers and the climate
science community.

The recent outbreak of the novel coronavirus disease
2019 (COVID-19) has affected human activities world-
wide. As the initial epicentre of the outbreak, China was
the first country to implement a number of unprece-
dented countermeasures, which caused an almost com-
plete shutdown of public life during early 2020 (Tian et
al. 2020). While Diamond and Wood (2020) and Huang
et al. (2021) have reported that, dependent on the sector,
only minor reductions of industrial production have
taken place, the overall abrupt change in human activity
(especially road traffic) has resulted in unprecedented
decreases of NO2 and to a lesser degree of particulate
matter concentrations in China (Diamond and Wood
2020; Shi and Brasseur 2020; Venter et al. 2020; Tang et
al. 2021; Li et al. 2021). Despite these clear reductions in�Corresponding author. email: hendrik.andersen@kit.edu
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specific aerosol species, no clear signal of lockdown meas-
ures on satellite-based aerosol optical depth (AOD) has
been found (Diamond and Wood 2020). This is not
necessarily surprising, as NO2 (and NO as well) is
strongly driven by traffic emissions (Carslaw 2005), while
AOD is influenced by many factors at once, e.g., second-
ary aerosol formation, aerosol natural source variability
or transport, which all need to be carefully considered
(detailed discussion below). Especially secondary aerosol
formation has been found to have offset the reductions
from reduced primary particle emission during early 2020
in China, driven by changes in atmospheric chemistry
(increased oxidizing capacity related to the reduced NOx

emissions has been reported to facilitate secondary aerosol
formation (Chang et al. 2020; Huang et al. 2021)) and also
facilitated by the specific meteorological conditions (higher
humidity, lower temperatures) during this time (Huang et
al. 2021; Li et al. 2021; Tang et al. 2021). In existing studies
analysing the AOD response to the lockdown, none or not
all of these factors have been considered explicitly. In this
context, the initial lockdown period in China provides a
unique test bed to study the effects of massive but short-
term reductions of anthropogenic aerosol emissions on satel-
lite-retrieved AOD.

The attribution of aerosol changes to changes in
human activity is challenging, as the variability of aero-
sols is very high in time and space, resulting in a low sig-
nal to noise ratio. This is because aerosol loading is not
only determined by local emissions, but also by regional
and long-distance transport, secondary aerosol formation,
meteorological variability and terrain features (e.g., Wang
et al. 2018). Indeed, Wang et al. (2020a) have simulated
air pollution in China in a number of reduced-emission
scenarios for the first weeks of 2020 and found that the
magnitude of meteorological influences exceeded the air-
pollution signal of emission reductions in China during
this time. This underscores the necessity of specifically
accounting for meteorological variability in order to
quantify aerosol changes due to a modified source situ-
ation. This is difficult, as day-to-day aerosol variability is
dependent on a number of meteorological factors at local
(Tang et al. 2016; Liu et al. 2017; Zhan et al. 2017;
Grange et al. 2018; Stirnberg et al. 2020) to synoptic
scales (Jia et al. 2015; Ma and Guan 2018; Grange et al.
2018; Leung et al. 2018), which determine natural aerosol
emissions (Scott et al. 2018), regional transport and mix-
ing of aerosols (Cermak and Knutti 2009; Tang et al.
2016; Stirnberg et al. 2021), and secondary particle for-
mation (Huang et al., 2014; Liu et al. 2018b; Nieminen et
al., 2018; Li et al. 2019; Wang et al. 2020b; Chang et al.
2020; Ding et al. 2021; Li et al. 2021). Synoptic changes
not only critically influence day-to-day variations in aero-
sol loading, but also explain a substantial fraction of

longer-term aerosol variability, so that the meteorologic-
ally-forced variability does not necessarily cancel out over
the time period of a month (Che et al. 2019). Also, while
satellite-retrieved AOD is a well-validated and commonly
used parameter to approximate aerosol patterns, it is
affected by aerosol swelling at high humidity and in the
vicinity of clouds. Both lead to an increase in AOD at a
constant aerosol concentration (Quaas et al. 2010;
Schwarz et al. 2017). Adding to the complexity, AOD in
China features region-specific seasonal cycles (Guo et al.
2011; Luo et al. 2014; Yu et al. 2017; Ma and Guan
2018; Sogacheva et al. 2018), as well as nonlinear trends,
with aerosol increases generally observed starting in the
mid-1990s, but decreasing rapidly since 2013 (e.g., Zheng
et al. 2018). Additionally, pollutants in China have been
found to significantly vary dependent on the day of the
week (Li et al. 2019). Amidst these considerations, a
robust attribution of any observed AOD anomalies to
changes in anthropogenic emissions is only feasible when
all of these factors are controlled for at once (cf. Cermak
and Knutti 2009).

The aim of the research presented here is to separate
the effects of the assumed reduction in columnar aerosol
loading due to the societal and economic lockdown in
response to the COVID-19 situation from the natural
variability, and thus to reach an attribution of columnar
aerosol loading changes due to reduced anthropogenic
activities during the COVID-19 period. The overarching
scientific question to be answered is: Did the changes in
human activity due to the lockdown measures signifi-
cantly reduce AOD in China? The corresponding hypoth-
esis to be tested is that in densely populated regions in
eastern China, the observed AOD is lower than would be
expected under the given meteorological conditions of the
year 2020. To test this hypothesis, a state-of-the-art
machine-learning technique is employed to predict AOD
on the basis of a) information on local and synoptic-scale
meteorological conditions, b) geographic aspects pertain-
ing to location and topography, and c) a climatologically
expected AOD that considers seasonal and weekly cycles,
as well as trend information. The predicted climatologic-
ally-informed and weather-adjusted AOD expectation is
compared to satellite-observed AOD, where differences
are interpreted as aerosol source changes.

2. Data and methods

2.1. Data

This study focuses on a spatial domain centred on the
eastern parts of China (20

�
N–45

�
N and 100

�
E–130

�
E).

All data used in this study span the months of
January–March in the period 2001–2020. To reduce the
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amount of data and computational resources needed, as
well as the complexity of seasonally-dependent relation-
ships between meteorology and aerosol loading, only the
months of January, February and March (JFM)
are considered.

Data on columnar aerosol loading are taken from
the official product suite for the Moderate-resolution
Imaging Spectroradiometer (MODIS) sensor aboard
the Terra satellite. Specifically, the AOD product
based on daily level 3 collection 6.1 (MOD08_D3,
‘Aerosol_Optical_Depth_Land_Ocean_Mean’) data are
used, which features a 1

��1
�
resolution (Hubanks et

al. 2008; Levy et al. 2013). The data set is chosen at
the spatial scale of 1

��1
�
as the study is focused on

regional-scale aerosol changes, because studies on climate
effects of aerosols are commonly conducted at such scales
(e.g., Benas et al. 2020). The authors acknowledge that
by using data at this spatial resolution, local-scale charac-
teristics, relevant especially for the assessment of local
air-pollution, are not captured.

To represent meteorological factors that have been
shown to influence aerosol loading, ERA5 reanalysis data

from the European Centre for Medium-Range Weather
Forecasts (ECMWF) are used. ERA5 is the current gen-
eration of reanalysis from the ECMWF and follow-up of
ERA-Interim (Dee et al., 2011). ERA5 features hourly
meteorological fields at a spatial resolution of 0.25

�

(Hersbach 2016). Here, meteorological fields are used at 3
UTC (close to the satellite overpass at �11 am local time
over the study domain) and resampled to fit the MODIS
grid. Meteorological variables that have been found to be
relevant drivers of aerosol variability by influencing nat-
ural aerosol sources, transport, chemical processes or sec-
ondary aerosol formation are chosen from the single-level
and pressure-level ERA5 products, and summarized with
the respective reference in Table 1. To approximate lon-
ger-term advection patterns, wind data are also used as
temporal averages 24 and 72 hours before the satellite
overpass. To approximate past wet scavenging of aerosol
particles, total precipitation is averaged over the past
24 hours in the same manner.

As additional information on the vertical layering of
the atmosphere, data on pressure levels pertaining to tem-
perature, specific humidity, and the u, v and w

Table 1. Overview of the input features used to predict log(AOD). Input features in bold are those used by the final model after
recursive feature elimination.

Input feature Time/space info Reference

Aerosol factors (total number of features: 1)
log(AODEclim) instantaneous

Meteorological factors (total number of features: 31)
u and v wind components (10m) instantaneous, (Stirnberg et al. 2020)

24 h, 72 h average (Cermak and Knutti 2009; Stirnberg et al. 2020)
air temperature (2m) instantaneous (Megaritis et al. 2013; Stirnberg et al. 2021)
boundary layer height instantaneous (Pet€aj€a et al. 2016; Tang et al. 2016;

Ma and Guan 2018; Liu et al. 2018b;
Stirnberg et al. 2020)

evaporation (surface) instantaneous
mean sea level pressure instantaneous (Stirnberg et al. 2020)
mean surface latent, sensible heat fluxes instantaneous (Tang et al. 2016)
soil (layer 1) temperature, volumetric water instantaneous (Scott et al. 2018; Che et al. 2019)
total columnar water vapor instantaneous (Boucher and Quaas 2013; Ding et al. 2021)
total precipitation 24 h (Li et al. 2015)
temperature BL, FT1, FT2 (Zhao et al. 2013; Pet€aj€a et al. 2016;

Ding et al. 2021; Li et al. 2021)
specific and relative humidity BL, FT1, FT2 (Tang et al. 2016; Liu et al. 2018b;

Stirnberg et al. 2018; Ding et al. 2021;
Li et al. 2021)

u, v and w wind components BL, FT1, FT2 (Ma and Guan 2018)
SHPI instantaneous (Jia et al. 2015)

Geographical factors (total number of features: 4)
Surface elevation
Latitude
Longitude
Land sea mask
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components of wind are used and averaged in three verti-
cal layers to approximate the boundary layer (BL, all
ERA5 levels between 1000 and 850 hPa), and two free
tropospheric layers (FT1, all ERA5 levels between 825
and 700 hPa, and FT2, between 650 and 500 hPa).

As synoptic conditions can be difficult to capture with
local meteorological information, the Siberian High pos-
ition index (SHPI, Jia et al. 2015), which has been found
to correlate strongly with wintertime AOD in China, is
calculated. The SHPI is defined as the pressure-weighted
mean of all longitudes of ERA5 grid cells exceeding
1023 hPa in a large spatial domain in the typical region
of the Siberian High (60–145

�
E and 30–65

�
N). It there-

fore approximates the strength and location of the
Siberian High, which is closely related to regionally dif-
ferent wintertime aerosol transport patterns to northern
and southern China (Jia et al. 2015).

Along with the meteorological data, additional infor-
mation on geographical factors are also taken from the
reanalysis and used as predictors in the machine learning
model, as terrain, coastal influences and geographic loca-
tion have been shown to be important modulators of
aerosol characteristics (e.g., Jia et al. 2015; Tang et al.
2016; Leung et al. 2018; Wang et al. 2018). Factors
included are surface elevation, land sea mask, longitude
and latitude.

2.2. Methods

A machine learning technique is used to predict an
expected aerosol loading, which is then used as a com-
parison to satellite observed AOD. In essence, this
approach uses machine learning for meteorological nor-
malization as suggested by (Grange et al. 2018; Grange
and Carslaw 2019; Petetin et al. 2020), but extends this
approach by including information on geographic aspects
and temporal characteristics of the time series. In this
study, AOD is log-transformed for the training, testing
and validation of the machine learning models. This is
done as AOD is typically log-normally distributed so that
its log-transformation approximates a normal distribution
(e.g., Cermak and Knutti 2009). In tests conducted on
the back-transformed data within this study, the training
on log-transformed data has led to a slight (<5%)
increase in predictive performance (higher R2, lower
RMSE) of the machine learning models used.

Gradient Boosted Regression Trees (GBRTs,
(Friedman 2001; Pedregosa et al. 2011)), a state-of-the-art
tree-based machine-learning model, are applied to predict
log(AOD). GBRTs use an ensemble of weak learners
(trees) that are sequentially added to the ensemble and
fitted to its predecessor’s previous residual error on the
basis of gradient descent (Friedman 2001). GBRTs have

been successfully applied before to study aerosol and
cloud patterns and processes (Fuchs et al. 2018; Pauli et
al. 2020; Stirnberg et al. 2020, 2021) and also the impact
of COVID-19 on air pollution in Europe (Petetin et al.
2020). The exact architecture of the GBRTs is determined
by hyperparameters (e.g., learning rate, number of trees).

A two-step modeling approach is chosen, which is
illustrated in Fig. 1:

1. In the first stage, grid-cell specific GBRTs are trained
to approximate the region-specific climatological
signals of log(AOD) on the basis of only four input
features: the year, the day of the week, the day of the
year, and the number of days before/after Chinese
New Year for each specific observation. This is
intended to account for regional differences in a)
AOD, b) its temporal cycles (Ma and Guan 2018;
Sogacheva et al. 2018), and c) nonlinear trend
characteristics (Zheng et al. 2018). The predicted
log(AOD) can be viewed as a generalized
climatological expectation at a specific point in time
and space and is termed log(AODEclim). This is
similar to the climatologically expected AOD used in
Diamond and Wood (2020), but uses daily data
instead of monthly means. To avoid overfitting of the
model to the day-to-day variability, a very shallow
model architecture is chosen, with only 100 trees and
a maximum depth (number of decision layers in each
tree) of 2. The robust Huber loss function is chosen
as in Fuchs et al. (2018). With these architectural
constraints, the models are only capable of a very
broad estimation of patterns underlying the time
series, and overfitting is not an issue. The models are
not technically validated, as the goal is not to
accurately predict an existing target (i.e. monthly
means, which are influenced by meteorology), but
rather to generalize the discussed elements of the
AOD time series at each location. As such,
optimizing model performance (e.g., on monthly
means) would not necessarily suggest that the models
generalize (e.g., trends and seasonality) well. The skill
of the models to generalize the underlying temporal
patterns (mainly trend and seasonality) is controlled
by visualizations as shown in Fig. 2b) (and Fig. S1)
for each grid box. One should note that there is not
enough data to train a local model in every region
separately. If the number of valid observations for the
whole time period is less than 200 per grid cell (e.g.,
some mountainous regions in the very north west of
the domain), log(AODEclim) is defined as the
average log(AOD).

2. In the second stage, a single domain-wide model is used
to predict daily log(AOD) on the basis of the described
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log(AODEclim), meteorological, and geographical
information. As this is a much more complex task,
likewise, the model architecture is more complex. The
data are split up into training (67%, n ¼ 219,033) and
test (33%, n ¼ 107,883) data sets. To evaluate potential
biases or uncertainties introduced when applying the
model to an unseen time period (as e.g., 2020), only data
from 2001–2018 are used during training, withholding
data from 2019 as an additional separate test data set.
Within the training data, a recursive feature elimination
is done to select only those features that are shown to be
useful to predict log(AOD). This is achieved by a step-
wise elimination of the least important input feature,
with model skill evaluated in a 3-fold cross validation. A
generic model architecture is chosen for this approach
(number of trees ¼ 5000, maximum depth ¼ 4, all other
hyperparameters at default of the scikit-learn
implementation (Pedregosa et al. 2011)). The final set of
features includes 36 of the original 40 features, which
maximizes model skill (see Table 1; the 3 features
pertaining to vertical velocity, as well as evaporation are
eliminated during the feature elimination process). Based
on this set of features, model hyperparameters are
optimized on the training data set in a grid-search
approach to determine the best combination of
hyperparameters (shown in Table 2), again using 3-fold
cross validation (to limit computational costs). To limit
overfitting of the model, two regularization strategies are
applied: 1) for each decision made by the trees during

training, only a fraction of the available features are
considered (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nfeatures

p
), and 2) model training is stopped

when the cross-validation score does not improve for 100
iterations (early stopping). The final set of
hyperparameters is the one that performs best in the
cross validation (bold numbers in Table 2). The final
model performance is then tested on the completely
independent test data set and on the year 2019. The
predicted log(AOD) can be understood as the expected
log(AOD) when meteorology, climatological context and
geography are considered and is termed here as
log(AODE). For all analyses (excluding the validation,
Fig. 3a)), the results are transformed back to the original
scale of AOD for clarity.

The two stage modeling architecture is chosen for two
reasons: 1) To create robust region-specific climatological
AOD expectations that account for nonlinear temporal
characteristics of the AOD time series, and 2) to be able
to have a quantitative estimate to potential weather con-
tributions to the expected AOD (Difference between
AODE and AODEclim).

3. Results and discussion

Figure 2 shows results of the first modeling step to pre-
dict climatologically expected AODEclim. In Fig. 2a),
log(AODEclim) is shown as a domain average grouped by
the parameter day of year. An increase in predicted

Fig. 1. Schematic overview of the two-step machine learning approach used in this study. Significant differences in the comparison of
the simulated AODE (blue) and the observed AOD (red) during the lockdown are interpreted as aerosol source changes.
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log(AODEclim) with day of year is apparent, also showing
substantial intramonthly changes of AOD. In thorough
grid-cell specific analyses, such as shown in Fig. 2b) and
Fig. S1, log(AODEclim) is qualitatively observed to cap-
ture well the underlying seasonal and trend patterns of
AOD. One should note that AOD trends and seasonal
variability are observed to differ substantially between
grid cells, so that the estimated log(AODEclim) patterns
vary similarly. In the example shown in Fig. 2b), the sea-
sonal pattern of AOD in the pixel closest to Chengdu is
well captured by the model and combined with the long-
term trend, where AOD is observed (and predicted) to
rapidly decrease starting �2012, after stricter air pollution
countermeasures were introduced (Jin et al. 2016). In this
example, some extremes of the monthly mean AOD are
not captured (around 2012), which makes sense, as these
typically are not climate signals but largely driven by
meteorology, regional aerosol transport and secondary
aerosol production (Huang et al., 2014; Zheng et
al. 2015).

The grid-cell specific information of log(AODEclim) is
then forwarded to the second machine learning model

where it is combined with information on meteorology
and geography (see Sec. 2). On this basis, the model is
applied to predict daily log(AOD) at each point in time
and space. Fig. 3 provides a summary of the skill of the
model to predict AOD in the study domain. The top row
shows averaged spatial patterns of observed AOD (a)),
predicted back-transformed AODE (b)), and their differ-
ence (c)) in the independent test data (2001–2018). The
results show that during the training period, the machine-
learning model is able to reproduce the average spatial
patterns well, without clear systematic regional biases.
The same comparison is done for the year 2019, which
was completely withheld from training, and shown in
panel f). A larger absolute bias is apparent in this case,
but only a very limited number of scattered pixels feature
a significant difference between observed AOD and pre-
dicted AODE. This case study for 2019 acts as a guide to
interpret the meaningfulness of the differences during
2020, as it shows the limitations of the method to predict
in unseen years. Fig. 3d) shows the results of the valid-
ation of the day-to-day variability of log(AOD) with the
independent test data set. The model is able to capture
the largest part of daily log(AOD) variability (69%, 57%
for back-transformed data, see Table S1). It is evident
that some very low aerosol loadings are overestimated by
the model (at log(AOD) < �5). This validation, however,
represents a mix of spatial and temporal components of
variability, as it is performed for the entire spatial
domain at once. In terms of explaining day-to-day vari-
ability in each grid cell, the model performs slightly
worse, with a domain average R2 of 0.50 (0.46 for back-
transformed data) but only minor spatial variation of the
model’s skill (Fig. 3e), standard deviation of temporal R2:
0.15). It should be noted that skill and bias tend to vary
more where less data exists for training (see Fig. 4a)). On

Fig. 2. Domain-average climatologically expected log(AODEclim) grouped by day of year (a)), displaying seasonal characteristics of the
AOD data set. The black line represents the mean, the grey area the mean ± 1 standard deviation of the regional models. Panel b)
shows an example of a log(AODEclimÞ time series for Chengdu (‘þ’ symbol), together with long-term variability (yearly average, black),
and seasonal variability (monthly average, circles) of observed log(AOD).

Table 2. Hyperparameter tuning of the GBRT model. The left-
hand column names the property, and the right-hand column
lists the values tested using grid search. Bold values are chosen
for the final model on the basis of a 3-fold cross validation. The
number of estimators is determined by early stopping as
described in section 2.2, with a maximum number of estimators
set to 20000.

Hyperparameter GBRT model

Final number of estimators (trees) 3862
Learning rate [0.1,0.03,0.01]
Maximum depth of the model [3,4,5,6]
Minimum number of samples per split [5,10,15,20]
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this basis, model predictions are used as comparison to
the observed AOD in early 2020 to attribute anomalies to
COVID-19 lockdown-induced emission changes.

In Fig. 5a), differences between observed AOD and
predicted AODE for all of JFM 2020 are shown. Since
the influences of seasonality, trends, and meteorological
conditions are inherent in AODE, differences to observed
AOD can be interpreted as differences in aerosol emis-
sions under consideration of the limitations of the
method (see Fig. 3). No clear, systematic differences
between observed AOD and AODE as hypothesized are
evident. In the North China Plains, predicted AODE

tends to be higher than observed AOD, but this differ-
ence is only significant in some pixels. In light of the limi-
tations of the method illustrated by the test results for
the year of 2019, it is thus hard to attribute these differ-
ences to decreased anthropogenic emissions during the
lockdown. These results agree well with findings from
Diamond and Wood (2020) who also analysed level 3
MODIS AOD at a 1

�
x1

�
resolution, but used monthly

averages without explicitly controlling for meteorological
variability. In some regions, the observed AOD is actu-
ally significantly higher than AODE, contrary to the
hypothesis of this study. The clearest of these patterns is
in the regions of northern Hebei north of Beijing and
Liaoning. Here, dust transport from the Kumutage and
Taklamakan deserts is a frequent phenomenon (Tang et
al. 2016; Yu et al. 2017), which increases the variability

of AOD in this region during winter. While some of the
AOD variability related to dust transport should be
explained by the model, certainly some limitations to
modeling dust transport exist in the current modeling
framework. For example, the model has no information
on meteorology that controls emissions at the source
region (e.g., previous precipitation, soil moisture and
winds; Che et al. 2019). Including this information is dif-
ficult, as source regions vary, and the transport time and
trajectory from source region to the receptor region
depend on the synoptic situation controlling the trans-
port. Also, wet scavenging along the trajectory is likely to
be a factor limiting the model’s capability to predict such
situations. Observed AOD also significantly exceeds
AODE in south-western parts of the domain, in vicinity
to the borders to Vietnam and Laos. These positive AOD
anomalies are likely caused by the extraordinary number
of wildfires occurring in the southeastern Asian Peninsula
during February and March 2020 (Jenner 2020). Such
AOD anomalies due to wildfire emissions could only be
explained by a machine learning model if they also would
occur in a similar way in the training data and were cap-
tured by the input features, which is not the case here.

Differences between observed AOD and AODE are
analysed for the months of January, February and March
(the lockdown in Wuhan started at the end of January
(Zhu et al. 2020)) to further investigate the temporal evo-
lution of differences between AOD and AODE during

Fig. 3. Validation of the machine-learning model predicting AOD/log(AOD) with independent test data. The top row shows average
observed and predicted (backtransformed) AOD of the test data in a) and b), and their difference in c) in the study domain (20

�
N–45

�

N and 100
�
E–130

�
E). Panel d) shows a scatter plot summarizing the model skill to predict log(AOD) over the entire domain and

therefore represents a combination of spatial and temporal skill. e) Spatial patterns of model skill in predicting the temporal variability
of log(AOD) in each grid cell (R2). Panel f) shows the difference between observed AOD and predicted (back-transformed) AODE, with
grey ‘þ’ symbols showing significance at 0.01 level of an independent two-sided t test.
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this period. In January (Fig. 5b)), observed AOD is
higher than predicted AODE throughout the North
China Plains, however, this difference is based on only
very few data points (Fig. 4d)) and hence is not signifi-
cant in most regions. While this pattern should not be
over-interpreted, the very low number of samples indi-
cates a prevalence of clouds in this region during this
time, and the positive differences could be related to
aerosol swelling or cloud-related processes that are not
captured by the model. There is a region where observed
AOD is significantly higher than predicted AODE in the
province of Guizhou in the southwestern parts of the
domain. However, as this is one of the more rural and
less densely population regions in China, and first lock-
down measures were put in place at the end of January
in Wuhan, these cannot be interpreted as related to the
lockdown-related changes in anthropogenic emissions.
These differences rather underscore the difficulty in the
interpretation of the results. During February (Fig. 5c)),
differences between AOD and AODE are similar to those
found for the JFM period. It should be noted that the
spatial patterns of the differences in February closely
match the findings from Diamond and Wood (2020),
underscoring that the patterns apparent in Fig. 5 are
unlikely to be artefacts created by the machine-learning
model. In March 2020 (Fig. 5d)), observed AOD is again
lower than predicted AODE in the North China Plains,
however, in most regions this difference is not significant
(p values > 0.01). This pattern extends over the adjacent
Yellow Sea and to the Korean peninsula, where differen-
ces are observed to be significant. One should note

though that the significance measure of the t test is
affected by the higher number of samples over the
Yellow Sea rather than the difference between AOD and
AODE being larger. With sample sizes varying this much
over the considered time and region using daily observa-
tions and therefore including this information instead of
monthly average data are thus advantageous for
such analyses.

To more closely evaluate this AOD anomaly from the
expected AODE in the North China Plains and the adja-
cent Yellow Sea, Fig. 6 shows distributions of observed
AOD, and predicted AODE and AODEclim for the test
data (2001–2018, a)) and March 2020 (b)). It is apparent
that during the test period, the median prediction of
AODE and AODEclim is close to the observations, but
that only AODE captures the variability of observed
AOD. This is expected, as AODEclim is purely a climato-
logical expectation without considering potential weather
influences. During March 2020, AODEclim is lower than
during the test period, reflecting the decreasing trend in
aerosol loadings in this region. While the observed AOD
is lower than this climatological expectation, the weather
adjusted AODE is actually higher than AODEclim. It is
thus noteworthy that during February and March 2020,
AOD was lower than expected in the North China
Plains, and may possibly be related to the lockdown
measures, and potentially pointing trans-boundary effects
of the lockdown measures. In light of the uncertainties
associated with the method, though, these AOD reduc-
tions cannot be unequivocally be attributed to reduced
anthropogenic emissions. The results do show that

Fig. 4. Number of valid AOD observations during a) training, b) testing, c) JFM 2020, d) January 2020, e) February 2020, and f)
March 2020 in the study domain (20

�
N–45

�
N and 100

�
E–130

�
E).
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meteorological factors need to be explicitly considered in
such analyses, as expected meteorological influences may
otherwise partially mask the AOD changes. It should be
noted that passive sensor AOD is an integrated columnar
observation, which means that changes in the vertical dis-
tribution of aerosols cannot be detected. In a recent study
using ground-based polarization lidar measurements over
Wuhan, Yin et al. (2021) separated the AOD contribu-
tions of boundary layer and free-tropospheric aerosols to
total AOD and found that during the lockdown, bound-
ary layer AOD was reduced while free-tropospheric AOD
was increased and actually dominated the total AOD sig-
nal, which is a clear anomaly in the time series. This indi-
cates that some of the lockdown-related aerosol loading
signals may not be detectable using column-integrated
AOD observations.

Spatial patterns of the differences between climato-
logically expected AODEclim and AODE during JFM 2020
are shown in Fig. 7. It is apparent that AODE is signifi-
cantly higher than AODEclim for the entire region of the

North China Plains and a large region centered around
Chengdu. This suggests that meteorological influences
have led to a higher model expectation of AODE, under-
scoring the necessity of controlling for meteorological
influences rather than using monthly average data in such
analyses. This result is in agreement with recent studies
that show that during the initial lockdown in China,
increased secondary aerosol production was facilitated by
high humidity and low air temperatures and changes in
atmospheric chemistry (Huang et al. 2021; Li et al. 2021;
Tang et al. 2021), and thus acted to increase the column
aerosol loading during this time. One should note that
while secondary aerosol production can be modified by
meteorological conditions (e.g., Liu et al. 2018b), it also
critically depends on the abundance of gaseous precursors
(e.g., Liu et al. 2018a). The planetary boundary layer
height was observed to have been abnormally low in
northern China during the lockdown, which has been
linked to strong haze conditions (Su et al. 2020). The
results also support Wang et al. (2020a) whose numerical

Fig. 5. Comparison of observed AOD 2020 minus AODE for a) JFM 2020, b) January 2020, c) February 2020, and d) March 2020 in
the study domain (20

�
N–45

�
N and 100

�
E–130

�
E). Grey ‘þ’ symbols show significance at 0.01 level of an independent two-sided t

test. The black box in panel d) shows the region that is further investigated in Fig. 6.
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modelling results showed that the magnitude of meteoro-
logical influences exceeded the air-pollution signal of
emission reductions during the lockdown period in
China. While the differences between AODEclim and
AODE are not as large as the differences between
observed AOD and AODE, they are not as affected by
limited sampling (prediction every day, n¼ 90) and show
a clear and spatially coherent structure.

4. Conclusions

In this study, a machine-learning model is applied to predict
satellite-observed AOD on the basis of climatologically
expected AOD, meteorological factors and geographical
information to attribute AOD anomalies to reduced
anthropogenic emissions during the COVID-19 period in

China. The model is shown to be capable of well represent-
ing daily AOD variability in an independent test data set
(spatiotemporal R2: 0.69, domain-average temporal R2:
0.50), with no systematic bias. In a separate test conducted
on a year that is completely withheld from training (2019),
the bias is higher, showing some limitations of the model to
predict for an unseen time period. The main findings of
comparisons between observed AOD and predicted AODE

are that:

� No clear, systematic reduction of AOD with respect
to the model expectation is found that can unequivo-
cally be attributed to reduced anthropogenic emis-
sions during the COVID-19 period.

� Observed AOD is lower than expected over the
North China Plain during February and March, but
in most regions these differences are not significant.
In March 2020, this pattern extends over the Yellow
Sea and to the Korean Peninsula, where differences
are frequently observed to be significant at the 0.01
level. While this finding is noteworthy, in light of the
uncertainties related to the method and the limited
number of samples, these are not interpreted as a
clearly evidential signature of reduced anthropogenic
emissions during the COVID-19 period.

� Climatologically expected AODEclim is compared to the
weather-adjusted expectation (AODE) for the months
of January, February and March. It is found that
AODE is significantly higher than AODEclim for the
region of the North China Plains and a region centered
around Chengdu. This suggests that meteorological
influences have acted to increase AOD during this
time, in agreement with recent literature.

� AODE significantly underestimates AOD in northern
and southern parts of China, likely due to processes

Fig. 6. Comparison of observed AOD and predicted AODE and AODEclim distributions of the region shown as a box in Fig. 5d) for
test data in the time period of 2001–2018 (a)), and March 2020 (b)). Predicted log(AODE) and log(AODEclim) are back-transformed for
the comparison. Thin vertical lines shows the median of the distributions.

Fig. 7. Comparison of climatologically expected AODEclim

minus AODE for JFM 2020 in the study domain (20
�
N–45

�
N

and 100
�
E–130

�
E), grey ‘þ’ symbols show significance at 0.01

level of an independent two-sided t test.
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that are not captured by the machine-learning model
as e.g., likely wildfire emissions (southern China),
aerosol swelling, meteorological influences or second-
ary aerosol production.

The findings suggest that extensive anthropogenic aero-
sol source reductions (e.g., air-pollution measures) does
not necessarily lead to a detectable reduction in satellite
retrieved regional columnar aerosol loadings. The find-
ings also highlight the complexity of columnar aerosol
variability in a large spatial domain and underscore the
challenge of detecting changes in column aerosol loading
due to changes in anthropogenic activity and the necessity
to account for meteorological influences.

Acknowledgements

We thank two anonymous reviewers for their careful
reviews which have helped improve the manuscript.

Disclosure statement

The authors declare that they have no conflict of interest.

Funding

EP is funded by the Graduate Funding from the German
States. We acknowledge the support by the European
Commission, H2020 Research Infrastructures (FORCeS
(grant no. 821205)), and the support by the Publication
Fund of the Karlsruhe Institute of Technology (KIT).

Code and data availability

The ERA5 meteorological reanalysis data are freely
available at the Copernicus Climate Change Service
(C3S) Climate Date Store: https://cds.climate.copernicus.
eu/#!/search?text¼ERA5&type¼ dataset (last access:
April 27th, 2020). MODIS data are freely available at the
Level-1 and Atmosphere Archive & Distribution System
(LAADS) Distributed Active Archive Center (DAAC):
https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/
61/MOD08/_D3/ (last access: April 10th, 2020). Code
for data processing and modeling is available from the
corresponding author upon reasonable request.

Author contributions

HA and JC had the idea for the analysis. HA obtained and
analysed most of the data sets, conducted the original
research and wrote the manuscript. EP and MK helped
with the development of the machine learning model. All

authors contributed to study design, manuscript
preparation, and the interpretation of findings.

Supplementary material

Supplemental data for this article can be accessed online
at https://doi.org/10.1080/16000889.2021.1971925.

References

Andersen, H., Cermak, J., Fuchs, J., Knutti, R. and Lohmann,
U. 2017. Understanding the drivers of marine liquid-water
cloud occurrence and properties with global observations
using neural networks. Atmos. Chem. Phys. 17, 9535–9546.
doi:10.5194/acp-17-9535-2017

Benas, N., Fokke Meirink, J., Karlsson, K. G., Stengel, M. and
Stammes, P. 2020. Satellite observations of aerosols and
clouds over southern China from 2006 to 2015: Analysis of
changes and possible interaction mechanisms. Atmos. Chem.
Phys. 20, 457–474. doi:10.5194/acp-20-457-2020

Boucher, O. and Quaas, J. 2013. Water vapour affects both rain
and aerosol optical depth. Nature Geosci. 6, 4–5. doi:10.1038/
ngeo1692

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold,
G. and co-authors. 2013. (). Clouds and Aerosols. In Climate
Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change. (eds. T.F.
Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J.
Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, ).
Cambridge University Press, Cambridge, UK.

Carslaw, D. C. 2005. Evidence of an increasing NO2/NOX
emissions ratio from road traffic emissions. Atmos. Environ.
39, 4793–4802. doi:10.1016/j.atmosenv.2005.06.023

Cermak, J. and Knutti, R. 2009. Beijing olympics as an aerosol
field experiment. Geophys. Res. Lett. 36, L10806. doi:10.1029/
2009GL038572

Chang, Y., Huang, R. J., Ge, X., Huang, X., Hu, J. and co-authors.
2020. Puzzling haze events in china during the coronavirus
(COVID-19) shutdown. Geophys. Res. Lett. 47, 1–11.

Che, H., Gui, K., Xia, X., Wang, Y., Holben, B. N. and co-
authors. 2019. Large contribution of meteorological factors to
inter-decadal changes in regional aerosol optical depth.
Atmos. Chem. Phys. 19, 10497–10523. doi:10.5194/acp-19-
10497-2019

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P. and co-authors. 2011. The ERA-Interim reanalysis:
configuration and performance of the data assimilation
system. QJR. Meteorol. Soc. 137, 553–597. doi:10.1002/qj.828

Diamond, M. S. and Wood, R. 2020. Limited regional aerosol
and cloud microphysical changes despite unprecedented
decline in nitrogen oxide pollution during the February 2020
COVID-19 shutdown in China. Geophys Res Lett. 47,
e2020GL088913. doi:10.1029/2020GL088913.

Ding, J., Dai, Q., Zhang, Y., Xu, J., Huangfu, Y. and co-
authors. 2021. Air humidity affects secondary aerosol

ASSESSMENT OF COVID-19 EFFECTS ON SATELLITE-OBSERVED AEROSOL LOADING 11

https://cds.climate.copernicus.eu/#
https://cds.climate.copernicus.eu/#
https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD08/_D3/
https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD08/_D3/
https://doi.org/10.1080/16000889.2021.1971925
https://doi.org/10.5194/acp-17-9535-2017
https://doi.org/10.5194/acp-20-457-2020
https://doi.org/10.1038/ngeo1692
https://doi.org/10.1038/ngeo1692
https://doi.org/10.1016/j.atmosenv.2005.06.023
https://doi.org/10.1029/2009GL038572
https://doi.org/10.1029/2009GL038572
https://doi.org/10.5194/acp-19-10497-2019
https://doi.org/10.5194/acp-19-10497-2019
https://doi.org/10.1002/qj.828
https://doi.org/10.1029/2020GL088913


formation in different pathways. Sci. Total Environ. 759,
143540. doi:10.1016/j.scitotenv.2020.143540

Friedman, J. H. 2001. Greedy function approximation: A
gradient boosting machine. Annals of Statistics 29, 1189–1232.

Fuchs, J., Cermak, J. and Andersen, H. 2018. Building a cloud
in the Southeast Atlantic: Understanding low-cloud controls
based on satellite observations with machine learning. Atmos.
Chem. Phys. 18, 16537–16552. doi:10.5194/acp-18-16537-2018

Grange, S. K. and Carslaw, D. C. 2019. Using meteorological
normalisation to detect interventions in air quality time series.
Sci. Total Environ. 653, 578–588. doi:10.1016/j.scitotenv.2018.
10.344

Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E. and
Hueglin, C. 2018. Random forest meteorological
normalisation models for Swiss PM10 trend analysis. Atmos.
Chem. Phys. 18, 6223–6239. doi:10.5194/acp-18-6223-2018

Guo, J. P., Zhang, X. Y., Wu, Y. R., Zhaxi, Y., Che, H. Z. and
co-authors. 2011. Spatio-temporal variation trends of satellite-
based aerosol optical depth in China during 1980-2008. Atmos.
Environ. 45, 6802–6811. doi:10.1016/j.atmosenv.2011.03.068

Hasekamp, O. P., Gryspeerdt, E. and Quaas, J. 2019. Analysis
of polarimetric satellite measurements suggests stronger
cooling due to aerosol-cloud interactions. Nat. Commun. 2,
1–7.

Hersbach, H. ( 2016. ). The ERA5 atmospheric reanalysis. AGU
Fall Meeting Abstracts.

Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J. and
co-authors. 2014. High secondary aerosol contribution to
particulate pollution during haze events in China. Nature 514,
218–222. doi:10.1038/nature13774

Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D. and co-
authors. 2021. Enhanced secondary pollution offset reduction
of primary emissions during COVID-19 lockdown in China.
National Science Review 8, https://academic.oup.com/nsr/
article/8/2/nwaa137/5859289.

Hubanks, P. A., King, M. D., Platnick, S. and Pincus, R. ( 2008. ).
MODIS Atmosphere L3 Gridded Product Algorithm Theoretical
Basis Document No. ATBD-MOD-30 for Level-3 Global
Gridded Atmosphere Products (08_D3, 08_E3, 08_M3).

Jenner, L. 2020. Southeast Asian peninsula displays large
concentrations of fires. https://www.nasa.gov/image-feature/
goddard/2020/southeast-asian-peninsula-displays-large-concen-
trations-of-fires.

Jia, B., Wang, Y., Yao, Y. and Xie, Y. 2015. A new indicator
on the impact of large-scale circulation on wintertime
particulate matter pollution over China. Atmos. Chem. Phys.
15, 11919–11929. doi:10.5194/acp-15-11919-2015

Jin, Y., Andersson, H. and Zhang, S. 2016. Air pollution control
policies in China: A retrospective and prospects. Int. J.
Environ. Res. Public Health 13, 1219.

Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. and
Pozzer, A. 2015. The contribution of outdoor air pollution
sources to premature mortality on a global scale. Nature 525,
367–371. doi:10.1038/nature15371

Lelieveld, J., Klingm€uller, K., Pozzer, A., Burnett, R. T.,
Haines, A. and co-authors. 2019. Effects of fossil fuel and
total anthropogenic emission removal on public health and

climate. Proc. Natl. Acad. Sci. USA. 116, 7192–7197. doi:10.
1073/pnas.1819989116

Leung, D. M., Tai, A. P., Mickley, L. J., Moch, J. M., Van
Donkelaar, A. and co-authors. 2018. Synoptic meteorological
modes of variability for fine particulate matter (PM2.5) air
quality in major metropolitan regions of China. Atmos. Chem.
Phys. 18, 6733–6748. doi:10.5194/acp-18-6733-2018

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer,
A. M. and co-authors. 2013. The Collection 6 MODIS
aerosol products over land and ocean. Atmos. Meas. Tech. 6,
2989–3034. doi:10.5194/amt-6-2989-2013

Li, R., Wang, Z., Cui, L., Fu, H., Zhang, L. and co-authors. 2019.
Air pollution characteristics in China during 2015-2016:
Spatiotemporal variations and key meteorological factors. Sci.
Total. Environ. 648, 902–915. doi:10.1016/j.scitotenv.2018.08.181

Li, R., Zhao, Y., Fu, H., Chen, J., Peng, M. and co-authors.
2021. Substantial changes of gaseous pollutants and chemical
compositions in fine particles in North China Plain during
COVID-19 lockdown period: anthropogenic vs meteorological
influences. Atmos. Chem. Phys. 21, 8677–8692. doi:10.5194/
acp-21-8677-2021

Li, Y., Chen, Q., Zhao, H., Wang, L. and Tao, R. 2015.
Variations in pm10, pm2.5 and pm1.0 in an urban area of the
sichuan basin and their relation to meteorological factors.
Atmosphere 6, 150–163. doi:10.3390/atmos6010150

Liu, J., Chu, B., Chen, T., Liu, C., Wang, L. and co-authors.
2018a. Secondary organic aerosol formation from ambient air at
an urban site in Beijing: effects of OH exposure and precursor
concentrations. Environ. Sci. Technol. 52, 6834–6841. doi:10.1021/
acs.est.7b05701

Liu, Q., Jia, X., Quan, J., Li, J., Li, X. and co-authors. 2018b. New
positive feedback mechanism between boundary layer
meteorology and secondary aerosol formation during severe haze
events. Sci. Rep. 8, 6095–6098. doi:10.1038/s41598-018-24366-3

Liu, T., Gong, S., He, J., Yu, M., Wang, Q. and co-authors.
2017. Attributions of meteorological and emission factors to
the 2015 winter severe haze pollution episodes in China’s
Jing-Jin-Ji area. Atmos. Chem. Phys. 17, 2971–2980. doi:10.
5194/acp-17-2971-2017

Luo, Y., Zheng, X., Zhao, T. and Chen, J. 2014. A climatology
of aerosol optical depth over China from recent 10years of
MODIS remote sensing data. Int. J. Climatol. 34, 863–870.
doi:10.1002/joc.3728

Ma, F. and Guan, Z. 2018. Seasonal variations of aerosol
optical depth over east China and India in relationship to the
Asian monsoon circulation. J. Meteorol. Res. 32, 648–660.
doi:10.1007/s13351-018-7171-1

Megaritis, A. G., Fountoukis, C., Charalampidis, P. E., Pilinis,
C. and Pandis, S. N. 2013. Response of fine particulate
matter concentrations to changes of emissions and
temperature in Europe. Atmos. Chem. Phys. 13, 3423–3443.
doi:10.5194/acp-13-3423-2013

Nieminen, T., Kerminen, V.-M., Pet€aj€a, T., Aalto, P. P.,
Arshinov, M. and co-authors. 2018. Global analysis of
continental boundary layer new particle formation based on
long-term measurements. Atmos. Chem. Phys. 18,
14737–14756. doi:10.5194/acp-18-14737-2018

12 H. ANDERSEN ET AL.

https://doi.org/10.1016/j.scitotenv.2020.143540
https://doi.org/10.5194/acp-18-16537-2018
https://doi.org/10.1016/j.scitotenv.2018.10.344
https://doi.org/10.1016/j.scitotenv.2018.10.344
https://doi.org/10.5194/acp-18-6223-2018
https://doi.org/10.1016/j.atmosenv.2011.03.068
https://doi.org/10.1038/nature13774
https://academic.oup.com/nsr/article/8/2/nwaa137/5859289
https://academic.oup.com/nsr/article/8/2/nwaa137/5859289
https://www.nasa.gov/image-feature/goddard/2020/southeast-asian-peninsula-displays-large-concentrations-of-fires
https://www.nasa.gov/image-feature/goddard/2020/southeast-asian-peninsula-displays-large-concentrations-of-fires
https://www.nasa.gov/image-feature/goddard/2020/southeast-asian-peninsula-displays-large-concentrations-of-fires
https://doi.org/10.5194/acp-15-11919-2015
https://doi.org/10.1038/nature15371
https://doi.org/10.1073/pnas.1819989116
https://doi.org/10.1073/pnas.1819989116
https://doi.org/10.5194/acp-18-6733-2018
https://doi.org/10.5194/amt-6-2989-2013
https://doi.org/10.1016/j.scitotenv.2018.08.181
https://doi.org/10.5194/acp-21-8677-2021
https://doi.org/10.5194/acp-21-8677-2021
https://doi.org/10.3390/atmos6010150
https://doi.org/10.1021/acs.est.7b05701
https://doi.org/10.1021/acs.est.7b05701
https://doi.org/10.1038/s41598-018-24366-3
https://doi.org/10.5194/acp-17-2971-2017
https://doi.org/10.5194/acp-17-2971-2017
https://doi.org/10.1002/joc.3728
https://doi.org/10.1007/s13351-018-7171-1
https://doi.org/10.5194/acp-13-3423-2013
https://doi.org/10.5194/acp-18-14737-2018


Pauli, E., Andersen, H., Bendix, J., Cermak, J. and Egli, S. 2020.
Determinants of fog and low stratus occurrence in continental
central Europe – a quantitative satellite-based evaluation. J.
Hydrol. 591, 125451. doi:10.1016/j.jhydrol.2020.125451

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B. and co-authors. 2011. Scikit-learn: Machine
Learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Pet€aj€a, T., J€arvi, L., Kerminen, V. M., Ding, A. J., Sun, J. N.
and co-authors. 2016. Enhanced air pollution via aerosol-
boundary layer feedback in China. Sci. Rep. 6, 1–6.

Petetin, H., Bowdalo, D., Soret, A., Guevara, M., Jorba, O. and
co-authors. 2020. Meteorology-normalized impact of the
COVID-19 lockdown upon NO2 pollution in Spain. Atmos.
Chem. Phys. 20, 11119–11141. doi:10.5194/acp-20-11119-2020

Quaas, J., Stevens, B., Stier, P. and Lohmann, U. 2010.
Interpreting the cloud cover - aerosol optical depth
relationship found in satellite data using a general circulation
model. Atmos. Chem. Phys. 10, 6129–6135. doi:10.5194/acp-
10-6129-2010

Schwarz, K., Cermak, J., Fuchs, J. and Andersen, H. 2017.
Mapping the twilight zone—what we are missing between clouds
and aerosols. Remote Sens. 9, 577. doi:10.3390/rs9060577

Scott, C. E., Arnold, S. R., Monks, S. A., Asmi, A., Paasonen,
P. and co-authors. 2018. Substantial large-scale feedbacks
between natural aerosols and climate. Nature Geosci. 11,
44–48. doi:10.1038/s41561-017-0020-5

Shi, X. and Brasseur, G. P. 2020. The Response in Air Quality
to the Reduction of Chinese Economic Activities During the
COVID-19 Outbreak. Geophys. Res. Lett. 47,
e2020GL088070–e2020GL088078.

Shiraiwa, M., Selzle, K. and P€oschl, U. 2012. Hazardous
components and health effects of atmospheric aerosol
particles: Reactive oxygen species, soot, polycyclic aromatic
compounds and allergenic proteins. Free Radic. Res. 46,
927–939. doi:10.3109/10715762.2012.663084

Sogacheva, L., Rodriguez, E., Kolmonen, P., Virtanen, T. H.,
Saponaro, G. and co-authors. 2018. Spatial and seasonal
variations of aerosols over China from two decades of multi-
satellite observations - Part 2: AOD time series for 1995-2017
combined from ATSR ADV and MODIS C6.1 and AOD
tendency estimations. Atmos. Chem. Phys. 18, 16631–16652.
doi:10.5194/acp-18-16631-2018

Stirnberg, R., Cermak, J. and Andersen, H. 2018. An analysis of
factors influencing the relationship between satellite-derived
AOD and ground-level PM10. Remote Sens. 10, 1353. doi:10.
3390/rs10091353

Stirnberg, R., Cermak, J., Fuchs, J. and Andersen, H. 2020.
Mapping and understanding patterns of air quality using
satellite data and machine learning. J. Geophys. Res. Atmos.
125, e2019JD031380.

Stirnberg, R., Cermak, J., Kotthaus, S., Haeffelin, M.,
Andersen, H. and co-authors. 2021. Meteorology-driven
variability of air pollution (PM1) revealed with explainable
machine learning. Atmos. Chem. Phys. 21, 3919–3948. doi:10.
5194/acp-21-3919-2021

Su, T., Li, Z., Zheng, Y., Luan, Q. and Guo, J. 2020.
Abnormally shallow boundary layer associated with severe air

pollution during the COVID-19 lockdown in China. Geophys.
Res. Lett. 47, e2020GL090041.

Tang, G., Zhang, J., Zhu, X., Song, T., M€unkel, C. and co-
authors. 2016. Mixing layer height and its implications for air
pollution over Beijing, China. Atmos. Chem. Phys. 16,
2459–2475. doi:10.5194/acp-16-2459-2016

Tang, L., Shang, D., Fang, X., Wu, Z., Qiu, Y. and co-authors.
2021. More Significant Impacts From New Particle
Formation on Haze Formation During COVID-19
Lockdown. Geophys. Res. Lett. 48, e2020GL091591.

Tian, H., Liu, Y., Li, Y., Wu, C. H., Chen, B. and co-authors.
2020. An investigation of transmission control measures
during the first 50 days of the COVID-19 epidemic in China.
Science 368, 638–642. doi:10.1126/science.abb6105

Toll, V., Christensen, M., Quaas, J. and Bellouin, N. 2019.
Weak average liquid-cloud-water response to anthropogenic
aerosols. Nature 572, 51–55. doi:10.1038/s41586-019-1423-9

Venter, Z. S., Aunan, K., Chowdhury, S. and Lelieveld, J.
2020. COVID-19 lockdowns cause global air pollution
declines with implications for public health risk. medRxiv
5, 2020.04.10.20060673.

Wang, P., Chen, K., Zhu, S., Wang, P. and Zhang, H. 2020a.
Severe air pollution events not avoided by reduced
anthropogenic activities during COVID-19 outbreak. Resour.
Conserv. Recycl. 158, 104814. doi:10.1016/j.resconrec.2020.
104814

Wang, T., Huang, X., Wang, Z., Liu, Y., Zhou, D. and co-
authors. 2020b. Secondary aerosol formation and its linkage
with synoptic conditions during winter haze pollution over
eastern china. Sci. Total Environ. 730, 138888. doi:10.1016/j.
scitotenv.2020.138888

Wang, X., Dickinson, R. R. E., Su, L., Zhou, C. and Wang, K.
2018. PM2.5 pollution in China and how it has been
exacerbated by terrain and meteorological conditions. Bull.
Am. Meteorol. Soc. 99, 105–120. doi:10.1175/BAMS-D-16-
0301.1

Yin, Z., Yi, F., Liu, F., He, Y., Zhang, Y. and co-authors. 2021.
Long-term variations of aerosol optical properties over wuhan
with polarization lidar. Atmos. Environ. 259, 118508. doi:10.
1016/j.atmosenv.2021.118508

Yu, X., L€u, R., Liu, C., Yuan, L., Shao, Y. and co-authors.
2017. Seasonal variation of columnar aerosol optical
properties and radiative forcing over Beijing, China. Atmos.
Environ. 166, 340–350. doi:10.1016/j.atmosenv.2017.07.011

Yue, H., He, C., Huang, Q., Yin, D. and Bryan, B. A. 2020.
Stronger policy required to substantially reduce deaths from
PM2.5 pollution in China. Nat. Commun. 11, 1462–1410. doi:
10.1038/s41467-020-15319-4

Zhan, D., Kwan, M. P., Zhang, W., Wang, S. and Yu, J. 2017.
Spatiotemporal variations and driving factors of air pollution
in China. Int. J. Environ. Res. Public Health 14, 1–18.

Zhao, X. J., Zhao, P. S., Xu, J., Meng, W., Pu, W. W. and co-
authors. 2013. Analysis of a winter regional haze event and
its formation mechanism in the North China Plain. Atmos.
Chem. Phys. Discuss. 13, 903–933.

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C. and co-authors.
2018. Trends in China’s anthropogenic emissions since 2010

ASSESSMENT OF COVID-19 EFFECTS ON SATELLITE-OBSERVED AEROSOL LOADING 13

https://doi.org/10.1016/j.jhydrol.2020.125451
https://doi.org/10.5194/acp-20-11119-2020
https://doi.org/10.5194/acp-10-6129-2010
https://doi.org/10.5194/acp-10-6129-2010
https://doi.org/10.3390/rs9060577
https://doi.org/10.1038/s41561-017-0020-5
https://doi.org/10.3109/10715762.2012.663084
https://doi.org/10.5194/acp-18-16631-2018
https://doi.org/10.3390/rs10091353
https://doi.org/10.3390/rs10091353
https://doi.org/10.5194/acp-21-3919-2021
https://doi.org/10.5194/acp-21-3919-2021
https://doi.org/10.5194/acp-16-2459-2016
https://doi.org/10.1126/science.abb6105
https://doi.org/10.1038/s41586-019-1423-9
https://doi.org/10.1016/j.resconrec.2020.104814
https://doi.org/10.1016/j.resconrec.2020.104814
https://doi.org/10.1016/j.scitotenv.2020.138888
https://doi.org/10.1016/j.scitotenv.2020.138888
https://doi.org/10.1175/BAMS-D-16-0301.1
https://doi.org/10.1175/BAMS-D-16-0301.1
https://doi.org/10.1016/j.atmosenv.2021.118508
https://doi.org/10.1016/j.atmosenv.2021.118508
https://doi.org/10.1016/j.atmosenv.2017.07.011
https://doi.org/10.1038/s41467-020-15319-4


as the consequence of clean air actions. Atmos. Chem. Phys.
18, 14095–14111. doi:10.5194/acp-18-14095-2018

Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y. and
co-authors. 2015. Exploring the severe winter haze in Beijing:
The impact of synoptic weather, regional transport and

heterogeneous reactions. Atmos. Chem. Phys. 15, 2969–2983.
doi:10.5194/acp-15-2969-2015

Zhu, Y., Xie, J., Huang, F. and Cao, L. 2020. Association between
short-term exposure to air pollution and COVID-19 infection:
Evidence from China. Sci. Total Environ. 727, 138704.

14 H. ANDERSEN ET AL.

https://doi.org/10.5194/acp-18-14095-2018
https://doi.org/10.5194/acp-15-2969-2015

	Abstract
	Introduction
	Data and methods
	Data
	Methods

	Results and discussion
	Conclusions
	Acknowledgements
	Disclosure statement
	Funding
	Code and data availability
	Author contributions
	Supplementary material
	References


