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ABSTRACT
Atmosphere—surface exchange represents one mechanism by which atmospheric particle mass and number size dis-
tributions are modified. Deposition velocities (vq) exhibit a pronounced dependence on surface type, due in part to
turbulence structure (as manifest in friction velocity), with minima of approximately 0.01 and 0.2 cm s~! over grass-
lands and 0.1-1 cm s~! over forests. However, as noted over 20 yr ago, observations over forests generally do not
support the pronounced minimum of deposition velocity (vq) for particle diameters of 0.1-2 ;m as manifest in theoreti-
cal predictions. Closer agreement between models and observations is found over less-rough surfaces though those data
also imply substantially higher surface collection efficiencies than were originally proposed and are manifest in current
models. We review theorized dependencies for particle fluxes, describe and critique model approaches and innovations
in experimental approaches, and synthesize common conclusions of experimental and modelling studies. We end by

proposing a number of research avenues that should be pursued in to facilitate further insights and development of

improved numerical models of atmospheric particles.

1. Introduction

The mass and number distribution of atmospheric aerosol par-
ticles are determined, in part, by atmosphere—surface exchange
and in turn these properties influence the magnitude of direct
and indirect climate effects (IPCC, 2001), visibility degrada-
tion (Malm, 2003) and detrimental health impacts (Pope and
Dockery, 1999). A key process in atmosphere—surface exchange
is dry deposition—atmosphere to surface exchange via contact.
The relative importance of wet (and occult) versus dry depo-
sition to particle removal is dependent on a plethora of at-
mospheric parameters (e.g. the precipitation climate), particle
characteristics, and surface type, but dry deposition is a con-
tinuous process and likely contributes a significant fraction of
particle removal in most environments (e.g. Foken et al., 1995;
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Takemura et al., 2000). Accordingly, inclusion of addi-
tional/improved parametrizations of processes affecting vertical
transport and exchange of particles in air quality and climate
modelling is recognized as a research need within international
and national priorities (e.g. in the rubric of the North American
Research Strategy for Tropospheric Ozone (NARSTO) (Hidy
et al., 2000), and also the Intergovermental Panel on Climate
Change (IPCC, Alley et al., 2007)). Improved understanding of
the mechanisms of interaction between particles and vegetation
has also returned to prominence with proposals to use trees as
filtration mechanisms to reduce the exposure of urban popula-
tions to elevated concentrations of atmospheric particles (Donat
and Ruck, 1999; Freer-Smith et al., 2005).

Several previous papers have articulated the state of knowl-
edge regarding dry deposition (i.e. atmosphere to surface ex-
change by contact) during the last 20-30 yr. However, a decade
has past since the publication of the review of particle fluxes over
natural surfaces by Gallagher et al. (1997b), and there have been
substantial advances in experimental techniques since Nicholson
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(1988a), Davidson and Wu (1990) and Sievering (1989) reviewed
experimental methods for application to particle flux measure-
ments. It is also over a decade since Dabberdt et al. (1993),
Foken et al. (1995) and Businger (1986) described, more gener-
ally, issues that confront those involved in atmosphere—surface
exchange studies. Further, it is over 5 yr since the overview of
the status of knowledge on dry deposition by Wesley and Hicks
(2000) appeared.

Here we present an update of these dry deposition reviews with
asole focus on particles and emphasis on experimental aspects of
the vertical exchange over vegetated surfaces. For completeness
we include some studies not conducted over vegetated surfaces
in the literature synthesis presented in Table 1, but largely focus
our discussion on vegetated surfaces to constrain this dialogue
to surface types that are theorized to be dominated by deposi-
tion, as opposed to marine environments where the surface acts
as a particle source in addition to a sink (e.g. Martensson et
al., 2003) and urban environments where anthropogenic particle
sources tend to dominate and emissions are typically observed
(e.g. Dorsey et al., 2002). We document methodological and
instrumentation advances and recent innovative application of
theoretical and numerical tools, and describe the process-level
insights derived from application of those techniques. We also
briefly summarize operational options currently being utilized
as part of monitoring networks. We conclude by articulating
some of the remaining uncertainties in our understanding of the
processes that dictate particle fluxes in the absence of precipi-
tation and propose potentially fruitful research directions to be
pursued.

2. Governing principles of dry deposition

Dry deposition describes transport of a property from the atmo-
sphere to the surface by contact in the absence of precipitation.
A key concept is that of deposition velocity vy(z) (i.e. the deposi-
tion velocity at a given height z) which is the flux of a constituent
normalized by the concentration expressed as a partial density
at that height z [shown as C(z)]:

—F(2)
C@@)
As discussed by Businger (1986), (1) implies that F — 0 as the
concentration at the surface [C(0)] — 0. For C(0) # 0 one can
also introduce the concept of a transfer velocity (v,) (Chamber-
lain, 1966; Businger, 1986):
vz z) = @)
C(z2) — C(z1)

which can be employed for any height interval (i.e. z; can be
taken as O or any other height).

ey

va(z) =

The concept of particle vy is also used extensively in modelling
of dry deposition. In Table 1, where we summarize the results
of many particle flux studies conducted during the past three
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decades, we employ a protocol that reports the terminology used
in the original article from which data are drawn.

In practice the surface may act as a sink and/or source of
both gases and particles. Hence fluxes may be bi-directional,
or alternatively stated, the net exchange may have contributions
from fluxes directed both to the surface (this flux is defined as
negative) or from the surface.

For arigorous treatment of material budgets in the atmospheric
surface layer see Businger (1986), in brief, the conservation
equation for scalars is:

ac+ 9 C Dazc 8( C)+S 3)
— +—uC=D—C—-— (v .
at  dx; x? az ¢

Using Reynolds decomposition to decompose C and u into their
average and fluctuating components (C = C + C’andu; = ii; +
u;), the average of eq. (3) is:

C 0 _— ) —— R
-t a_x,.”_"c + 3?”50 = Da_xfc ~ % (C)+S. &
In this equation the first term on the left-hand side is the local
change in concentration (i.e. the storage change term), the sec-
ond term represents advection by the mean flow, and the third
term is the divergence of the turbulent flux. The terms on the
right hand side describe transport by diffusion, and sedimenta-
tion, respectively. The final term in eq. (4) represents changes
due to sources or sinks, which when considering the entire par-
ticle ensemble, derives solely from phase transfer assuming that
biological sources and sinks are treated as boundary condi-
tions (Raupach, 2001). Below we assume w = 0, though this
condition may not be realized in complex terrain, and as dis-
cussed in Section 4 buoyancy effects can cause violations of this
assumption.

Under the assumptions homogeneity
(% = aaT =0), steady state conditions (% =0) and that

of horizontal

there is no chemical source or sink of the scalar (S = 0), eq. (4)
becomes:

0 —— 92
—w'C'=D—
9z 972

which can be integrated to give (Businger, 1986):

_ 8 _
C—o-(0,0) (5)

— Toj—

wC = D— —v,C.
0z

In practice, the storage and advective terms are proportional

to measurement height (Fowler and Duyzer, 1989) and may not

(52)

be zero and so use of eq. (4) may be required. Under conditions
of low turbulence, the measured flux above the forest (i.e. the
term on the left-hand side of eq. 5) may be very small, even when
the other terms in the budget equation are non-negligible.

The influence of phase changes and particle dynamics on parti-
cle fluxes (and vertical flux divergence) has received only limited
attention. In the case of a poly-dispersed particle ensemble, the
continuity equation should be applied to a discretized form of the
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size distribution (i.e. specific to Dp), and it can readily be seen
in that case for a given D,, S 7 0 would derive from changes
in the particle ensemble due to particle dynamics (nucleation,
coagulation, condensation/evaporation). The degree to which §
deviates from 0 (and the magnitude of the vertical flux divergence
due to phase transitions) is a function of the chemical climate
(Nemitz and Sutton, 2004; Nemitz et al., 2004) and the particle
ensemble (Pryor and Binkowski, 2004).

3. Numerical and theoretical modelling

In many operational air quality models dry deposition of atmo-
spheric particles is quantified as the product of the modelled
concentration and a value of vy that is often modelled using
the concept of the resistance analogue which is most commonly
presented in the following form (Zufall and Davidson, 1998):

1
-ty 6
@) = e e ©

In this approach, dry deposition is conceptualized as three resis-
tances in series representing:

(1) The aerodynamic resistance to transfer r, = f (M%, L).
(2) The resistance to transfer across the quasi-laminar sur-
_ el
face layer r, = f(Z’ D).
(3) The resistance to surface uptake r. = f{surface structure,
presence of water or films).

in parallel to a second pathway—gravitational settling.

Particle exchange, when conceptualized using the resistance
approach, is viewed as occurring as a sequence where the particle
is first vertically transported towards the surface via turbulent
diffusion and sedimentation and then across a pseudo-laminar
sublayer largely by Brownian diffusion and finally by interaction
with the surface. For larger particles, interception and impaction
may circumvent ry, and as D, — 00, v, increasingly dominates
the total flux. Davidson and Wu (1990) present a useful summary
of some properties that influence the atmosphere—surface flux
and proposed formulations for 7,, r, and r,.

Using the resistance analogy approach (eq. 6), vq should be
calculated by particle size (i.e. the observed or modelled parti-
cle size distribution should be discretized) since v, and r, are
functions of D,. Further the diffusivity of a particle of given
size should be computed from the slip-flow corrected Stokes—
Einstein relation:

kT,C.
D(Dy) = —- @)
6mwvp =
A D,
C.=1+—[2.514+0.8exp| —0.55— ®)
D, A

(Seinfeld and Pandis, 1998).

Several authors (Kramm et al., 1992; Venkatram and Pleim,
1999) have noted that the electrical analogy presented in eq. (6)
is imperfect in the context of particle dry deposition modelling

Tellus 60B (2008), 1

because it is inconsistent with mass conservation. Sehmel (1973)
derived an alternative formulation for monodispersed particles
which was extended to a poly-dispersed ensemble by Kramm
et al. (1992). Using similar arguments, for particles of a given
size, Venkatram and Pleim (1999) proposed the following:

Vg
v4(z) = m 9)
*odz
= 1
r(z) /O K@)’ (10)

where r(z) and v, are computed as a function of D,, and v, is
considered to be height invariant.

The most commonly used process-level model for computing
size-resolved particle vq is that proposed by Slinn (1982) and it
is formulated as shown below. Note that in this form it is implicit
that the particle size distribution has been discretized and that
the formula will be applied for multiple size classes (i.e. Dp):

reoufig O . T w
Vg = Uy . -
7 P U, \ &+ /etanhy /e

%
Uj " 1
e L L P (13)
U, kU, 20

while this model has been extensively used, it is based upon
a number of assumptions which may frequently be violated in
practice. Among these assumptions are the following:

(1) The model applies an eddy diffusivity (K) to describe
vertical transport in the canopy, which implicitly assumes local
transport down local concentration gradients. Further, in order
to obtain an analytical solution, Slinn (1982) assumes that both
K and the canopy resistance term (parametrized using the drag
coefficient Cy, surface area of vegetation per unit volume «., and
wind speed u) are constant in the upper region of the canopy, for
the vertical extent of the tree corona (i.e. in the canopy, where 1,
the in-canopy mixing length, is assumed constant). The numer-
ical models of Peters and Eiden (1992) and Wiman and Agren
(1985) also rely on application of K theory and parametrization
of K as a function of the in-canopy mixing length, but unlike the
model of Slinn (1982), K(z) is not a constant inside the forest.
For the forest case study considered by Peters and Eiden (1992)
and the numerical model they present, differences in vq(D,) com-
puted assuming K has a constant value in the canopy (as assumed
by Slinn (1982)) and for K varying with height (as in their model)
were generally relatively modest, but for D, of 0.1-0.5 pm the
model run with a height invariant K showed values that are up to
50% lower than those derived using the K scaling they proposed.

(2) The mass density solution is obtained using the momen-
tum analogy (which recovers the average horizontal wind profile
when € = 1) and constitutes only the horizontal component of
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the particle flux. Additionally, the overall accuracy of the solu-
tion is only as good as the average horizontal wind profile to
which the particle flux analogy is made and is dependent on the
appropriateness of the analogy (Raupach et al., 1996). This wind
profile is formulated in terms of the within-canopy eddy length
scale and the surface roughness length. Both of these are difficult
to assign with a high degree of confidence. The latter may be es-
timated observationally and under near-neutral stratification and
the former likely scales with leaf width and leaf area density
(Goudriaan, 1977).

(3) With the exception of v, the influence of particle size
on vy is accounted for only through the collection efficiency
coefficients. However, the particle size plays an important role
earlier in the process in terms of the size distribution of the
available particle budget (i.e. strong turbulence present in the
upper canopy maintains larger particles airborne which in
the absence of turbulence would settle by gravity).

In eq. (11) the collection efficiency is comprised of com-
ponents deriving from Brownian motion, interception, and im-
paction and is corrected for particle rebound. The semi-analytical
descriptions of particle collection efficiencies used by Slinn
(1982) were largely derived from wind tunnel studies in the
late 1950s and 1960s (Chamberlain, 1967). These descriptions
are as follows:

Ep = & ge23 (14)
Cd
Epn =2 [f( Dy >+(1 f)( D, )} (15)
N D, + A, Dy + A,
St?
_ 16
M= e (16)
5= L (17)
- CAz
_— (18)
g
pDlgC.
b= (19)

Assignment of appropriate values for model parameters such as
Ay, A is also a source of uncertainty in model-derived particle
size resolved vq.

The model of Slinn (1982) has been widely used due to its
analytic form, and hence ease of implementation but, as in-
dicated above, alternative particle deposition models are also
available. Most require numerical solvers (e.g. Peters and Ei-
den, 1992; Wiman and Agren, 1985; Wiman et al., 1985), or
consider only a specific portion of the particle size distribution
(Bache, 1979a,b). In all cases they are either variants of the Slinn

(1982) model (Zhang et al., 2001), or maintain a number of sim-
plifying assumptions invoked by Slinn (1982). For example, the
models developed by Bache (1979a,b), Giorgi (1986), Peters and
Eiden (1992), Wiman and Agren (1985) and Wiman et al. (1985)
maintain an eddy diffusivity based approach.

Multiple alternative formulations for Eg, Ejn and Epy have
been derived subsequent to the work of Slinn (1982) which sub-
stantially alter their magnitude and vq4 for a given D, (Zhang et
al., 2001; Gallagher et al., 2002; Pryor and Binkowski, 2004) but
the pronounced minimum in particle vq for D, ~ 0.1-2 pm is
a persistent feature of this model [and others (Peters and Eiden,
1992)] when applied to forests (Figs. 1 and 2). In this region of
the particle size distribution none of the collection efficiencies
formulated by Slinn (1982) are particularly efficient (Fig. 2).
Ep dominates for the smaller particles and declines rapidly with
increasing D;,, while Epy and Epy are of larger magnitude for
Dy, > 1 pm.

An example of the variability in the efficiency terms derived
from differing formulations drawn from the literature is given in
Fig. 2. Particle impaction (Eyy) is parametrized as a function of
the Stokes number which is the ratio of the stopping distance of
a particle to the characteristic dimension of the obstacle. Some
formulations for St used in dry deposition models tend to em-
phasize the nature of the flow field in determining the magnitude
of St (Binkowski and Shankar, 1995) while the formulation of
Slinn (1982) focuses on the individual obstacles (leaves). For
some formulations of St and Ep, drawn from the literature, the
magnitude of the impaction efficiency for 0.1 < D, < 1.0 um
exceeds the interception efficiency as computed using the for-
mulation of Slinn (1982) and using input parameters from the
Speulderbos conifer forest in the Netherlands (Ruijgrok et al.,
1997) while for alternative formulations Epy >> Epy in this size
range (Fig. 2b). As illustrated in Fig. 2 use differing efficiency
formulations change the slope of the dependence of the removal
efficiency on D, and thus can alter the magnitude and location
of the minimum vy, but the presence of the minimum vy persists
(Pryor and Binkowski, 2004).

Figure 2¢ shows results from the model by Slinn (1982) and
that of Zhang et al. (2001) for simulations of a forest with the
characteristics of the land use land cover class 1—an ‘evergreen-
needleleaf’ forest as described by Zhang et al. (2001). Also
shown are v4 estimates derived from observations drawn from ex-
periments conducted in forest environments (Table 1). As shown,
vg for submicron D, are underestimated by the model of Slinn
(1982) relative to the observations, while the model of Zhang
et al. (2001) shows rather better agreement with the observa-
tions but tends to overestimate vq for D, < 0.2 um except in the
case of data derived using application of an on-line REA system
at the Scots pine forest at Hyytidld in Finland (Gronholm et al.,
2007). While the agreement between the model of Zhang et al.
(2001) and data from Gronholm et al. (2007) is notable, it is worth
mentioning that the mean surface roughness length around the
Hyytidlé site is considerably higher than the z; assumed for this

Tellus 60B (2008), 1



RESULTS OF PARTICLE ATMOSPHERE-SURFACE EXCHANGE 57

Fig. 1. Synthesis of studies that have sought

to relate average particle vq to particle
diameter (Dp). The symbols are shown at the
arithmetic mean of the particle size range
and the error bars show the range of D, 1
sampled and the error bounds computed by
the original researchers. Note that this figure

differs from that presented by Gallagher
et al. (1997b) in terms of the data sources
and also that this figure summarizes data

vd (cm s-1)

across a range of vegetation types, while that 0.1
of Gallagher et al. (1997b) focussed on high
surface roughness. The symbols encode the

surface type (squares represent grass,
triangle forests, stars moorlands/heathlands
and circles arable/crops). A description of

the studies from which data are presented is 0.01

given in Table 1. The dashed line shows
particle vgq from the model of Slinn (1982)
for a representative forest.

land use class by (Zhang et al., 2001) (1.2 m versus 0.8 m), and
that when a z; of 1.2 m is used in the model the simulated values
of vy increase beyond those that characterise the observations.
A striking aspect of Fig. 2c is that the model as formulated by
Zhang et al. (2001) exhibits minimum vy for substantially larger
D, than the model of Slinn (1982), or the models of Wiman and
Agren (1985) or Peters and Eiden (1992), leading to an appar-
ent underestimation of vq4 for particles of approximately 1 pum
diameter by the model of by Zhang et al. (2001) relative to the
limited data sets available.

Because of the complexity and lack of coherent/inclusive
models, many operational air quality models assume one vy for
all particles irrespective of size and/or composition (e.g. Park
et al., 2001; Sickles II and Shadwick, 2002) or calculate vq4
accounting only for atmospheric variations (Luo et al., 2002)
or surface characteristics (Brook et al., 1999) rather than parti-
cle properties. Particle concentrations over the entire globe for
past and possible future climate states computed using off-line
particle models driven by general circulation model output for
limited particle ensembles typically used a fixed v4 by particle
origin (Takemura et al., 2003), and even one of the new genera-
tion of couple general circulation models with embedded particle
dynamics—ECHAMS-HAM (Stier et al., 2005) uses the empir-
ical formulation of Wesely et al. (1985) for vy over land [where
vg = (uy, L), see Section 5.3].

4. Advances in observational approaches

With a few exceptions (Duan et al., 1988; Sievering, 1987, 1989)
prior to the 1990s, particle fluxes were derived from differential
methods (e.g. dry deposition was derived as the difference be-

Tellus 60B (2008), 1

Allen et al.
Buzorius et al.
Duan et al.
Gallagher et al.
Gallagher et al.
Gallagher et al.
Gallagher et al.
Gallagher et al.
Gallagher et al.
Gaman et al.
Grénholm et al.
Hummelshgj
Lorenz & Murphy Jr.
Nemitz et al.
Pryor

Pryor et al.
Schery et al.
Sievering
Vong et al.
Wesely et al.

NEERYJIA:VOAADPOERNXXO®OSD[

—l—rrrnTrl—l—rrrnTr'—l—rrrrnq—l—rrrnTr'—l—rnan—l—rnan
0.001

0.01 0.1 1 10 100 1000
Particle diameter (Dp) (um)

tween throughfall and wet deposition (Parker, 1990; Rea et al.,
2001), using surrogate surfaces (Goldenberg and Brook, 1997)
particularly to quantify the flux of trace elements in coarse mode
particles (Zufall et al., 1998; Sabin et al., 2006), or via gradi-
ent approaches (Sievering, 1986; Lorenz and Murphy Jr., 1989;
Hummelshgj, 1994).

Gradient approaches employ first-order closure and the anal-
ogy with molecular diffusion to infer the flux from a vertical con-
centration gradient and a turbulent diffusion coefficient which
describes the ease of transport (Panofsky and Dutton, 1984):
F=-K d_C (20)

dz
The principle of similarity is then used to avoid the need to spec-
ify K for particles under the assumption that the eddy diffusivities
for particles, momentum and/or heat are identical. The simplest
case from a measurement perspective is to invoke the momentum
analogy under which the flux can be derived from:

_ Kmdﬁ E
In _TPMme e p=&E 1)
F —K, %< p dU
Tn = —u’p. (22)

Use of the heat analogy likely is more robust to assumptions
regarding similarity at least for some portions of the particle
size distribution (Pryor et al., 2007a), but can be problematic in
near-neutral stability when % — 0.

In the case of particles with non-negligible settling velocities,
eq. (20) can be extended by assuming vertical transport of parti-
cles of a given size from turbulent transport and particle settling
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Fig. 2. (a) Stokes number and (b) surface collection efficiencies computed using different formulations available in the literature (Slinn, 1982;
Wiman and Agren, 1985; Giorgi, 1986; Peters and Eiden, 1992; Binkowski and Shankar, 1995). The formulations are shown in detail below the
figure. Frame (c) shows deposition velocities by particle size computed using the models of Slinn (1982) and Zhang et al. (2001). The model of
Zhang et al. (2001) uses Epv from Peters and Eiden (1992) and Ery from Giorgi (1986).
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In these calculations A is the characteristic dimension of large collectors (2.0 mm, assumed = d. = r).

are additive (Csanady, 1973):

dc
_Kpd_z

F = —1,C. (23)

The number of ambient studies using gradient sampling to
determine particle exchange has declined in recent years (see
Table 1). This may be due in part to the difficulty in measuring
very small gradients over high roughness surfaces (Rattray and
Sievering, 2001), differences in footprints with height, and un-

certainties in the form of stability corrections to the flux-profile

relationship even for heat and momentum (Hogstrom, 1988).
However, this technique has been applied to quantify specific
chemical components of the particle flux (Nemitz et al., 2000b)
and for large particles and cloud water/fog droplets (Dollard
et al., 1983; Gallagher et al., 1988; Kowalski and Vong, 1999).

These issues, combined with the evolution of particle mea-
surement techniques (McMurry, 20002, b), mean application
of alternative flux techniques is increasingly commonplace.
Now the majority of ambient particle flux measurements over
vegetated surfaces conducted by micrometeorologists rely on
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application of the eddy covariance technique (Table 1), where
fast (typically several Hz) measurements of particle concentra-
tion and vertical wind velocity are used to derive the turbulent
flux. Formally

10+T
lim 1 Lo
F=w(C = — / w'(t)C'(1)dt, 24)
T—ooT
1
eq. (24) is operationalized as:
1 !/ ’
F=w(C = P— /w ®)C'(¢)de. (25)
2— 1

The primed quantities are instantaneous deviations from the time
averaged mean which is typically computed over integration
times of up to 1 hr.

For a discussion of the general issues pertaining to eddy co-
variance determination of scalar fluxes we direct the reader to
Businger (1986) and Finkelstein and Sims (2001). We constrain
our current discussion to issues specific to particle fluxes. Particle
concentration measurements used in eddy covariance may either
represent total or size-resolved number concentrations and are
most commonly, but not exclusively, obtained using condensa-
tion particle counters (CPC) or optical particle counters (OPC).
The major challenge that confronts use of eddy covariance is
that the accuracy of fluxes is dependent on the counting statis-
tics of the particle instrumentation (Wyngaard, 1973; Duan et al.,
1988; Buzorius et al., 2000; Pryor et al., 2007a). This limitation
generally constrains the use of eddy covariance to considera-
tion of particles with diameters below ~0.1 um except under
circumstances when larger particles are sufficiently numerous
to generate robust statistics or instrumentation is operated with
very high flow rates to increase the number of detected particles
(Sievering, 1983; Duan et al., 1988; Vong and Kowalski, 1995).
The limitation imposed by counting statistics is equally true of
the use of differential mobility systems to pre-select a subset of
particles on the basis of size for presentation to CPC (Buzorius
et al., 2003).

The accuracy of derived fluxes is also dependent on station-
ary behaviour of the scalars which typically limits the integra-
tion period (7) to ~ 1 hr (Kaimal and Finnigan, 1994). Particle
concentrations exhibit non-stationary behaviour more frequently
than other scalars which may further restrict 7 (Lamaud et al.,
1994a,b; Buzorius et al., 1998; Rannik et al., 2003). Hence, an-
other major question in making particle flux measurements us-
ing eddy covariance is how long is long enough? That is, what
is the ideal integration period for flux calculation (Lenschow
etal., 1994). Wyngaard (1973) and Lumley and Panofsky (1964)
sought to determine the averaging time necessary to generate use-
ful approximations of turbulent properties, and assert the error
or uncertainty (given as the standard deviation on the ensemble
statistics) on fluxes w'x’ = w'u’, w'C’ ... is given by:

(BF,) = 2%[m —wx]. (26)

Tellus 60B (2008), 1

To address this question in an operational context we computed
the fraction of derived fluxes that exceed the uncertainty (or
error estimates derived as above) for particle, momentum, heat
and humidity fluxes for varying T using data collected at two
forest sites:

(1) The 80-yr-old beech (Fagus silvatica L.) stand at Sorg
(55°29'N, 11°38'E, 40 m above sea level) (Pilegaard et al., 2003).

(2) The SMEAR Il station is located in arelatively expansive
homogeneous Scots pine stand (Pinus sylvestris L.) next to the
Hyytidlad forest station in southern Finland (61°51'N, 24°17'E,
181 m above sea level) (Kulmala et al., 2001).

‘We consider T of 10 min to 3 hr and assume (Wyngaard, 1973):
3

@7

(a3 —_ —_ X —
Sy =S, =Sy =

NEES

c =

We further assume that the fraction of computed fluxes that
exceed the uncertainty bounds may be used as a metric of the
quality of the fluxes, and in keeping with the procedure most
commonly used at Fluxnet sites conduct the coordinate rotation
separately for each period. The results indicate that obtaining ro-
bust particle fluxes at any integration period is more challenging
than momentum and heat fluxes (Fig. 3). It may also be inferred
that an integration period of 30 min may be ‘optimal’ for particle
fluxes (at least at Hyytidld and likely Sorg) and that increasing T
leads to only very limited improvement in particle flux estima-
tion. According to eq. (26) the error scales linearly with height;
thus, it should also be noted that at both sites the effective z (com-
puted to account for the displacement height) are of the order of
10-15 m. Hence these findings are applicable to relatively near-
canopy measurements. The assessment of a ‘significant’ flux is
rather subjective. Here we use a threshold, | F'| — §F > 0, noting
that for a Gaussian distribution 68% of data values lie within
=+ lo of the mean.

As the integration time increases beyond 30 min (i.e. T >
30 min) the fraction of particle number fluxes for which |F| >
OF rapidly asymptotes (Fig. 3). From Eq. (26) it can be seen
that (§F)? scales with 1/7, hence the inference is that as T — 0o
there are compensating effects manifest in the particle flux data
that act to prevent §F increasing beyond the level attained for
T = 30 min. The results from the other scalars exhibit a higher
fraction of the fluxes exceed § F for a given integration period (7)
and the fraction of fluxes for which |F| > §F show continued
increases for 7 beyond 30 min. We postulate that differences in
the behaviour between particle fluxes and the other scalars derive
principally from differences in the scales and spatial variability of
sources/sinks of particles versus the other variables (Lenschow,
1995).

The accuracy of eddy covariance derived flux estimates is
also dependent on application of flux corrections (Fairall, 1984;
Buzorius et al., 2000; Pryor et al., 2007a) to remove the con-
founding influence of covariance of the saturation ratio with the
vertical wind velocities (Kowalski, 2001), the WPL-terms for
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Fig. 3. Analysis of the influence of
integration period (run length) on the
statistical significance of flux measurements.
Results are shown using observations from
two forest sites (Sorg which is a mixed
deciduous forest and Hyytiild a pine forest).
Results are shown for four parameters (a)
particle number flux, (b) momentum flux, (c)
sensible heat flux and (d) humidity fluxes.
With the exception of the particle number
fluxes at Sorg, the calculations were based
on continuous measurements obtained over a
3 month period in early 2004. The particle
flux measurements from Sorg are derived
from a much shorter data set collected over a
3-week period in May—June 2004, and hence
are considerably less robust. The differences
in results for the humidity measurements at
both sites derive from differences in
experimental set-up. While humidity
measurements from both sites were derived
from closed-path Licor systems, the tubing at
Hyytidld is considerably shorter than at Sorg
leading to reduced attenuation of the signal.

density effects (Webb et al., 1980), and the correction for trun-
cation of the particle spectrum due to the frequency response of
instrumentation (Horst, 1997). In some cases these corrections
may be of comparable magnitude to the raw flux estimates. In
a recent study of data collected at the Sorg forest site the mean
magnitude of the WPL correction to particle fluxes had an aver-
age value of <1% of the flux (Pryor et al., 2007a). In this same
study the average flux underestimation due to the attenuation of
the high frequencies was computed to be 13% of the raw flux,
and the average correction due to correlation of fluctuations in
the saturation ratio with vertical wind speed was 37% of the
raw flux (Pryor et al., 2007a). The particle flux community has
not yet identified preferred and universally applied methods for
making flux corrections or deriving robust uncertainty estimates,
but just such a protocol would make a substantial contribution
to advancing particle flux research.

As a result of the challenges in using eddy covariance
for determining particle fluxes other studies have focused
on development/application of alternative micrometeorologi-
cal approaches such as Eddy Accumulation (EA), proposed by
Desjardins (1977). Relaxed Eddy Accumulation (REA) is a
derivative of this approach that was first proposed by Hicks
and McMillen (1984) and formulated in detail by Businger and
Oncley (1990). In REA as w exceeds a threshold (‘dead-band’)
velocity, air is differentially sampled at a constant flow rate. Thus
the flux is determined from differential sampling of particle con-
centrations in updrafts and downdrafts (Oncley et al., 1993):

F= bgw(cup — Caown)- (28)

The REA technique is based on a number of model assumptions
(such as similarity of scalar transport) and as noted by Kramm
et al. (1999) should be considered a ‘one-and-a-half-order clo-
sure scheme’. Uncertainties associated with the REA-derived
fluxes may be computed using work by Kramm et al. (1999)
who formulated the mean relative error in the REA derived flux
(‘%F) (derived using the sensible heat analogy) using Gaussian
error propagation principles as:

SF SH\’ sC\’ 86 \°
?=\/<7) +2<A—C> “(E)' (29)

REA may be applied either as a measurement technique
(Schery et al., 1998; Nemitz et al., 2000a; Gaman et al., 2004;
Meyers et al., 2006), or as a post-processing tool (Pryor et al.,
2007a). Application of REA to particle fluxes as a measure-

ment technique is technically challenging, and sampling arte-
facts may be introduced for particles, due to the need for fast
switching of airflows and/or particle losses in storage reservoirs.
Both features are often associated with REA setups. Use of REA
as a post-processing tool applied to high-frequency data (Pryor
et al., 2007a, b) may have advantages over the eddy covariance
approach because although §F is dependent on accurate deter-
mination of b (Ruppert et al., 2006), it is a function of the relative
accuracy of mean particle concentrations differentially sampled
by the sign of the vertical velocity rather than higher moments of
the probability distribution as is the case in eddy covariance. To
evaluate this in a practical context, we computed half-hour parti-
cle number fluxes at the Hyytiil4 site using data collected during
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Fig. 4. Particle number fluxes computed (a) (b)
using a half-hour integration period and 10000 — 10000 —
12-months of data from the Hyyti#li forest 1IL___]All periods j
site. Frame (a) shows the results of 8000 - - IFI-8F >0 8000 -
application of eddy covariance, while (b) | |
shows the results of application of the REA > i Py |
technique as a post-processing tool. In each § 6000 ) § 6000 i
frame the white bars show histograms of the g g

flux estimates from every half-hour period. T 4000 i 4000
The black bars represent the frequency of | |
flux magnitudes where only fluxes that 20007 2000
exceed the uncertainty bounds (§F) are 1 1
included. Note the range of flux magnitude 0 0

has been truncated to show the middle 95%
of realizations for readability.

January to December, 2004. We computed fluxes using EC and
REA applied as a post-processing tool (using the sensible heat
analogy). The raw fluxes were then subject to the flux corrections
outlined above following the techniques applied in Pryor et al.
(2007a). We then applied the uncertainty bounds derived using
egs (26) and (29). The results indicate that the mean ratio of EC
to REA fluxes differs from 1 by less than 0.1%, indicating some
confidence that the assumptions on which the REA methodol-
ogy are met (i.e. scalar similarity). Further, more of the REA
derived fluxes exceed the uncertainty computed using eq. (29)
(Fig. 4). Note that in this analyses we deem the eddy covariance
and REA derived fluxes to be statistically significant fluxes if
the absolute magnitude of the flux exceeds the uncertainty com-
puted using eqs (26) and (29), respectively (i.e. |F| - §F > 0). It
should also be reemphasized that use of REA either as a direct
measurement technique or applied in a post-processing context
is dependent on scalar similarity to derive b which does not hold
in all circumstances (Kramm et al., 1999; Ruppert et al., 2006)
and, as mentioned above, does not alleviate the need to apply
flux corrections associated with, for example, vertical humidity
gradients and particle hygroscopicity.

We are aware of only one study that applies spectral tech-
niques to obtain particle fluxes over vegetated surfaces (Pryor
et al., 2007a). However, the inertial-dissipation method that has
been largely pioneered for use in air-sea momentum and heat
exchange studies (Fairall et al., 1990) is also potentially applica-
ble to particle fluxes and terrestrial surfaces. This method, like
REA, invokes Monin—Obukhov similarity theory. It also employs
universal laws for inertial subrange turbulence to derive particle
fluxes from the —5/3 slope of the high-frequency region of the
power-spectra, S(as a function of frequency (f):

12 1/3
. [f SZ(f)} [%ﬂ/;_zf} 0

12
B bye fSulh)
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See Edson et al. (1991) for details of the technique and an
analysis of the uncertainties in flux estimates associated with
use of the inertial-dissipation technique.

As shown by eq. (31) a potential limitation of this approach is
that the sign of the flux needs to be determined externally to the
calculation of the flux magnitude. An additional constraint on
application to particle fluxes is that truncation of the frequency
spectrum by instrument response times and other effects leads to
much noisier power spectra than for other passive tracers (Duan
et al., 1988; Pryor et al., 2007a).

As discussed above and shown in Fig. 1, recent estimates of
vy for sub-200 nm diameter particles derived using an on-line
REA system with particle sizing by a DMPS at the Hyytidld
forest station in southern Finland (Grénholm et al., 2007) are
considerably higher than estimates at this site derived using eddy
covariance with inferred particle diameter from an independent
DMPS system (Buzorius et al., 2000; Pryor et al., 2007b). The
source of this discrepancy is currently unknown but it may be
linked to physical causes such as increased roughness length
due to logging activities close to the flux tower or variations in
meteorological conditions between the various studies, or it may
reflect methodological differences, such as the following:

(1) Each micrometeorological method relies on different sta-
tistical properties of the particle data and thus the associated
uncertainties differ (cf. eqs 26 and 29), and each flux estimate
may reflect different flux footprints. Source area dimensions are
considerably higher for scalar concentrations than scalar fluxes
(Schmid, 1994), hence over inhomogeneous surfaces fluxes com-
puted using techniques that reflect different moments of the par-
ticle number probability distribution may differ as a result of
differences in the associated source areas.

(2) Differences in the application of various flux corrections
(Pryor et al., 2007a) by different authors.

(3) Issues pertaining to particle transfer efficiencies in the
REA system, difficulties in deriving robust statistics of the par-
ticle counts when size selection is employed, or difficulties in
assigning a representative median diameter from particle size
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spectra derived using an SMPS or DMPS system to the flux
estimates derived using EC from a CPC.

As discussed in Section 6, further analysis and intercompar-
isons of different micrometeorological flux techniques is war-
ranted.

Despite advances in particle measurement technologies and
theoretical advantages of the micrometeorological techniques
described above for flux estimation, such studies have tended to
focus on instrumentation to measure fluxes of particle numbers,
without knowledge of the chemical speciation. The measurement
of composition resolved aerosol fluxes has until recently relied
on gradient techniques, or the use of either surrogate surfaces
(Golomb et al., 2001), or mass balance approaches (Ivens et al.,
1990; Draaijers et al., 1994; Horvath, 2003). See also the sum-
mary in Davidson and Wu (1990). Additionally, most routine
monitoring networks utilize particle phase chemical concentra-
tions from filter packs with models of particle v4 to estimate
mass fluxes (Hicks et al., 2001) without detailed size distribution
data. An important issue with such approaches that has long been
noted is that long integrative filter pack measurement techniques
may suffer from site specific volatility artefacts especially for
nitrate aerosol which may be lost from filter surfaces (Weber et
al., 2003) so net fluxes for these species may be underestimated,
and may not compare well with those derived from micromete-
orological approaches.

Recently, the advent of Aerosol Mass Spectroscopy (AMS)
has facilitated development of approaches to measure chemi-
cally speciated particle fluxes by eddy covariance (Nemitz et
al., 2006). Also the requirement of fast time-response analy-
sers in the eddy covariance method has been relaxed by the
use of disjunct eddy covariance (DEC) (Dabberdt et al., 1993).
DEC has been applied to trace gas fluxes (Rinne et al., 2001)
but has yet to be used for particle fluxes. Application of the
disjunct eddy accumulation approach (Rinne et al., 2000) with
instrumentation capable of sizing and chemically resolving in-
dividual particles (Held et al., 2003) is, however, a step in that
direction.

In closing this section on experimental methods it should be
noted that other flux estimation procedures have been developed
(e.g. the flux variance approach, Tillman, 1972; Albertson et al.,
1995; Wesely, 1998) but to the author’s knowledge they have
not been widely applied to particles (Lamaud et al., 1994b). Fur-
ther we reemphasize that errors in particle flux measurements
depend on the particle climate and prevailing meteorology in
the environment where the measurements are being taken, the
micrometeorological technique used to compute the flux and the
instrumentation applied. As noted herein particle instrumenta-
tion is rapidly evolving but for a summary of some technical
aspects of currently applied instruments we direct the reader
to the excellent synthesis of McMurry (2000a and references
therein), and for an update on aerosol mass spectrometers to the
analysis of Allan et al. (2003).

5. Particle flux dependencies: new insights from
experimental data

From eq. (6) and the following discussion it can be inferred
that there are three dominant driving forces for dry deposition
of submicron diameter particles—particle diameter, friction ve-
locity and/or surface roughness, and stability. Figures 1 and 5
present these dependencies based on some of the observational
studies over vegetated surfaces summarized in Table 1. The sec-
tions below articulate experimental research pertaining to these
flux dependencies and particle rebound (Paw U, 1983) and resus-
pension. Note that the formulations presented in this section are
empirical in nature and generally are not theoretically derived.

5.1. Farticle diameter

On the most fundamental level, as shown in Fig. 1, in accord with
the increase in the terminal fall velocity, supermicron particles
exhibit higher vy than do submicron particles. However, there is
some evidence that the magnitude of the difference between vqy
for Dy > 2 pmand Dy ~0.1-2 yum may vary by surface type, and
specifically that these differences are smallest for forests. Also,
in contrast to models such as that of Slinn (1982), observational
studies over forest canopies do not appear to indicate substan-
tially different mean vy for D, of 20-100 nm (Gaman et al., 2004,
Pryor, 2006; Gronholm et al., 2007; Pryor et al., 2007b) than for
D, of approximately 100-800 nm (Gallagher et al., 1997a, 2002;
Lorenz and Murphy Jr., 1989). There is large scatter and uncer-
tainty bounds on the experimental measurements and some of
the variability between studies may reflect the accuracy of the
particle D, measurements, possible stability effects and issues
pertaining to whether the reported D, relates the wet or dry diam-
eter. Nevertheless, the observations over forests do not replicate
the clear vy minimum for D, ~ 0.1-2 pm that models such as
that by Slinn (1982) exhibit. There has recently been partial val-
idation of the model of Slinn (1982) for particles with diameters
(Dp) < 0.1-0.2 pum over forests (Gallagher et al., 2002), and for
particles with D, = 0.1-3 pum in a moorland setting (Nemitz
et al., 2002b). However, it is notable that agreement between
measurements and the model of Slinn (1982) could only be
achieved if coefficients used in the Slinn (1982) parametriza-
tions were increased significantly, close to their limits, which
suggests that the physical underlying principles may be in error
or that processes may be missing from the model formulations.
Further, these measurements (from the work of Gallagher et al.,
2002 and Nemitz et al., 2002b) were conducted with the same
instrumentation and experimental approach using the combined
efforts of both researchers. Although they used independent data
analyses to reach the same results, they require further indepen-
dent verification.

It should also be noted that the more recently collected data
compiled in Table 1 and shown in Fig. 1, imply slightly lower
vg for Dy ~ 0.1-2 um, than were obtained using inferential
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techniques and reported by Gallagher et al. (1997b) (cf. Fig. 1
with fig. 3.6 in Gallagher et al., 1997b). Nevertheless, as first
noted over 20 yr ago (Wesely et al., 1977; Sehmel, 1979; 1980;
Hicks et al., 1982; Gallagher et al., 1997b) and discussed below,
we assert that there are still substantial and systematic discrep-
ancies between process-level models of particle dry deposition
and available measurements over forested surface, particularly
for D, ~ 0.1-1 um. Given that forests are likely the most effec-
tive sink for submicron particles, this discrepancy has important
implications for modelling particle size distributions and con-
centrations across a range of spatial scales. The discrepancy for
high-roughness (i.e. forests) between measurements and models,
and specifically the lack of a pronounced size-dependence in par-
ticle vq, is in contrast with the measurements of Gravenhorst and
Hoftken (1982). Their data, collected using cascade impactors,
clearly indicated a size-dependence of canopy filtration by par-
ticle diameter (D}, ~ 0.26-2.4 ;um mass median diameter) in the
comparison of above and below canopy particle concentrations.

Several postulates have been proposed to explain the discrep-
ancy between micrometeorologically derived observations and
process level models of the particle flux over high roughness
vegetated surfaces:

(1) Observational errors: The discrepancy could be ex-
plained if the minimum were over a relatively narrow size range
not resolved by the measurements or possibly due to instrument
performance issues. Indeed, this may be offered as a partial ex-
planation in the case of data from the Hummelshgj (1994) study
which employed an optical particle counter (OPC) and was con-
ducted over grassland. For the analogue circuitry employed in
OPC from that era there is certainly a possibility of coincidence
errors due to high particle concentrations at the small sizes, how-
ever particle concentrations were comparatively low during this
study, and there is convergence of data from varying particle
regimes (Table 1 and Fig. 1).

(2) Chemically induced flux divergence: While ambient
measurements reflect the net removal or introduction of particles
into the atmosphere, models such of that by Slinn (1982) only
reflect the contribution of surface removal. Hence, other pro-
cesses that lead to a reduction in, for example, the particle num-
ber concentration or mass of particle-bound components will
lead to a discrepancy between the measurements and models.
Gas-particle partitioning has long been recognized as one such
process (e.g. Kramm and Dlugi, 1994). But Pryor and Binkowski
(2004) demonstrate that, using the model formulation of Slinn
(1982) or alternative published formulations for the components
of dry deposition and for reasonable size distributions, coagu-
lation may also cause substantial evolution of the particle size
distribution below typical flux measurement heights and the ac-
tual receptor surface.

(3) Incorrect or inadequate treatment of the profiles of me-
teorological parameters responsible for particle transfer to and
through the canopy. In studying vertical turbulent transfer inside
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tall vegetative canopies, Slinn (1982) assumed the diffusivity co-
efficient is constant with height for most of the vegetated canopy,
except for a small layer near the ground. Moreover, as discussed
above, the absorption function (represented by the product of the
drag coefficient, wind speed, leaf area index and leaf area den-
sity) is also assumed to be constant throughout the vegetation
layer. These assumptions lead to an exponential concentration
profile inside tall vegetation (Ruijgrok et al., 1997). Although
(in an averaging sense) the treatment of vertical turbulent trans-
fer in the above manner is essentially correct, a more elaborate
parametrization scheme is needed to represent the compound
effect of both the vegetation and forest floor acting as particle
sinks (Birsan, 2005).

(4) Under-estimation of collection efficiencies in the model
of Slinn (1982). Gallagher et al. (1997a) demonstrated that ob-
served vg of 0.1-1.0 wm diameter particles to the Speulder forest
were profoundly underestimated by the model of Slinn (1982),
leading the authors to assert that the discrepancy may reflect er-
rors in the collection efficiencies used in this model. Conditional
sampling of particle fluxes over a deciduous forest by the par-
ticle ensemble number geometric mean diameter (GMD) also
imply higher surface collection efficiencies than are employed
in the Slinn model (Pryor, 2006). However, as noted in Section 3,
changing the formulation of the efficiency terms to others within
the published shifts the modelled v4 minimum in diameter space
but does not remove it.

(5) Exclusion of additional deposition pathways or depen-
dencies within the models. Most models of particle dry depo-
sition to vegetated surfaces treat surface uptake in terms of im-
paction by inertial forces, interception, Brownian diffusion and
gravitational settling (e.g. Slinn, 1982). However, there are ad-
ditional forces or processes that may be important under specific
circumstances. Those processes which have been the subject of
recent intense research include electrostatic forces which were
shown in one laboratory study (Tammet et al., 2001) to sub-
stantially increase the dry deposition of 10-200 nm diameter
particles under low wind conditions.

As shown in Fig. 1 there is tremendous variability between
measurements over superficially similar surfaces. Hummelshgj
(1994) used the aerodynamic gradient method to compute par-
ticle vg over a grass-field with a roughness length of <10 mm
and found an increase in vy as a function of size ranging from
0.16 cm s™! for D, of 0.065-0.15 um (D, ~ 0.099 pm), to
0.20 cm s7! for D, of 0.15-0.4 pm (D, ~ 0.24 pm), and
0.28 cm s~! for D, = 0.4 and 0.9 um (D, ~ 0.6 jxm). These
data show relatively good agreement with previous studies over

~
r\,
I

grassland, particularly when the influence of stability is consid-
ered. However, Nemitz et al. (2002b) conducted eddy-correlation
measurements over moorland (with zy &~ 10 mm) and found mean
vg of 0.03 cm s™! for D, ~ 0.1 um, increasing to vq of 1 cm
s~! for D, ~ 3 um. Thus the vy for D, ~ 0.1 um from these
two studies differ by a factor of five. As discussed herein this
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may reflect subtle differences in the vegetation morphology or
static stability of the atmosphere during the two studies, or the
influence of chemical interactions.

With respect to the influence of particle diameter on vy for
smaller particles, models of Slinn (1982) and Peters and Eiden
(1992) predict an order of magnitude higher vq4 for 10 nm diame-
ter particles than 100 nm particles for representative forests (see
Fig. 1). However, little experimental data are available to confirm
these projections. In a recent study, particle number fluxes over
a deciduous forest were conditionally sampled by the prevail-
ing GMD of the particle size distribution. It was found that the
median vy for particle ensembles with a GMD of 20-30 nm is
4.5 mm s~!, decreasing to 1.5 mm s~! for particle ensembles
with a GMD of 60-70 nm (Pryor, 2006), while analyses of data
from a pine forest imply declines in v4 of a factor of approxi-
mately two over this size range (Gronholm et al., 2007; Pryor
et al., 2007b).

5.2. Friction velocity and surface roughness length

While the form of the relationship between vy and u, clearly
varies with surface type, stability and particle diameter, virtually
all studies synthesized for this review indicated an increase in
particle vq with u, (Table 1). Gaman et al. (2004) applied a REA
system to determine the number flux of 50 nm particles to a Scots
pine forest and found the average vq of 50 nm particles increases
with u, from approximately 5 mm s~! at u, < 0.5-15 mm s~!
for u, > 1.0 m s~! leading the authors to propose the following
relationship:

vg = 0.012u, (32)

Data from a deciduous forest in Denmark indicate a mean vqy
for particle ensembles with number GMD of 50-60 nm increases

Vatu, <04 ms~ ! to7.5mms™!

from 1-1.8 mm s~ at u, >
1 m s~! (Pryor, 2006). Mean inferred vq for sulphur containing
particles having a mass-median diameter ~800 nm were 1 cm
s~! for u, = 0.49 m s~!, and increased to 2.9 cm s~! for u, =
0.59 m s~' in a gradient based study over low vegetation by
Sievering (1986). Although part of this increase may be due
to stability effects, these data also imply a strong dependence
on u,, as did data collected using the gradient technique over
the Speulder forest (Erisman et al., 1997; Wyers and Duyzer,
1997) leading to proposed vq4 for specific ions with the form:
vg = cu$?, where ¢ and ¢, are ion-specific coefficients. Over
moorland median vy for D, = 0.40-0.45 pum increased from
0.3 mm s~! to over 2 mm s~ as u, increased from 0.1 to 0.5 m
s~! (Nemitz et al., 2002b). Deposition of fog droplets (3-50 um
diameter) from eddy covariance was also found to vary with u,

(Vermeulen et al., 1997):
vg = 0.1951> (33)
However, this study measured total cloud/fog liquid water con-

tent and there was no droplet size dependence information pro-
vided with the fluxes.

When data are synthesized over a range of experimental stud-
ies it appears that at very low u, (u, < 0.15 ms™") the relationship
particle-vq and u, is non-linear (it appears to scale more closely
with uﬁ), but as u, increases the relationship becomes more lin-
ear (Fig. 5). This may imply a decreased role of r, at high u, and
an increase in the relative importance of r, which scales as i
However, the relative importance of storage and advective terms
in dictating the particle flux under low u, conditions may also
be reflected in the apparent u, dependence, as has been shown
to occur for CO, exchange (Aubinet et al., 2005).

Table 1 supports earlier assertions that higher roughness sur-
faces exhibit higher particle vy (Gallagher et al., 2002). This is
expected principally due to a reduction in the aerodynamic resis-
tance to transfer and accordingly there is abundant evidence for
dependence of particle vy on surface roughness or friction veloc-
ity. A synthesis of studies considering 100-200 nm diameter par-
ticles yielded the following relationship: vq = 0.581In(z)+1.86,
where zj is in m and v, is given in mm s~! (Gallagher et al.,
2002).

5.3. Stability

There are insufficient data to allow definitive characterization of
the dependence of particle fluxes on stability conditions, and in-
deed it should be noted that this dependence may be indirect and
expressed via the dependence of u, on atmospheric stratifica-
tion. Although there is some evidence for an increase in particle
vq in unstable conditions and reduction with increasing ther-
mal stratification (Everett et al., 1979; Sievering, 1983, 1987;
Wesley et al., 1985; Hummelshgj, 1994; Lamaux et al., 1994;
Fontan et al., 1997; Gaman et al., 2004; Vong et al., 2004) and
during the daytime relative to the night (Hicks et al., 1983) few
studies have been able to quantify the influence of stability with
a high degree of statistical certainty. This may reflect the domi-
nance of other processes in dictating the resistance to transport,
and/or it may be a result of the relatively large statistical uncer-
tainties in flux estimation. Wesely et al. (1985) and Walcek and
Taylor (1986) first proposed the following relationships based
on their measurements of sulphate particles with 0.1 < D, < 0.3
JAm over grass:

For Monin—Obukhov length (L) > 0 m (stable to neutral con-
ditions):

vg = 0.002u,. (34)

For L < 0 m (unstable to neutral conditions)

—0.3z;\**
va = 0.002u, [1 + < : ‘ ) . (35)

The general form of these equations is implied by scaling
analysis presented by Wyngaard (1973), and although research
subsequent to Wesely et al. (1985) has postulated other values
for the constants, the general form of the dependencies has been
maintained (Lamaud et al., 1994a). Gallagher et al. (1997a) who
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Fig. 5. Synthesis of studies that have sought to relate particle vq to friction velocity (u,). Where studies have reported ‘point’ data they are shown as

individual points, where studies have either formulated the relationship or provided sufficient information for an equation to be formulated the
resulting relationship is shown as a continuous line with symbols added to aid clarity. In this case the equations are only plotted for the range of u.
observed during the study from which the data are drawn. The data from Gallagher et al. (1997a) are given for bin averaged u, with the range of

observed vg shown by the error bars. These data are given for four D}, ranges shown in order from lowest D, to highest D;,. The data from the study
of Rannik et al. (2000) also show the uncertainty bounds. Some of the discrepancies between individual studies are the result of variations in particle
size (and composition), stability conditions and observational uncertainties. Even in the face of such variations there is clear evidence for an increase

in vg with increasing u,.

proposed the following relationship for 0.1 < D, < 0.5 um for
a coniferous forest for —0.04 m™! < L~! < 0 m~! (unstable to
neutral conditions):

—300\%*?
va = 0.0135D,u,, 1+(T> ) (36)

Nemitz et al. (2004) also kept the same functional form in their
research over heathland again for 0.1 < D, < 0.5 um, leading
them to propose:

For L < 0 m (unstable to neutral conditions):
% ={a(1+ (—ﬂzL_])w}- G7

*

For L > 0 m (stable to neutral conditions):
v
- =a. (38)

Uy
With a; = 0.001, a; = 960 D,-88, with a, having units of m,
and D, in yum.

The results of these different formulations are shown in Fig. 6.
While there is no theoretical basis for this specific form of depen-
dence on Monin—Obukhov length, this form exhibits asymptotic
behaviour with increasing unstable conditions consistent with
a decline in the relative importance (and in the limit case the
absence of) the aerodynamic resistance.

At this juncture it appears the data are insufficiently robust
to allow calculation of stability corrections for flux profile re-
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lationships. There is, however, a measurable effect of stability
with the vy being greatly decreased by highly stable conditions
(small positive values of L), and greatly increased in unstable
conditions (small negative values of L).

5.4. Resuspension

Several studies have observed bi-directional fluxes even in the
absence of an obvious surface-based particle source. Emissions
of supermicron particles are likely attributable to wind-driven
resuspension (Nemitz et al., 2002a; Gillette et al., 2004a,b).
Gillette et al. (2004a,b) used wind tunnel measurements to dif-
ferentiate the effects of aerodynamic mechanisms (defined as
viscous and turbulent mechanisms) from mechanical processes
resulting from the receptor grass striking a stationary object in
determining resuspension. They found, for spherical particles of
D, = 2-10 pm, a threshold wind speed of over 12 m s™! was
required for resuspension, and that aerodynamic effects were
dominant for the smaller particles, while the aerodynamic and
mechanical processes were of approximately comparable impor-
tance for the larger particles. These and other experiments have
also observed an exponential decrease in resuspension through
time (Nicholson and Branson, 1992; Ould-Dada and Baghini,
2001; Gillette et al., 2004a,b) implying a finite source of mate-
rial that can be resuspended. For example, in the experimental
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research of Nicholson and Branson (1992) 15% source deple-
tion of 22 um diameter particles from a concrete surface was
observed in the first 10 seconds for an ambient wind speed of
6.5ms™".

Parametrizations for resuspension are likely to be strongly
dependent on surface morphology. Recent size-segregated flux
measurements conducted in an urban context indicate that the
flux increases with increasing wind speed, following a power-
law relationship consistent with previous studies (e.g. Nicholson
and Branson, 1992). In addition, the size-spectrum of the resus-
pension flux peaks at around 3 pm. This shape is very likely
the result of the competing effects of resuspension efficiency,
which is known to increase with particle size, and the number
size distribution of available material on urban surfaces, which
decreases with increasing particle size. Overall, the following
proposed formulation for the mass flux (ug m~2 s~') by resus-
pension can be fitted to the measurements (Nemitz et al., 2002a,
modified):
(HSTFDP = exp[—68.69 + 73.39

x (1 — exp(—0.730D,)]U?0-12exp(=0:306Dp) = (39)

where D, is given in um, and U was measured at 65 m above
street level.

For smaller particles resuspension likely plays a minor role
and emission fluxes are more likely the result of particle dynam-
ics (e.g. nucleation, growth or evaporation) or primary emissions
principally from combustion processes.

6. Concluding remarks and identification of
outstanding research questions

Technical developments over the last decade have substantially
improved our ability to quantify particle fluxes experimentally

Fig. 6. Normalized vq (by u,) for submicron
diameter particles under varying stability
conditions (as reflected in the
Monin—-Obukhov length) as postulated from
three studies conducted over different surface
types. For details of the studies see Table 1.

and to assign uncertainties to those flux estimates. However, de-
spite tremendous strides in our understanding of particle fluxes
over the last decade, there remain substantial uncertainties. Be-
low we articulate a few of the aspects of particle fluxes that would
benefit from further investigation:

(1) Landscape heterogeneity has the potential to greatly and
systematically affect atmosphere—surface energy and chemical
exchange (Walcek et al., 1986; Draaijers et al., 1994; Wilson
et al., 2001; Zhang and Brook, 2001; Hasager et al., 2003;
Reithmaier et al., 2006). ‘Edge effects’ may be even more pro-
nounced for particles, and are caused by advection of pollutants
into the forest edge and, secondarily, by enhancement of tur-
bulence due to the roughness discontinuity (Wiman and Agren,
1985; Wiman et al., 1985; Ruck and Adams, 1991; De Jong
and Klaassen, 1997; Dai et al., 2001). The specific activities of
Pb-210 in dried soil samples have been used to infer that par-
ticle deposition at the exposed edge exceeds that in the open
by >50% (Branford et al., 2004). Scaling for landscape hetero-
geneity across model grid-cells is a very challenging task but one
that is of tremendous importance to the air quality and climate
modelling communities and is a key issue in reconciling mea-
surements and models. Hence, the influence of forest edge effects
and other vegetation discontinuities on flux estimates merits fur-
ther attention as does the influence of forest thinning on particle
fluxes. Initial work in this field (Vesala et al., 2005) suggests
that of the two competing effects on particle deposition (reduc-
tion in receptor area vs. an increase in the penetration of tur-
bulence into the canopy), it is the reduction in the surface area
to which particles deposit that dominates the induced change in
particle deposition. However, more research—both experimen-
tal and numerical—needs to focus on assessing the magnitude
and spatial extent of edge effects and landscape heterogeneity in
determining particle fluxes.

Tellus 60B (2008), 1



RESULTS OF PARTICLE ATMOSPHERE-SURFACE EXCHANGE 67

(2) Relatively little is known about the partitioning of par-
ticle deposition between vegetation and the underlying ground,
and the profile of the particle concentration gradient and flux
through vegetated canopies. It is likely that the contribution
of the ground to the total flux can be considerable depending
on the arrangement of tree crowns and number density (Donat
and Ruck, 1999) or on the vegetation type under consideration
(Little, 1977). Further knowledge of this distribution would
greatly benefit both process-level understanding and scientists
focussing on the ecosystem impact of nutrient fluxes.

(3) We echo the assertions of Gallagher et al. (2002) that
progress in understanding particle exchange is ‘hampered by the
lack of a consistent methodological approach for interpreting
measurements from very different techniques’ and would ex-
tend this to consideration of and quantification of micrometeo-
rological flux methods as applied to atmospheric particles. While
some of this research is ongoing (Pryor et al., 2007a,b) and can
certainly benefit from flux methodology homogenization efforts
being conducted under Fluxnet (Aubinet et al., 2000), more is re-
quired to generate specific understanding of the sources of uncer-
tainty and methods for developing robust uncertainty estimates
such that there can be greater comparability of disparate studies
and improve understanding of the sources of model vs. mea-
surement discrepancies. Further, there needs to be much greater
transparency with respect to how individual researchers treat
their data.

(4) While the majority of studies over vegetated canopies
have focused on dry deposition—that is, the atmosphere—surface
exchange being directed towards the vegetated surface—particle
resuspension (Nicholson, 1988b; Ould-Dada and Baghini, 2001)
has long been recognized as a mechanism by which vegetated
surfaces can act as sources of particles. Few studies have applied
the eddy covariance technique to particle resuspension (Nemitz
et al., 2002a). However, it is likely that detailed useful informa-
tion on re-suspension and saltation processes might be derived
using modern instrumentation adaptable to the micrometeoro-
logical techniques discussed in this review. Such information
may prove extremely useful for those who advocate use of trees
for filtering of urban air (Ould-Dada and Baghini, 2001). There
is also increasing evidence for particle formation at or close to
canopies and hence of bi-directionality of the particle flux as
a result (Buzorius et al., 1998; Pryor et al., 2007a). Improved
understanding of such processes requires cohesive field experi-
ments with simultaneous measurements of micrometeorological
parameters, as well as particle and gas concentrations and fluxes.

(5) Despite the importance of determining size-resolved par-
ticle flux (and deposition velocity) magnitudes, few studies have
sought to quantify the size dependence of submicron diameter
particle vq. Such measurements are necessary to evaluate particle
deposition models. Assuming uncertainties due to low particle
counts can be overcome, development of techniques for differ-
entiating both the size and composition of the particles being
transferred [e.g. applications of Aerosol Time-of-Flight Mass
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Spectrometers (ATOFMS)] will also greatly benefit process-
level understanding, atmospheric chemistry models, and ecosys-
tem modellers who seek to determine the fate and effects of dry
deposited particles.

(6) Observations over high-roughness vegetated surfaces
(forests) generally do not support a pronounced minimum of vy
for particles in the diameter range 0.1-1 ;um manifest in models.
The Slinn (1982) model employs semi-analytical descriptions
of particle collection efficiencies against which all subsequent
field observations have been compared which originally came
from the wind tunnel studies by Chamberlain in the late 1950s
and 1960s. Although significant challenges confront those who
seek to undertake wind tunnel measurements (Ould-Dada, 2002),
new wind tunnel studies that make use of the latest advances in
particle instrumentation may provide valuable insights. If these
studies can be conducted under controlled stability conditions
they could greatly benefit the search for improved estimates of
collection efficiencies and stability corrections for application to
particle fluxes. Other processes that may contribute to deposition
efficiency in the natural environment (but not in wind tunnels),
including electro- and thermophoresis, remain largely unstudied
but also merit additional attention.

(7) There is still much we do not understand concerning
particle interaction with biological surfaces. Biological surfaces
actively exchange mass with the atmosphere and additionally ex-
hibit complex micromorphology which may enhance deposition
of non-spherical particles. A macrometeorological perspective
is likely required for development of model parametrizations of
particle fluxes suitable for inclusion in atmospheric-chemistry-
transport models. However, microscale analyses may be neces-
sary for understanding biophysical aspects and consequences of
particle and hydrometeor deposition (Jagels, 1991) and, possibly,
in explaining variations in flux magnitudes across superficially
similar land cover types (Bache, 1979a; Davidson et al., 1982).
Physical entrapment by structural features of leaf surfaces are
implicitly incorporated within deposition models such as that
of Slinn (1982) via use of characteristic foliage length scales.
However, the precise mechanisms of interaction between par-
ticles and leaf surfaces remain somewhat elusive (Hosker and
Lindberg, 1982). Preferential deposition of 500 nm diameter
particles to and around stomata of coniferous needles due to en-
hanced microroughness of the epicuticular waxes was observed
in a wind tunnel study (Burkhardt et al., 1995) and may greatly
affect the ultimate fate of transported chemicals and biological
response (Jagels, 1991) such as via regulation of water exchange
(Burkhardt et al., 1995). However, few mechanistic studies have
been conducted on the influence of microscopic roughness and
other leaf/surface properties in regulating/mediating particle de-
position and the consequences of these interactions for atmo-
spheric studies remain uncertain. Integration of microscale ‘leaf-
level’ analyses with atmospheric flux experiments may yield
critical insights into both the ultimate fate of deposited particles
and the importance of leaf surface properties and physiology
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in dictating atmosphere—surface exchange. These aspects might
also be successfully investigated with more wind tunnel studies
making use of modern particle measurement techniques.

(8) Small particles are transported by eddies in a manner
similar to gas molecules, but large particles are not. Challenges
thus remain before we can have confidence in treating the mo-
tion of heavy particles (Wilson and Sawford, 1996) or particles
undergoing physical transformation processes as well as in reli-
ably estimating particle flux footprints. We are unaware of any
current research pertaining to footprints (source areas) of large
particles, although there are numerous articles on particle disper-
sion. Footprints may also be sensitive to coagulation, formation
and phase transition processes and hence these processes should
be implemented in Lagrangian and closure models or large-eddy
simulations.

As a final note we would urge that there must be integration
of experimental and numerical research to facilitate operational-
ization of insights gained in the experimental domain.
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8. Appendix: Nomenclature

A(z) = absorption function at height z

A, = characteristic width of ‘small’ collectors in the canopy

A, = characteristic width of ‘large’ collectors in the canopy

b = Businger coefficient determined by the probability distri-
bution of w, the dead-band width and sampling height (Ammann
and Meixner, 2002)

¢ = a constant (*1)

C(z) = particle concentration at height z (e.g. C(0) = concen-
tration at z = 0), also abbreviated as C

C. = Cunningham slip correction factor

Cp = overall canopy drag coefficient

Cyp and Cyown = average concentrations from REA samples
collected when w is positive and negative, respectively

¢y = viscous drag

cq = total drag

¢y/cq = ratio of viscous to total drag [0.33, (Slinn, 1982)]

d = displacement height

D = molecular diffusivity of C in air

D, = particle diameter

Ey = efficiency of collection by Brownian motion

Eyv = efficiency of collection by impaction

En = efficiency of collection by interception

F(z) = flux at height z (also abbreviated as F)

F =fraction of total particle interception by ‘small’ collectors
in the canopy

g = gravity

% = the relative accuracy with which the sensible heat flux
can be determined

k = Boltzmann constant

K(z) = eddy diffusivity at a given height z, also abbreviated to
K, where a subscript denotes the parameter under consideration
[particles (K},), momentum (K,,), or heat (Ky)]

| = characteristic eddy length in the canopy

L = Monin-Obukhov length

my, = particle mass

Na = Avogadros constant

P = atmospheric pressure

R = particle rebound

r(z) = total resistance at height z

r.(z) = aerodynamic resistance to transport at height z, also
abbreviated as r,

r, = resistance to transfer across the quasi-laminar surface
layer

r. = resistance to surface uptake

R, = gas constant

S = source (positive) or sink (negative) of C

S() = power-spectra (as a function of frequency)

Sc = Schmidt number (v/D)

St = Stokes number

T, = air temperature

T = averaging period

to = start time

U and u = horizontal wind speed (U, is u at h, where A is the
canopy height). U, is wind speed at a reference height, r

Uy = wind velocity away from obstacles

u; = wind speed in 3 directions (&, v, w)

u, = friction velocity

v4(z) = deposition velocity at a given height z, also abbreviated
as vq

v, = settling velocity

v, = transfer velocity

w = vertical wind speed

x; = the 3 directions used to define the wind speed components
(x, ¥, 2)

z = height

z; = inversion base height

7o = roughness length for momentum.

« and B = Kolmogorov constants describing the intensity of
the inertial range spectra for velocity spectra and all other scalar
spectra respectively

o = surface area of vegetation per unit volume

8F = standard deviation (used here as a measure of uncer-
tainty) on the ensemble flux statistics
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860 = uncertainty of the temperature measurements

8C = uncertainty on the measurements of Cy, and Cyown

AX (where Xis Cor 0) = )_(up — Xdown

& = collection efficiency R

¢. and gnc = normalized dissipation functions [f thermal sta-
bility)]

y = parameter characterizing the wind profile through the
forest

A = mean molecular free path

k = von Karman constant

4 = dynamic viscosity of air

v = kinematic viscosity of air

p = air density

pp = particle density

o = standard deviation

o, = standard deviation of vertical velocity, w

T = particle relaxation time

7,, = momentum flux

3, = averaging time for flux estimation

Overbar is used to denote time averages.
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