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ABSTRACT

The sources and sinks of important climatic trace gases such as carbon dioxide (CO2) are often deduced from spatial and

temporal variations in atmospheric concentrations. Reducing uncertainties in our understanding of the contemporary

carbon budget and its underlying dynamics, however, requires significantly denser observations globally than is practical

with in situ measurements. Space-based measurements appear technically feasible but require innovations in data analysis

approaches. We develop a variational data assimilation scheme to estimate surface CO2 fluxes at fine time/space scales

from such dense atmospheric data. Global flux estimates at a daily time step and model-grid spatial resolution (4◦ × 5◦

here) are rapidly achieved after only a few dozen minimization steps. We quantify the flux errors from existing, planned

and hypothetical surface and space-borne observing systems. Simulations show that the planned NASA Orbital Carbon

Observatory (OCO) satellite should provide significant additional information beyond that from existing and proposed

in situ observations. Improvements in data assimilation techniques and in mechanistic process models are both needed

to fully exploit the emerging global carbon observing system.

1. Introduction

Atmospheric concentration measurements provide critical in-

formation cabout sources and sinks of CO2, CO, CH4, N2O

and other important trace gases. Inverse methods are generally

used to interpret the data, with atmospheric transport models

providing the link between surface gas fluxes and their impact

on atmospheric concentrations at later times. Over the past few

decades, most CO2 data have come from an expanding network

of in situ sites, mostly surface flasks sampled at a weekly fre-

quency (GLOBALVIEW-CO2, 2004). These allow surface CO2

fluxes to be estimated robustly on a monthly basis for only

about a dozen globe-spanning emission regions (Bousquet et al.,

2000; Rödenbeck et al., 2003; Baker et al., 2006). Data with

higher spatial and temporal resolution are now becoming increas-

ingly available from in situ continuous analysers, routine aircraft

flights, and eddy flux towers. New types of measurements, such

as column-averaged CO2 from upward-looking Fourier trans-

form spectrometers, are being introduced. Even more promis-

ing, concentration data from satellites may soon provide the

greatest coverage boost. This is already the case for CO and

CH4 with the availability of MOPITT and SCIAMACHY prod-

ucts (Deeter et al., 2003; Frankenberg et al., 2005). For CO2,
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mid-troposphere column-averaged concentrations have been re-

trieved from AIRS (Crevoisier et al., 2004) and SCIAMACHY

(Buchwitz et al., 2005), as well as upper-troposphere concen-

trations from TOVS records (Chedin et al., 2003). Though these

have been of marginal use so far, both the Japanese and American

space agencies plan to launch satellite missions in 2008 specifi-

cally designed to measure accurate column-integrated CO2 con-

centrations, with sensitivity down to the surface.

High-density data should allow us to address a variety of sci-

ence and policy questions that could not be answered before.

Resolving surface fluxes to the regional biome level will help

quantify the relative importance of the key driving processes;

resolving them to the level of individual countries is needed

for carbon management and for the verification of international

emissions treaties (Dilling et al., 2003). To obtain this spatial

resolution, daily to synoptic time variability must be resolved;

this will also clarify the response of the different carbon cy-

cle components to the short-term meteorological drivers (Geels

et al., 2004). Resolving the fluxes diurnally could help separate

land biospheric fluxes into their photosynthetic and respiratory

components (Braswell et al., 2005).

The inverse methods most often used in the past become com-

putationally impractical for processing this new high-density

data. Here,we present a variational data assimilation approach

that bypasses these computational limitations. Using the ap-

proach in a simulation framework, we test how well data from

five CO2 measurement networks constrain daily-mean CO2

fluxes at model-grid spatial resolution (in our case, 4◦ × 5◦).
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2. Method

In the batch least-squares methods used most commonly in the

past (e.g. the ‘Bayesian synthesis’ approach; see Enting, 2002),

a set of coupled linear equations relating the fluxes and the mea-

sured concentrations at different times is inverted in a single

step. This approach has worked well for the limited data avail-

able through about the year 2000, but the increasing availability

of new high-frequency data sources (including continuous in situ

analysers and satellite-based column-integrated products), with

the attendant possibility for estimating the fluxes at finer time

and space resolution, is rendering this approach computation-

ally infeasible. Three main problems arise as the problem size

(the number of both estimated fluxes and measured concentra-

tions) grows: (1) the matrix to be inverted becomes too large to

fit into computer memory; (2) the direct solution of the linear

equations becomes prohibitively expensive and (3) the greater

number of atmospheric transport model integrations required to

fill the transport matrix becomes too costly to run.

Various approaches have been tried to address these problems.

Bousquet et al. (2000) broke the inversion span into several over-

lapping pieces, solving several smaller matrix inversions in place

of a single large one. This idea may be taken further by perform-

ing the estimation sequentially, rather than in a single ‘batch’

inversion, using the Kalman filter (Baker, 2001; Bruhwiler et al.,

2005). While this approach does speed up the computations,

the need to account for multiple past flux emission times in the

state vector forces the matrices operated upon to remain rather

large. Ultimately, the need for the conventional Kalman filter to

propagate and update a full-rank covariance matrix limits its use-

fulness for large problems. Recent work using ensemble Kalman

filters (Peters et al., 2005) promises to surmount this problem.

For the situation where the number of measurements is signif-

icantly smaller than the number of estimated fluxes, it is more

efficent to generate the basis functions linking fluxes to concen-

trations by running the adjoint of the transport model backwards

in time from the measurement site back to the emission region.

Kaminski et al. (1999a,b) first used this approach to solve for

fine-scale fluxes from flask data in a standard Bayesian inver-

sion. Peylin et al. (2005) made a further improvement by noting

that the size of the inversion is smaller when performed in the

measurement space rather than in the flux space. But what can

be done when both the number of measurements and estimated

fluxes are large? In that case, the direct matrix inversion may

be replaced by an iterative approach if the adjoint is available

to allow the cost function gradient to be computed efficiently.

Rödenbeck (2005) has used this approach to estimate CO2 fluxes

and Rayner et al. (2005) to estimate terrestrial model parameters

in global atmospheric transport inversions.

Here, we develop these adjoint-based descent methods further

in the context of variational data assimilation. Our variational

data assimilation approach sidesteps all three problems noted

above by casting the estimation of the fluxes as a minimization

problem and solving it with an iterative descent method. There

is no matrix to store or invert, and the number of transport model

runs required is proportional to the number of descent iterations

rather than the number of estimated parameters. Iterative solution

methods such as this achieve great computational efficiencies by

not running the minimization to complete convergence, but by

stopping at an approximate solution that is still acceptably close

to the exact one. The key to using the minimization framework

is the efficient computation of the cost function gradient, which

is achieved in the variational approach through the derivation of

the adjoint of the transport model (Bennett, 2002; Errico, 1997).

The method is similar to the ‘4D-Var’ assimilation methods used

in numerical weather prediction (NWP), though here it is used to

solve at multiple time steps across a long span of data in a single

retrospective analysis, rather than for just initial conditions in

repeated near-real-time analyses across short spans (e.g. 6 h) as

in NWP.

Suppose we have a transport model that computes atmospheric

concentrations xi at times i across i = 0, . . . I , forced by surface

sources uk constant across emission spans k = 1, . . . K . Given

atmospheric measurements z j at times j ∈ [0, I ], we seek to

estimate the surface sources uk plus the concentration field x0

at time t = 0, that together minimize a cost function of the

form

2L =
I−1∑
i=0

∑
j

[h j (xi ) − z j ]
T R−1

j [h j (xi ) − z j ]δi j

+
K∑

k=1

(
uk − uo

k

)T
P−1

uo
k

(
uk − uo

k

)
+(

x0 − xo
0

)T
P−1

xo
0

(
x0 − xo

0

)
+

I−1∑
i=0

‚T
i+1

(
�i

i+1xi + Gi ukδik − xi+1

)
, (1)

where δ i j = 1 for measurements z j at all times j falling inside

time step i and δ i j = 0 otherwise, δ ik = 1 when time i falls within

emission span k and δ ik = 0 otherwise, uo
k and xo

0 are a priori esti-

mates of uk and x0, and h j are measurement operators (possibly

non-linear). R j , Puo
k
, and Pxo

0
are covariance matrices describing

the errors in z j , uo
k and xo

0, respectively, which are assumed to

be unbiased. The last term in (1) consists of a sum of dynamical

mismatches adjoined to the cost function with Lagrange multi-

pliers λi+1; this constraint approach forces xi and uk to exactly

satisfy a set of dynamical equations

xi+1 = �i
i+1xi + Gi ukδik i = 0, . . . , I − 1, (2)

where the transformation matrix �i
i+1 represents the linearized

dynamics of our atmospheric transport model along the forward

concentration trajectory (i.e. the tangent linear model), and ma-

trix Gi describes how fluxes uk perturb the concentrations in the

lower levels of the model across time i.
The requirement from the calculus of variations that ∂L/∂xi =

0 at the minimum (for i = 1, . . . , I ) provides the extra equations
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required to solve for the introduced Lagrange multipliers:

‚ i = (
�i

i+1

)T
‚ i+1 i = 1, . . . , I − 1

+
∑

j

(
∂h j

∂xi

)T

R−1
j [h j (xi ) − z j ]δi j

‚ I =
∑

j

(
∂h j

∂xI

)T

R−1
j [h j (xI ) − z j ]δI j . (3)

These are the Euler–Lagrange equations, which may be solved

forλi by running the adjoint (�i
i+1)T of the forward tangent linear

model backwards in time from λ I , forced by weighted measure-

ment mismatches [h j (xi ) −z j ] δ i j at measurement times j. We

have coded and tested a near-exact adjoint to our forward model

code for use in computing these backward-in-time integrals.

With λi so determined, the gradient of L with respect to the

control variables uk and x0 may be obtained as

∂L

∂uk
=

∑
i

GT
i ‚ i+1δik + P−1

uo
k

(
uk − uo

k

) ≡ ∇uk

k = 1, . . . , K

∂L

∂x0

= (
�0

1

)T
‚1 + P−1

xo
0

(
x0 − xo

0

)
+

∑
j

(
∂h j

∂x0

)T

R−1
j [h j (x0) − z j ]δ0 j ≡ ∇x0

. (4)

At the stationary point, ∂L/∂uk = 0 and ∂L/∂x0 = 0. These

equations, along with (3), define a coupled 2-point boundary

value problem that must be solved to find the optimal control

variables. For problems of small dimension, they may be solved

directly using the sweep method (Bryson and Ho, 1975) or the

representer method of Bennett (2002). For larger problems of the

sort addressed here, this becomes computationally impractical,

and approximate solutions must be sought instead. The gradi-

ent of the cost function with respect to our control parameters,

defined by ∇ = (∇T
u1

, . . . ∇T
uK

, ∇T
x0

)T , may be used in any of a

number of popular descent methods (e.g. the conjugate gradient

method) to find values for uk and x0 that approximately min-

imize L. Here we use the variable metric method of Broyden,

Fletcher, Goldfarb, and Shanno (BFGS) (Stoer and Bulirsch,

1980), preconditioned with the a priori covariance matrices Puo
k

and Pxo
0
. The BFGS method allows a low-order approximation to

the a posteriori covariance matrix to be reconstructed efficiently

from the updates to x and r saved at each descent step. Besides

providing some insight into the information content of the a pos-

teriori estimate, the low-order covariance matrix may be used to

construct the covariance matrix for errors in the final concentra-

tion field, which may then be used as Pxo
0

in an assimilation for

the subsequent span. We have also obtained marginally faster

convergence with the BFGS method than with the conjugate

gradient method.

3. Results

To test our assimilation approach, we have set up simulation

experiments in which the true fluxes are known and are used

to simulate measurements from potential CO2 monitoring net-

works, with random data errors added. These simulated ‘true’

measurements are fed into the variational data assimilation sys-

tem and are used to correct an a priori estimate of the fluxes. The

resulting a posteriori estimate is then compared to the (known)

true fluxes to test the performance of the inversion method and

to assess how well the observation networks constrain the true

fluxes. Similar simulation studies have been performed before

to assess the value of space-based measurements (Rayner and

O’Brien, 2001; Houweling et al., 2004), but these have used the

earlier direct inversion methods at lower resolution.

For the land regions, the ‘true’ fluxes are taken from the Lund–

Potsdam–Jena (LPJ) land biosphere model (Sitch et al., 2003)

and the ‘prior’ ones from the Carnegie–Ames–Stanford Ap-

proach (CASA) land biosphere model (Randerson et al., 1997).

The ‘true’ air-sea fluxes are from the NCAR ocean carbon model

(Doney et al., 2004) and the ‘prior’ from the Takahashi et al.

(1999) data synthesis. All these fluxes vary seasonally but not

synoptically or diurnally. We run our transport model (PCTM;

Kawa et al., 2004) at a 1 h time step and a 4◦ × 5◦ resolution,

solving for fluxes at a daily (24 h) resolution across a 10 d span.

We have used a linear version of PCTM in our simulations, with

our adjoint constructed directly from this, rather than through

the intermediary of a tangent linear model.

Both the measurement error covariance matrices R j and the

a priori flux covariance matrices Puo
k

have been chosen to be

consistent with the applied random measurement errors and the

difference between the true and prior fluxes, respectively. In other

words, the simulation experiments are not ‘mis-tuned’ due to

inaccuracies in R j and Puo
k
; the impact of such errors will be

left to a subsequent paper. Puo
k

is calculated directly from the

absolute value of the truth minus prior flux field differences.

3.1. Convergence and error analysis with highly-dense
data coverage

To test the implementation and the convergence of the method,

we examine a network with hourly measurements in the bottom

model level of every 4◦ × 5◦ grid box—a density of in situ ob-

servations unlikely to be achieved globally in the near future.

Four cases are considered, found by adding (or not adding) a

1 ppm gaussian error to the measurements, and by applying (or

not applying) an a priori constraint with a 1.0 PgC yr−1 uncer-

tainty on each daily gridded flux value. The measurement and

prior errors in R and Puo
k

are considered to be correlated in time

with a 1 day time constant, but no spatial correlations are consid-

ered. We do not assess the impact of transport model error here;

this important error source will be examined in a subsequent

study.
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Fig. 1. (Estimate–Truth) flux differences and

the ‘improvement’ in the estimated fluxes,

defined by |Estimate–Truth|–|Prior–Truth|,
for Day 1 of a 10 d assimilation using highly

dense surface data (hourly at 4◦ × 5◦) after

60 descent iterations [kgCO2 m−2 yr−1]. A

posteriori flux estimates for four cases are

considered: (b) no data errors added and no

prior constraint applied; (c) data errors added

but no prior constraint applied; d) both data

errors and an a priori constraint applied and

(e) the a priori constraint applied but no data

errors added. The pre-assimilation difference

between the a priori and true fluxes is given

in (a) for comparison, along with its absolute

value.

Figure 1(a) gives an example of the initial Prior–Truth flux

difference (uo
k −utrue

k , at k = 1) that the assimilation seeks to

correct; in a perfect assimilation, this difference would be driven

to zero. First, to test convergence, no random data errors are

added and no a priori constraint applied; after 60 descent steps,

almost all the errors in the a priori fluxes are corrected (Fig. 1b).

Figure 2 shows the convergence in the error; for this 10 d run, 60

iterations are sufficient to drive the convergence error to under

1% of the initial errors.

We then add 1 ppm random errors with the same time correla-

tions assumed in R to each measurement, again without applying

an a priori constraint to the fluxes. The resulting flux estimate

(Fig. 1c) suffers from fine-scale estimation errors. We may more

easily see whether the assimilation has improved the a priori es-

timate or not by examining maps of the flux statistic |Estimate–

Truth|–|Prior–Truth| (second column of Fig. 1). ‘Improvement’

(negative values) occurs when the assimilation drives the final

estimate more closely towards the truth; positive values arise

when the estimate is driven farther away (either in the wrong

direction or by overshooting in the right direction). The assim-

ilation improves the estimate where the initial errors are large

(cf. Fig. 1a) but not much elsewhere (Fig. 1c).

For the case in Fig. 1c, the assimilation is trying to over-fit

the data; in the absence of an a priori constraint on the fluxes,

an unrealistic ‘noise’ is added to the fluxes in an attempt to

optimally fit the ‘noise’ in the data. Figure 2 shows that the as-

similation initially reduces the flux errors overall (as the worst

errors over the continents are reduced), but that the overall er-

ror grows again after descent step 8 when the fine-scale flux

errors overwhelm the large-scale improvements. The magnitude

of this random error in the fluxes (∼10−8 kgCO2 m−2 s−1) is

a measure of the a posteriori error in the fluxes; if the RMS
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flux error were to be computed across a statistically significant

sample of inversions with independent sets of random errors,

the result would be the same as that given by the full-rank co-

variance matrix given by more traditional inversion methods.

While we do not compute this full error estimate here, it is

clear from Fig. 1 that the measurements are only sufficient to

improve the worst of the initial flux errors (those greater than

about 10−8 kgCO2 m−2 s−1, over the land regions) at least at this

resolution.

When an a priori flux constraint is applied along with the data

errors, the random flux errors due to the over-fitting are largely

damped out, but at the cost of a systematic error in the direction

of the a priori flux (Fig. 1d). This error can be seen explicitly

in Fig. 1e for the case in which the a priori flux constraint is

applied but no random flux errors added. The lower level of ran-

dom error in Fig. 1d is a measure of the a posteriori information

from both the measurements and the a priori flux constraint.

Both this random error and the systematic error towards the

prior must be considered in computing the total errors for the

method.

An additional error is incurred if the descent towards the min-

imum is terminated too early (Fig. 2). Limited computational re-

sources may prevent full convergence for larger problems. This

convergence error must be considered along with the other ran-

dom and systematic errors.
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Fig. 2. Flux error (|Estimate–Truth|) as a function of descent iteration.

Solid lines show the results for the dense surface measurement case

(red: no data error added, no prior constraint; blue: data error added, no

prior constraint; green: no data error added, with prior constraint; and

black: data error added, with prior constraint). Cases in which both data

errors and the prior constraint were applied are given for: the current in

situ network (black dash–dotted line), the expanded version of the

current in situ network (black dotted line), the OCO satellite case

(black dashed line), as well as the dense (4◦ × 5◦) surface

measurement case (solid black line).

3.2. Error analysis for five potential networks

To explore the impact of using sparser, more-realistic sampling,

we evaluate five measurement networks with data errors added

and an a priori constraint applied (the case in Fig. 1d). Network

#1 is the current one from GLOBALVIEW-CO2 (2004), with

35 continuous sites (with data applied at the 1 h time step here)

and 101 weekly/biweekly flask sites (applied daily here, with

an appropriate deweighting through the data errors). Network

#2 is an expanded version of the current network composed of

186 continuous sites, mostly on tall towers and buoys (applied

hourly). Network #3 consists of measurements similar to those

from the planned sun-synchronous Orbital Carbon Observatory

(OCO): column-averaged CO2 concentrations (with 1 ppm un-

certainty) from 14.6 day lit orbital passes per day, each separated

by 24.7◦ in longitude (Crisp et al., 2004), with a 16 d repeat cycle

for the ground track. Network #5 is the same one used in Sec-

tion 3.1 and Fig. 1, with measurements in the surface layer of the

model for each 4◦ × 5◦ grid box, once per hour. Network #4 is

similar to #5, but uses OCO column-averages instead of surface

measurements. All measurements are assumed to be unbiased.

Figure 3 shows the difference between the true and estimated

fluxes and the improvement over the prior for these five sam-

pling strategies after 60 iterations of the BFGS method. At the

resolution solved for here (daily fluxes at 4◦ × 5◦), the current

network (#1) improves the initial estimate in only a few loca-

tions (Fig. 3a). The expanded surface network (#2, Fig. 3b) and

the OCO data (#3, Fig. 3c) give larger improvements, with those

for OCO covering a larger area. However, the improvement for

both networks is still only a small fraction of the initial error.

Despite being much denser than the current network, both these

networks are still too sparse to fully constrain fluxes at these fine

scales. Moving to dense spatial coverage allows about half of

the initial errors to be corrected (compare the dense-column and

OCO networks, #4 and #3, in Figs 3d and c), while moving the

measurements closer to the surface is required to obtain the rest

of the correction (compare the dense-surface and dense-column

networks, #5 and #4, in Figs. 3e and d).

4. Conclusions

We have tested a new method for estimating surface trace gas

fluxes at fine time/space scales using dense atmospheric con-

centration data. Using a variational data assimilation system, we

achieve near-exact convergence after 60 iterations of our descent

method in our no-noise, perfect model case. In the presence of

random data errors, an a priori constraint on the fluxes is effective

in damping random errors in the estimate, at the cost of adding a

systematic error in the direction of the prior. Our need of this con-

straint highlights the importance of accurate ‘bottom-up’ models

of the basic processes for use as the prior estimate; dense data

alone are not enough, given the likely future data errors. Despite

the great efficiency of the method, computational constraints on
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Fig. 3. (Estimate–Truth) flux differences

and the ‘improvement’ in the estimated

fluxes, defined by

|Estimate–Truth|–|Prior–Truth|, for Day 1 of

a 10 d assimilation after 60 descent iterations

[kgCO2 m−2 yr−1]. Random data errors and

an a priori constraint on the fluxes have been

applied (as for the case in Fig. 1d). Results

for five measurement networks are shown:

(a) the current in situ network from

GLOBALVIEW-CO (2004), including 35

continuous sites and 101 weekly sites; (b) an

expanded version of the current network

with 186 continuous sites; (c)

column-averaged observations similar to

those from the upcoming OCO satellite; (d)

hourly column-averaged data at 4◦ × 5◦

resolution across the globe and (e) hourly

surface data at 4◦ × 5◦ resolution (i.e. the

case presented in Section 3.1 and Fig. 1d).

the degree of convergence will result in convergence errors that

will become more significant at finer time/space resolutions.

The broad spatial coverage provided by column-averaged CO2

measurements from sun-synchronous satellites should enable us

to estimate surface gas fluxes at daily to synoptic time scales

and model-grid spatial scales. This is a substantial improvement

over current in situ measurements. Continuous near-surface in

situ measurements may ultimately provide a more effective con-

straint on the surface fluxes, given their diurnal coverage and

closer proximity to the fluxes. Achieving such spatial coverage is

a challenge, requiring low-cost, calibrated analysers distributed

globally across both land and ocean. Until near complete surface

coverage is achieved, the broad column-averaged spatial cover-

age of the satellites and the spatially sparse, but continuous,

near-surface coverage of the in situ data will be complementary,

each filling in gaps in the other network.
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