Development of an automatic chamber system for long-term measurements of CO<sub>2</sub> flux from roots

By MASAKO DANNOURA<sup>1\*</sup>, YUJI KOMINAMI<sup>2</sup>, KOJI TAMAI<sup>3</sup>, MAYUKO JOMURA<sup>1</sup>,

TAKAFUMI MIYAMA<sup>2</sup>, YOSHIAKI GOTO<sup>4</sup> and YOICHI KANAZAWA<sup>1</sup>, <sup>1</sup>Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan; <sup>2</sup>Kansai Research Center, Forestry and Forest Products Research Institute, 68 Nagaikyutaro, Momoyama, Fushimi, Kyoto 612-0855, Japan; <sup>3</sup>Kyushu Research Center, Forestry and Forest Products Research Institute, 4-11-16 Kurokami, Kumamoto 860-0862, Japan; <sup>4</sup>Department of Meteorological Environment, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan

(Manuscript received 15 January 2006; in final form 30 June 2006)

## ABSTRACT

To separate CO<sub>2</sub> efflux from roots ( $R_r$ ) and soil ( $R_s$ ), we developed a system to measure  $R_r$  continuously. Using this system, seasonal variation in  $R_r$  was obtained in a temperate forest in Japan. We measured  $R_s$ , CO<sub>2</sub> efflux from mineral soil ( $R_m$ ) and environmental factors simultaneously, and the characteristic and seasonality of  $R_r$  were analysed in comparison with  $R_s$ .  $R_r$  and  $R_s$  showed different responses to soil water content:  $R_s$  decreased with decreasing soil water content, whereas  $R_r$  peaked at relatively low soil water content.  $R_r/R_s$  decreased from 64.8% to 27.3% as soil water content increased from 0.075 to 0.225 cm cm<sup>-3</sup>. The relationship between respiration and temperature appears to change seasonally in response to phenological and biological factors.  $R_r$  showed clear seasonal variation as a function of soil temperature. During the growing period,  $R_r$  exhibited a higher rate at the same soil temperature than during other periods, which may be due to phenological influences such as fine root dynamics.  $R_s$  decreased during the summer despite high soil temperatures. The seasonal peak for  $R_s$  occurred earlier than that for soil temperature.  $R_r/R_s$  ranged between 25% and 60% over the course of the year.

# 1. Introduction

Belowground processes play an important role in the carbon cycle of the biosphere. Soil respiration is the main pathway for carbon moving from the ecosystem into the atmosphere (Ryan and Law, 2005) and can strongly influence net ecosystem exchange. Therefore, soil–surface  $CO_2$  efflux has been measured in many ecosystems (Crill, 1991; Lavigne et al., 1997). However, the efflux from a soil surface is an assemblage of multiple belowground processes such as decomposition respiration and root respiration. As a result of variations in these processes,  $CO_2$ efflux has large spatial variability (Nakane and Lee, 1995), and it is also difficult to describe the physical processes responsible for these variations in soil respiration. According to Hanson et al. (2000), about half of soil respiration derives from metabolic activity to support and grow roots and their associated mycorrhizae. Much of the remainder is composed of heterotrophic respiration (Trumbore, 2000).

To understand the  $CO_2$  budget of a forest ecosystem, it is important to evaluate  $CO_2$  efflux from the soil accurately by separating autotrophic from heterotrophic respiration. In this context, autotrophic respiration means root respiration. Many reports deal with the separation of soil–surface  $CO_2$ into autotrophic and heterotrophic respiration. In a review by Hanson et al. (2000), the authors concluded that the contribution of  $CO_2$  efflux from roots ( $R_r$ ) to total soil  $CO_2$  efflux ( $R_s$ ) might average approximately 48.5% in a forest ecosystem, but that this ratio varied widely (between 10% and 90%) depending on the measurement methods, forest type, season and location.

Various methods have been developed to separate  $R_r$  from  $R_s$ , including direct measurement of CO<sub>2</sub> fluxes from sample roots using a chamber (Dannoura et al., 2005). This method has the advantage that the respiration exclusively by roots can be measured, without confounding influence due to the presense of soil. However, in this sampling method, the roots are excavated from the soil and cut to fit within the chamber. As a result, continuous

<sup>\*</sup>Corresponding author: e-mail: dan@alpha.ocn.ne.jp DOI: 10.1111/j.1600-0889.2006.00216.x

measurements are impossible and results may be biased by the impact of cutting.

The main alternative to this approach involves indirect measurement of  $R_r$ . In this approach,  $R_r$  is calculated as the difference in total  $R_s$  with and without root exclusion by means of root removal, trenching, gap creation and other methods (Nakane et al., 1996; Ohashi et al., 2000). This approach permits continuous measurements (Lee et al., 2003; Tang et al., 2005), but the influence of dead roots is included. This is a significant problem because dead roots can become major source of heterotrophic respiration.

Variation in the  ${}^{13}C/{}^{12}C$  ratio is used in the isotope method for estimating  $R_r$  (Andrews et al., 1999; Rochette et al., 1999). This method permits continuous measurements (Bhupinderpal-Shingh et al., 2003) with the least amount of disturbance to the soil and roots. However, this method generally yields lower rhizosphere contributions than those obtained using other methods, and there are uncertainties about how quantitative these methodologies are when used in the field (Hanson et al., 2000).

Thus, each method of measuring  $R_r$  has specific difficulties and uncertainties. In particular, a method which permits continuous measurements with a high time resolution must be developed if the method is to be suitable for evaluating the influence of environmental factors. Dannoura et al. (2006b) reported that the smaller the root diameter, the higher the  $R_r$  value per unit root weight, independent of tree species and tree size. From the  $R_r$  values per unit area that were calculated by these authors using CO<sub>2</sub> flux per unit weight and root biomass in each diameter class, fine roots that accounted for only about 16% of the total root biomass accounted for more than half of total  $R_r$ . Thus, fine roots appear to be a key component of the belowground carbon cycle.

To permit continuous *in situ* measurements, we set out to develop an automated chamber system capable of providing useful measurements of  $R_r$ . In the present paper, we describe this system and present the results of more than 1 yr of continuous measurement of  $R_r$  in a temperate forest in Japan.

# 2. Methods

#### 2.1. Site description

Measurements were conducted at the Yamashiro Experimental Forest (YMS), located in a hilly and mountainous region in Kyoto Pref., Japan (34°47'N, 135°51'E). The forest occupies 1.6 ha at altitude of about 220 m. Meteorological towers were established in 1999 to estimate CO<sub>2</sub> fluxes using the eddy covariance method (Kominami et al., 2003). The forest is temperate and contains deciduous broadleaved spiecies such as Quercus serrata and evergreen broadleaved spiecies such as Ilex pedunculosa, including some conifers. The tree density is 5953 stems ha<sup>-1</sup> and tree height averages 12 m. Annual precipitation averages 1627 mm, and temperature averages 15.8 °C. We showed mean monthly air temperature and monthly precipitation in the study site during the period of this study in Table 1. The soil is classified as a Dystric Cambisol by WRB-classification and is derived from weathered granitic parent materials. Longterm monitoring of litterfall was previously performed from September 1999 to August 2003, and the annual litterfall averaged 5.16 t ha<sup>-1</sup> (Goto et al., 2003). We measured DBH (diameter at breast height, 1.3 m aboveground) for all trees  $\geq$  3.0 cm in DBH in 1999 and for trees between 1.0 and 3.0 cm in DBH in a 0.17 ha subplot in 2001 (Goto et al., 2003). Aboveground and root biomass were estimated using destructive sampling (Goto et al., 2003; Dannoura et al., 2006a). As shown in Table 2, the ratio of aboveground biomass (without liana; 102.01 t  $ha^{-1}$ ) to root biomass (23.41 t  $ha^{-1}$ ) was 4.36. This is similar to a global average of 4.35 reported by Jackson et al. (1996). However, the root biomass at our study site was smaller than the average root biomass for a temperate forest (42 t ha<sup>-1</sup>; Jackson et al., 1996). Root area index (RAI; 3.5 m m<sup>-2</sup>) was also smaller than the average for temperate forest (9.8 m m<sup>-2</sup>; Jackson et al., 1997). It is suggested that these characteristics resulted from the thin forest soil (A horizon; about 15 cm) as shown by Asakawa et al. (2006). Dannoura et al. (2006a) reported 80% of fine roots (< 5 mm) were concentrated in A horizon and upper 20 cm of B horizon.

#### 2.2. Development of an automatic chamber system

The concentration of  $CO_2$  was measured using an infrared gas analyser (IRGA; LI-820, Li-Cor, Lincoln, Nebraska, USA) by closed-flow chamber method. We constructed five acrylic chambers for the measurement of  $CO_2$  efflux from the soil surface. Each chamber is opened and closed automatically by a motor operated by a programmable controller. During measurements,

Table 1. Mean monthly air temperature and monthly precipitation in the study site

|                                            | 2004          |               |               |              |               |               |               | 2005          |             |             |             |             |              |              |              |               |               |
|--------------------------------------------|---------------|---------------|---------------|--------------|---------------|---------------|---------------|---------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|---------------|---------------|
| Year<br>Month                              | 4             | 5             | 6             | 7            | 8             | 9             | 10            | 11            | 12          | 1           | 2           | 3           | 4            | 5            | 6            | 7             | 8             |
| Air temperature (°C)<br>Precipitation (mm) | 14.2<br>102.5 | 18.8<br>301.5 | 22.6<br>154.0 | 27.0<br>39.5 | 25.8<br>180.5 | 23.8<br>211.5 | 16.9<br>287.0 | 13.1<br>112.0 | 8.8<br>73.0 | 3.7<br>38.0 | 3.6<br>68.0 | 6.8<br>81.5 | 14.4<br>32.5 | 17.2<br>64.5 | 22.7<br>84.5 | 25.3<br>184.0 | 26.2<br>128.0 |

| Goto et al. (2003)                 | 3 cm                        | ≦ DBH | 1 cm  | Total |        |       |  |  |  |
|------------------------------------|-----------------------------|-------|-------|-------|--------|-------|--|--|--|
| Aboveground biomass                | Deciduous                   | 6.    | 3.56  |       | 68.56  |       |  |  |  |
| $(t ha^{-1})$                      | Evergreen                   | 27    | 7.06  |       | 27.43  |       |  |  |  |
|                                    | Conifer                     | 6     | .02   |       | 0.00   |       |  |  |  |
|                                    | Liana                       | 0     | 0.17  |       | 3.04   |       |  |  |  |
|                                    | Total                       | 90    | 6.81  |       | 8.24   |       |  |  |  |
|                                    | Class of root diameter (mm) |       |       |       |        |       |  |  |  |
|                                    | 0–2                         | 2–5   | 5–20  | 20-50 | 50-    | Total |  |  |  |
| Root biomass (t ha <sup>-1</sup> ) | 3.691                       | 2.361 | 1.965 | 5.106 | 10.282 | 23.4  |  |  |  |
| RAI $(m^2 m^{-2})$                 | 2.631                       | 0.481 | 0.128 | 0.137 | 0.127  | 3.5   |  |  |  |

*Table 2.* Aboveground biomass (Goto et al., 2003) and below-ground biomass (Dannoura et al., 2006a) for the study site in the Yamashiro Experimental Forest (YMS) estimated by destructive samplingbiometric measurement

each chamber remains closed for 5 min, and the chambers are measured sequentially. Airflow rate was 1.0 L min<sup>-1</sup> controled by flowmeter and the electromagnetic valves were used for the changeover in five chambers. We passed ambient air through the tubing for 2 min before extracting air from a chamber to ensure that we removed all air from the previously measured chamber. CO<sub>2</sub> efflux was measured for 5 min per chamber. We use the middle 3 min data for caliculation without first and last 1 min. Thus, CO<sub>2</sub> efflux was measured at each chamber at interbals of about 35 min. Each chamber was left open between measurements. The inside dimensions of the chambers were 13 × 28 × 7 cm ( $L \times W \times H$ ) and the soil surface covered by each chamber was 364 cm<sup>2</sup>. The size was determined by pre-measurement so that we would be able to monitor  $R_r$  during the winter.

 $CO_2$  efflux was calculated using the following equation:

$$F = \Delta \text{CO}_2 \times \text{V/V}_{\text{air}} \times 10^4 / \text{A} \times T_{\text{a}}(T_{\text{a}} + T) \times M_{\text{CO}_2} / 10^3, \quad (1)$$

where *F* is the measured CO<sub>2</sub> efflux from the soil surface (mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>),  $\Delta$ CO<sub>2</sub> is the mean rate of change of the CO<sub>2</sub> concentration in the chamber (ppm s<sup>-1</sup>), *V* is the volume of the chamber plus the connected tubes (m<sup>3</sup>), *V*<sub>air</sub> is the volume of 1 mol of an ideal gas (22.4 L mol<sup>-1</sup> at STP), *A* is the soil surface area covered by the chamber (364 cm<sup>2</sup>), *T*<sub>a</sub> is the correction factor between Celsius and absolute temperatures (273.2), *T* is the temperature in the IRGA (°C) and *M*<sub>CO2</sub> is the molecular weight of CO<sub>2</sub> (44.01 g mol<sup>-1</sup>).

# 2.3. Measurement of temporal variations in $R_r$ using the automatic chamber system

To separate  $R_r$  from  $R_s$ , all soil in the A horizon was carefully removed using a portable electric vacuum cleaner, leaving only the living roots (Fig. 1-(2)). Care was taken to avoid damaging any roots during this process. An acrylic board was inserted between the A and B horizons to eliminate CO<sub>2</sub> efflux from the B horizon (Fig. 1-(3)). To protect the roots during subsequent measurements, we carefully replaced the removed soil with an equal depth of weathered granitic soil (obtained from a gardening supply store) that was similar to the original A horizon at the study site (Fig. 1-(4)). Before proceeding, we confirmed that this soil had a  $CO_2$  efflux below the limits of detection. And after this study, we removed all roots inside of  $R_r$  chamber and measured root biomass, then the carbon content in the weathered granitic soil remained in  $R_r$  chamber was measured from carbon loss on combustion in a muffle furnace. Three plots for measuring  $R_r$  were established and the automatic chamber was placed above the plots (Fig. 2). We used the aluminum board for the contact between the soil and the chambers to prevent loss of gases or entry of ambient air.

We estublished one plot for measuring  $R_s$  without any treatment of the soil (i.e. no removal of soil and no installation of an acrylic board above the B horizon), and this plot served as the control. Moreover, we established one plot for measuring CO<sub>2</sub> efflux from the mineral soil ( $R_m$ ). We constructed five chambers and used three to measure  $R_r$ , one to measure  $R_s$  and one to measure  $R_m$ . These were established randomly located within a 10 × 10 m<sup>2</sup> plot. Litter fall was cleared from the chambers for  $R_r$  and  $R_m$ .

Soil temperatures were monitored at depths of 1, 4 and 7 cm in each chamber using thermocouples.  $CO_2$  efflux and soil temperatures were collected using a datalogger (NR1000, Keyence, Osaka, Japan) at 1-s intervals. We used ECH<sub>2</sub>O probes (Decagon, Pullman, Washington, USA) to measure the soil's volumetric water content at a depth of 5 cm in each chamber at intervals of 30 min. We processed these data (CO<sub>2</sub> efflux, soil temperature and soil water content) to 30 min interval.

Measurements were performed continuously from April 2004 to September 2005. During monitoring, the LI-820 was calibrated to zero and 400 ppm  $CO_2$  once a month.



*Fig. 1.* Illustration of the chamber positioning and experimental design for measurements of  $R_r$ . (1) Before the experiment, the root system was concentrated in a thin A layer. (2) Soil was removed from the A horizon using a portable vacuum cleaner that produced minimal disturbance of the remaining roots. (3) An acrylic board was inserted between the A and B horizons to exclude CO<sub>2</sub> efflux from the B horizon in chamber  $R_r$ . (4) Weathered soil (obtained from a gardening supply store) that produced a near-zero CO<sub>2</sub> efflux replaced the removed forest soil.

# 3. Results and discussion

Figure 3 shows the seasonal courses of the daily mean soil temperature, soil water content, and CO<sub>2</sub> efflux during the study period.  $R_s$ ,  $R_r$  and  $R_m$  decreased in winter and increased again in the following spring. Root, mycorrhizal and rhizosphere respiration, together with decomposition of recently produced litter (foliage and fine roots), contributed the majority of  $R_s$  in previous studies (Bhupinderpal-Shingh et al., 2003; Giardina et al., 2004). At our site,  $R_{\rm m}$  averaged about 20% of  $R_{\rm s}$  throughout the measurement period. Based on our comparison of  $R_s$  (i.e. respiration from all soil horizons combined) with  $R_r$ , about 80% of  $R_s$ originated in the thin A horizon. The carbon contents in the soil of each chamber used for the  $R_r$  measurements were small at the end of the experimental period (i.e. 21.4, 22.7 and 19.5 g kg<sup>-1</sup> in the three chambers). Thus, we concluded that there were few dead roots and root exudates in this soil, and that the majority of the CO<sub>2</sub> efflux was generated by living roots.

Figure 4 shows an example of the daily variation in soil temperature at a depth of 4 cm, (We chose this depth in this study because it represents the mean depth (between 1 and 7 cm) for the A horizon in which we obtained our measurements and was closest to the depth at which soil water content was measured.) in soil water content at a depth of 5 cm, and in  $CO_2$  efflux:  $R_r$ for three chambers (ch1, ch2 and ch3),  $R_{\rm m}$  (ch4) and  $R_{\rm s}$  (ch5). Soil water content decreased steadily during this period in each chamber, with the lowest values in the  $R_{\rm m}$  plots. The reasons seemed to be the condition of the cover above the chamber and partly the capacity of forest soil to retain water. Soil temperature also varied among days, and tended to be higher in the  $R_r$  and  $R_{\rm m}$  chambers than in the  $R_{\rm s}$  chamber.  $R_{\rm s}$  also varied among days, but decreased gradually with decreasing soil water content. On the other hand,  $R_r$  showed little change with respect to water content. Thus, the ratio of  $R_r$  to  $R_s$  increased gradually, and  $R_r$ and  $R_s$  seem to differ in their responses to environmental factors.

About  $R_s$  in YMS, Tamai et al. (2005a, b) and Nobuhiro et al. (2003) measured the spatial variation (by at 360 point measurements) and temporal fluctuation (using auromatic chamber) and reported daily  $R_s$  fluctuated at almost the same time and their relative variation ranges between 50% and 140% in one year. Their annual total value of  $R_s$  is 5.80 tC ha<sup>-1</sup> yr<sup>-1</sup>.  $R_s$  in this plot calculated to 8.99 tC ha<sup>-1</sup> yr<sup>-1</sup>, relatively higher than the average. Though  $R_s$  has large spatial variation, we used a small sample size as a 'proof of concept' demonstration. We would like to focus on demonstrating that our system solve problems posed by the use of other systems and provided acceptable measurement accuracy.

#### 3.1. The response to soil temperature

Soil temperature was correlated with  $R_s$ ,  $R_r$  and  $R_m$ . Using the data collected at 30 min intervals from the chambers, the relationship between CO<sub>2</sub> efflux from each chamber and soil



*Fig.* 2. Illustration of the devices and system setup used in the  $R_r$  measurements. A chamber with automatic opening and closing was installed above the root system. Chambers had no fan for not raise a cloud of dust because the chamber made with low height for the abailability of measuring CO<sub>2</sub> flux even if it is low temperature and few root. We use the meth at the entrance of air tube prevention of transportion of sand. The rain was drained out from the inserted acrylic board.

Three plots were established to measure  $R_r$ , and one plot each was established to measure  $R_s$  (total soil respiration) and  $R_m$  (CO<sub>2</sub> efflux from mineral soil with no roots) near the  $R_r$  plots. Soil temperature and soil water content were measured in all five chambers.



*Fig. 3.* Seasonal changes in soil temperature (top), soil water content (middle) and  $CO_2$  efflux (bottom) indicated using data of daily averages. We used the mean value of three  $R_r$  chambers for soil temperature and soil moisture.

temperature at a depth of 4 cm was calculated using the following exponential function:

$$R = a \mathrm{e}^{bT_{\mathrm{s}}},\tag{2}$$

where *R* is the CO<sub>2</sub> efflux from each chamber,  $T_s$  is the soil temperature at a depth of 4 cm, and *a* and *b* are regression coefficients. The Q<sub>10</sub> value, which represents the proportional increase in respiration rate for a 10 °C increase in temperature, can be calculated as follows:

$$Q_{10} = e^{10b},$$
 (3)

where *b* is the regression coefficient from equation (2). The  $Q_{10}$  values were 2.64, 2.38 and 2.12 for the three  $R_r$  chambers, 1.93 for the  $R_m$  chamber, and 2.97 for the  $R_s$  chamber. Fig. 5 shows the

resulting temperature–respiration curves. The differences among the three  $R_r$  chambers may have been caused by differences in root biomass. The biomass of roots <2 mm in diameter for the three chambers (ch1, ch2 and ch3) was 84.41, 134.69 and 32.70 (g m<sup>-2</sup>), respectively, versus 165.06, 157.38 and 69.59 (g m<sup>-2</sup>), respectively, for roots from 2 to 5 mm in diameter. The highest  $R_r$  value was observed in the chamber with the largest amount of root biomass. In addition, the average value of root biomass in A horizon is 125.64 g m<sup>-2</sup> (*SD* = 89.0) <2 mm in diameter and 80.79 g m<sup>-2</sup> (*SD* = 102.9) from 2 to 5 mm in diameter.

Simulation models of regional and global carbon cycling generally use a single, fixed  $Q_{10}$  coefficient for the exponential relationship between CO<sub>2</sub> efflux and soil temperature.



*Fig. 4.* An example of a typical pattern of daily variation in soil temperature, soil water content,  $CO_2$  flux and the ratios of  $R_r$  and  $R_m$  to  $R_s$ . These data was collected every 30 min for 9 days after a rainfall occurred on 5 September 2004.



# Soil temperature (4cm in depth: °C)

*Fig.* 5. Curves for the relationship between  $CO_2$  efflux and soil temperature at a depth of 4 cm. Each curve represents an exponential function (eq. 3 in the text) based on data recorded every 30 min in the five chambers.

However, variations in the relationship between CO<sub>2</sub> efflux and soil temperature were large, especially at high soil temperature. For example, at a soil temperature of 25 °C,  $R_s$  ranged from 0.10 to 0.28 mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup> and  $R_r$  ranged from 0.01 to 0.18 mg

 $CO_2 m^{-2} s^{-1}$ .  $R_r$  and  $R_s$  changed diurnally, and different values were observed at the same temperature. The variation suggested that it was necessary to consider other factors such as soil water content and seasonality. Several previous studies suggested that factors such as plant photosynthetic activity and carbon supply may be as important or more important than soil temperature in governing the rates of root respiration (Fitter et al., 1998; Giardina and Ryan, 2002; Bhupinderpal-Shingh et al., 2003).

Figure 6 shows the relationship of the residuals (measured value – fitted value) from each fitting curve for  $R_s$ ,  $R_r$  and  $R_m$ to soil temperature and soil water content. Here, we show data of chamber 1 for  $R_r$ . The residuals for  $R_s$  tended to be negative at higher soil temperature (i.e. the fitted value was greater than the measured value) and at low soil water content. This suggests that low soil water content tended to suppress CO<sub>2</sub> efflux from the soil. In contrast, the influence of low soil water content on  $R_{\rm r}$  appeared smaller than its impact on  $R_{\rm s}$ . The residuals for  $R_{\rm m}$ did not so much appear to change with respect to either soil temperature or soil moisture, and they remained near zero for all values of both parameters; this suggests that the CO<sub>2</sub> efflux from the mineral soil was stable and unaffected by either parameter. The variations in the residuals for  $R_s$  and  $R_r$ , however, showed considerable responsiveness to changes in soil temperature and moisture, suggesting that biological factors in the soil dominated abiotic factors.

Figure 7 shows the relationship between  $CO_2$  efflux and soil temperature using the mean daily data.  $R_r$  is the average value of three chambers.  $R_s$ ,  $R_r$  and  $R_m$  increased exponentially with increasing soil temperature. Each component of the  $CO_2$  efflux was approximated as follows:

$$R_{\rm s} = 0.015 {\rm e}^{0.1099T_{\rm s}} \tag{4}$$

$$R_{\rm r} = 0.011 {\rm e}^{0.0861 T_{\rm s}} \tag{5}$$

and

$$R_{\rm m} = 0.0057 {\rm e}^{0.0675T_{\rm s}},\tag{6}$$

where  $T_s$  is the daily average soil temperature at a depth of 4 cm. The Q<sub>10</sub> values for  $R_s$ ,  $R_r$  and  $R_m$  were 3.00, 2.37 and 1.96. For all three respiration rates, the variation in the measured CO<sub>2</sub> efflux increased with increasing temperature; the increase was greatest for  $R_s$  and smallest for  $R_m$ .

Boone et al. (1998) reported that the  $Q_{10}$  value for calculated 'root' respiration as the difference between the control and plots without roots was 4.6. This is higher than the values in other reports (Burton et al., 1996, 1998; Ryan et al., 1996; Zogg et al., 1996).

Moreover, this value was higher than the value in the present study for the control ( $R_s$ ). Boone et al. (1998) concluded that their  $Q_{10}$  values reflected not only root respiration but also respiration by mycorrhizae and the decomposition of labile root-derived organic material (e.g. detritus and exudates) by microbiota in the rhizosphere. They emphasized that roots exert a strong influence

R.

0.10

R,

0.30 0.35

R,

0.2

0.10





*Fig.* 7. The relationship between daily averages of  $R_s$ ,  $R_r$  and  $R_m$  and daily mean soil temperature at a depth of 4 cm.  $R_r$  represents the average value from three chambers;  $R_s$  and  $R_m$  represent the values from a single chamber.

Fig. 6. The relationship between the residuals (measured value - fitted value) for the regression of  $R_s$ ,  $R_r$  and  $R_m$  versus soil temperature and soil water content. Data on CO2 efflux were recorded every 30 min, and the corresponding soil temperature and soil water content measured in that chamber were used. Data represent the values from three chambers for  $R_r$  and one chamber each for  $R_s$  and  $R_m$ . The differences between  $R_s$ and  $R_r$  were most apparent at high soil temperature and low soil water content.

on the overall temperature sensitivity of soil respiration. However, the  $Q_{10}$  value of  $R_s$  in our study (3.0) was higher than that of  $R_r$  (2.37). The difference between our study and that of Boone et al. (1998) appears to be whether or not the roots contacted the soil. In both studies,  $R_s$  includes respiration by mycorrhizae and the decomposition of organic matter by rhizosphere microorganisms. Respiration from the rhizosphere was included in the  $R_r$ values reported by Boone et al. (1998) but not in the present study. This suggests that rhizosphere respiration may respond strongly to soil temperature.

## 3.2. The response to soil water content

 $R_{\rm s}$  decreased rapidly with decreasing soil water content, as shown in Fig. 4. The influence of soil water content on  $R_s$  resembles that observed in measurements of decomposition respiration. For example, Jomura et al. (2005) reported that the maximum value of decomposition respiration occurred at relatively high water content. The similarity in response between  $R_s$  and decomposition respiration may result from the fact that  $R_s$  is composed primarily of  $R_r$  and decomposition respiration. Also,  $R_r$  did not decrease as much as  $R_s$  in response to the decrease of soil water content during short period (Fig. 4).



#### Soil water content (cm<sup>3</sup> cm<sup>-3</sup>)

*Fig.* 8. The relationship between volumetric soil water content ( $\theta$ ) and (a)  $R_r$  and (b)  $R_s$  in four soil temperature classes using daily averages.  $R_r$  represents the average value from three chambers. The curve for  $R_r$  is described by  $R_r = A(\theta - b) (c - \theta)^d$  based on the analysis of Mielnick and Dugas (2000). In this equation, A is a constant related to soil temperature, and b, c and d are invariables. The curve for  $R_s$  is described by  $R_s = E(\theta)/(f + \theta)$  where E is a constant value related to soil temperature and f is invariables. This approach is suitable for the study site because the site was not constrained by excessive soil water content (Tamai et al., 2005a,b).

Figure 8 shows the relationship between soil water content and  $R_s$  or  $R_r$  as a function of mean daily soil temperature. Separate regression curves were generated for four different soil temperature classes.  $R_s$  did not increase at high soil water content at a given temperature.  $R_s$  increased at high temperature and high soil water content, as was previously shown by Tamai et al. (2005a, b) for the study site. The trend in  $R_s$  thus seems to be a characteristic of this site and may apply to other sites covered



*Fig. 9.* Changes in the ratio of daily averages of  $R_r$  to  $R_s$  as a function of soil water content. Colour means soil temperature. White circles and the line drawn between them represent the average value for each

by thin sandy soils. Moreover, the decrease in  $R_s$  was observed in low water content, as shown in Fig. 6.

0.05 cm<sup>3</sup> cm<sup>-3</sup> range of soil water content.

On the other hand, the peak for  $R_r$  occurred at a lower soil water content (about 0.05–0.10 cm<sup>3</sup> cm<sup>-3</sup>) though  $R_r$  decreased under extremely high water content. This tendency could be shown in total data of long-term measurement (Fig. 8) though it was not so clear in short-term measurement (Fig. 4). The differences between  $R_r$  and  $R_s$  were preserved at each soil temperature.

It is possible that  $R_r$  remained relatively constant due to a low soil water content. Irvine et al. (2005) found that  $R_s$  increased on the dry side of trees watered on only one side, where hydraulic redistribution provided water to roots on the dry side. They estimated that root and rhizosphere respiration doubled in response to the watering because photosynthesis increased for the whole tree. This suggests a strong influence of recently fixed carbon on  $R_r$  during the growing season.

In our results, the contribution of  $R_r$  to  $R_s$  decreased with increasing soil water content (Fig. 9). As you can see in Fig. 4,  $R_r$  can reach higher value than  $R_s$  in highly dry condition. Thus, the  $R_r/R_s$  ratios are in excess of 1 occasionally. The ratio decreased from an average of 0.65 at soil water content of 0.075 cm cm<sup>-3</sup> to 0.27 at a soil water content of 0.225 cm cm<sup>-3</sup>. The rate of decrease with increasing water content was greatest at low temperature, and it slowed as temperature increased.

# 3.3. Seasonal changes in of $R_r$ and $R_s$

The relationship between respiration and temperature appears to change seasonally as a result of changing phenological and

![](_page_8_Figure_1.jpeg)

*Fig. 10.* Seasonal changes in the residuals from fitting the curve for  $CO_2$  efflux as a function of soil temperature. The value of residuals was two weeks averages.

![](_page_8_Figure_3.jpeg)

biological factors (Lavigne et al., 1997). Figure 10 shows the seasonal change in the residuals from the fitted curve based on the half-month average data. Positive values mean that the measured CO<sub>2</sub> efflux was higher than the value estimated using only soil temperature; this difference reflects the influence of factors other than temperature (i.e. seasonality). The residuals from the curves for  $R_s$  and  $R_r$  changed seasonally.  $R_s$  in the spring and fall were higher than the estimated values. These seasons were the periods of peak litterfall at our study site. The YMS study site is a mixedwood forest with deciduous and evergreen broadleaved trees, which have different defoliation seasons (during the spring and fall, respectively). This explains the two peaks in litterfall at the YMS study site (Fig. 11). Moreover,  $R_s$  was high during the rainy season (June and July), but the soils were dry enough to suppress transpiration during the summer (Kominami et al., 2003), and measured  $R_s$  was lower than the estimated value.

*Fig. 11.* Seasonal changes in litter-fall at the YMS study site.

The residuals for  $R_r$  were near zero in winter but high in spring and after the rainy season. This suggests that during the growing period,  $R_r$  was higher at a given soil temperature than during other periods. Bhupinderpal-Shingh et al. (2003) suspected that the high  $Q_{10}$  values previously reported for  $R_r$  were due to the fact that  $R_r$  startes later but stop earlier during a growing season than does heterotrophic respiration in their data. And they suggested  $R_r$  shows a large seasonal variation during a period of a small variation in soil temperature. For  $R_r$  one should consider not only environmental factor but also above-ground plant photosynthetic activity and C supply and so on. In our result, the high responsivity of  $R_r$  was also shown in the growing season.

Figure 12 shows the temporal changes in monthly average values of  $R_s$ ,  $R_r$  and  $R_m$ . The seasonal peak in  $R_s$  was reached earlier than the seasonal peak in soil temperature.

![](_page_8_Figure_8.jpeg)

Fig. 12. Temporal changes in the monthly mean values of  $R_s$ ,  $R_r$  and  $R_m$ .

The ratio of  $R_r$  to  $R_s$  was relatively greater in spring than in fall and changed from about 25% in fall to about 60% in spring. Similarly, Tang et al. (2005) found that the ratio of  $R_r$  to  $R_s$  averaged 56% during the growing season and 16% during the dormant season in a ponderosa pine plantation. The decomposition rate might be accelerated by the higher temperatures and high soil water content during the rainy season (June and July), and most litter may have been decomposed by summer at the YMS study site. This lack of litter may have caused a decrease in  $R_s$ during the summer even at high soil temperatures. We suspect many factors affect variation of  $R_s$ , not only change of environmental factors, but also change of biological factors and these affect each other in short and long-term because  $R_s$  consist of  $R_r$  and heterotrophic respiration basically. These results suggest the importance of long-term measurements of each component

separately for understanding forest carbon cycle.

## 4. Conclusions

The eddy covariance method has commonly been used to study net ecosystem exchange of CO2 in forest ecosystems (Baldocchi et al., 2001). However, uncertainties in the long-term carbon uptake by such ecosystems arise from systematic underestimation of flux measurements at night by this method (Goulden et al., 1996). Kominami et al. (2003) concluded that most dark respiration could not be measured during calm night conditions in a forest growing on complex terrain using the eddy covariance method based on a comparison of respiration measured using this method with the results from automated chambers. Because measurements of each component of respiration are required to provide a complete picture of carbon exchange for a complex forest, the chamber method may offer a significant advantage over the eddy covariance method because it provides accurate, continuous, direct measurements of respiration that are largely unaffected by atmospheric conditions such as wind. In various measurements of respiration by aboveground parts of trees, the responses to temperature and other seasonal changes were also caused by phenological effects (Lavigne et al., 1997; Miyama et al., 2005). However, considerable uncertainties remain surrounding measurement methods for belowground respiration. Bond-Lamberty et al. (2004) analysed published data for 54 forest sites and showed that autotrophic respiration and heterotrophic respiration were strongly correlated with annual  $R_s$ across a wide range of forest ecosystems. They discussed why the two types of respiration might be related on large scales, concluding that the reason was that both ultimately depend on a forest's carbon balance and photosynthate supply. Nonetheless, there is a strong need for technological advances that will allow researchers to separate the autotrophic and heterotrophic components of soil respiration under a wide range of site conditions (Ryan and Law, 2005).

The automatic chamber approach described in this paper represents a promising method for measuring  $R_r$  over long time

periods. Our results demonstrated high  $R_r$  in the spring in the relation to soil temperature. The response of  $R_r$  to environmental factors differed from that of  $R_s$ , and both showed different seasonal patterns (Fig. 12). Thus, the ratio of  $R_r$  to  $R_s$  fluctuates throughout year though same measurement plots. This means that  $R_r$  cannot be predicted from  $R_s$  and should be evaluated separately from  $R_s$ . The results of the present study show that, for understanding the carbon budget of forest ecosystems, it is indispensable to evaluate  $R_r$  accurately and to clarify its properties.

# 5. Acknowledgments

This study was supported in part by a Grand-in-Aid for Research from JSPS (no.15380107 and no. 18380095). We thank the members of the laboratory of forest resources, Kobe University, especially Shogo Hamada for providing field support. We deeply appreciate many valuable suggestions by editor, guest editor and reviwers, which improved the manuscript considerably.

### References

- Andrews, J. A., Harrison, K. G., Matamala, R. and Schlesinger, W. H. 1999. Separation of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE). *Soil Sci. Soc. Am. J.* 63, 1429–1435.
- Asakawa, D., Mochizuki, H., Yanagi, Y., Suzuki, T., Nagao, S. and co-authors. 2006. Changes in elemental composition, molecular weight and <sup>1</sup>HNMR spectra of the water-extractable hydrophobic acid fraction in Cambisols with season and soil depth. *Soil Sci. Plant Nutr.* 52, 362–371.
- Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S. and co-authors. 2001. A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. *Bull. Am. Meteorol. Soc. For.* 82, 2415–2434.
- Bhupinderpal-Shingh, Nordgren, A., Lofvenius, M. O., Hogberg, M. N., Mellander, P. E. and co-authors. 2003. Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. *Plant Cell Environ.* 26, 1287–1296.
- Bond-Lamberty, B., Wang, C. and Gower, S. T. 2004. A global relationship between the heterotrophic and autotrophic components of soil respiration? *Global Change Biol.* 10, 1756–1766.
- Boone, R. D., Nadelhoffer, K. J., Canary, J. D. and Kaye, J. P. 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. *Nature* 396, 570–572.
- Burton, A. J., Pregitzer, K. S., Zogg, G. P. and Zak, D. R. 1996. Latitudinal variation in sugar maple fine root respiration. *Can. J. For. Res.* 26, 1761–1768.
- Burton, A. J., Pregitzer, K. S., Zogg, G. P. and Zak, D. R. 1998. Drought reduces root respiration in sugar maple forests. *Ecol. Appl.* 8, 771–773.
- Crill, P. M. 1991. Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. *Global Biogeochem. Cycles* 5, 319–334.
- Dannoura, M., Kominami, Y., Hirano, Y., Kanazawa, Y. and Goto, Y. 2005. Measurement of root respiration using potted Japanese

cedar. Mem. Grad. School Sci. & Techonol., Kobe Univ. 23-A, 67-73.

- Dannoura, M., Kominami, Y., Goto, Y. and Kanazawa, Y. 2006a. Estimation of root biomass and root surface area of a broad-leaved secondary forest in the southern part of Kyoto prefecture. J. Jpn. For. Sci. 88(2), 120–125. (In Japanese with English summary)
- Dannoura, M., Kominami, Y., Tamai, K., Goto, Y., Jomura, M. and coauthors. 2006b. Short-term evaluation of the contribution of root respiration to soil respiration in a broad-leaved secondary forest in the southern part of Kyoto Prefecture. J. Agric. Meteorol. 62(1), 15–20. (In Japanese with English summary)
- Fitter, A. H., Graves, J. D., Self, G. K., Brown, T. K., Bogie, D. S. and co-authors. 1998. Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation. *Oecologia* 114, 20–30.
- Giardina, C. P., Binkley, D., Ryan, M. G., Fownes, J. H. and Senock, R. S. 2004. Belowground carbon cycling in a humid tropical forest decreases with fertilization. *Oecologia* 139, 545–550.
- Giardina, C. P. and Ryan, M. G. 2002. Total belowground carbon allocation in a fast growing *Eucalyptus* plantation estimated using a carbon balance approach. *Ecosystems* 5, 487–499.
- Goto, Y., Kominami, Y., Miyama, T., Tamai, K. and Kanazawa, Y. 2003. Aboveground biomass and net primary production of a broad-leaved secondary forest in the southern part of Kyoto prefecture, central Japan. *Bull. For. For Prod. Res. Inst.* 387, 115–147. (In Japanese with English summary)
- Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C. and Wofsy, S. C. 1996. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. *Science* 271, 1576– 1578.
- Hanson, P. J., Edwards, N. T., Garten, C. T. and Andrews, J. A. 2000. Separating root and soil microbial contribution to soil respiration: a review of methods and observations. *Biogeochemistry* 48, 115–146.
- Irvine, J., Law, B. E. and Kurpius, M. R. 2005. Coupling of canopy gas exchange with root and rhizosphere respiration in a semi-arid forest. *Biogeochemistry* 73, 271–282.
- Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E. and co-authors. 1996. A global analysis of root distribution for terrestrial biomes. *Oecologia* **108**, 389–411.
- Jackson, R. B., Mooney, H. A. and Schulze, E. D. 1997. A global budget for fine root biomass, surface area, and nutrient contents. *Ecology* 94, 7362–7366.
- Jomura, M., Kominami, Y. and Kanazawa, Y. 2005. Long-term measurements of the CO<sub>2</sub> flux from coarse woody debris using an automated chamber system. *J. Jpn. For. Sci.* 87, 138–144. (In Japanese with English summary)
- Kominami, Y., Miyama, T., Tamai, K., Nobuhiro, T. and Goto, Y. 2003. Characteristics of CO<sub>2</sub> flux over a forest on complex topography. *Tellus* **55B**, 313–321.
- Lavigne, M. B., Ryan, M. G., Anderson, D. E., Baldocchi, D. D., Crill, P. and co-authors. 1997. Comparing nocturnal eddy covariance measure-

ments to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites. *J. Geophys. Res. Atmos.* **102**, 28 977–28 985.

- Lee, M., Nakane, K., Nakatsubo, T. and Koizumi, H. 2003. Seasonal changes in the contribution of root respiration to total soil respiration in a cool temperate deciduous forest. *Plant Soil* 255, 311–318.
- Mielnick, P. C. and Dugas, W. A. 2000. Soil CO<sub>2</sub> flux in a tall grass prairie. *Soil Biol. Biochem.* 32, 221–228.
- Miyama, T., Kominami, Y., Tamai, K., Goto, Y. 2005. Seasonal changes in nocturnal foliar respiration in a mixed deciduous and evergreen broadleaved forest. J. Agric. Meteorol. 60, 753–756.
- Nakane, K. and Lee, N. J. 1995. Simulation of soil carbon cycling and carbon balance following clear-cutting in a mid-temperate forest and contribution to the sink of atmospheric CO<sub>2</sub>. Vegetatio 121, 147–156.
- Nakane, K., Kohno, T. and Horikoshi, T. 1996. Root respiration rate before and just after clear felling in a mature, deciduous, broadleaved forest. *Ecol. Res.* 11, 111–119.
- Nobuhiro, T., Tamai, K., Kominami, Y., Miyama, T., Goto, Y. and co-authors.2003. Development of the IRGA enclosed-chamber system for soil CO<sub>2</sub> efflux measurement and its application to a spatial variation measurement. *J. For. Res.* **8**, 297–301.
- Ohashi, M., Gyokusen, K. and Saito, A. 2000. Contribution of root respiration to total soil respiration in Japanese cedar (*Cryptomeria japonica* D. Don) artificial forest. *Ecol. Res.* 15, 323–333.
- Rochette, P., Angers, D. A. and Flanagan, L. B. 1999. In situ measurements of maize residue decomposition using natural abundance of <sup>13</sup>CO<sub>2</sub>. Soil Sci. Soc. Am. J. **113**, 1385–1393.
- Ryan, M. G. and Law, B. E. 2005. Interpreting, measuring, and modeling soil respiration. *Biogeochemistry* 73, 3–27.
- Ryan, M. G., Hubbard, R. M., Pongracic, S., Raison, R. J. and McMurtrie, R. E. 1996. Foliage, fine-root, woody-tissue and stand respiration in *Pinus radiata* in relation to nitrogen status. *Tree Physiol.* 16, 333–343.
- Tamai, K., Kominami, Y., Miyama, T. and Goto, Y. 2005a. Temporal Fluctuations in the CO<sub>2</sub> efflux on a forest floor—the case of an extremely immature forest soil. J. Agric. Meteorol. 60(5), 773–776.
- Tamai, K., Kominami, Y., Miyama, T. and Goto, Y. 2005b. The estimation of time series data for soil respiration based on soil temperature and soil moisture content ratio and its special variation in a small mountainous catchment: in the case of Weatherd granite region in southern Kyoto prefecture. J. Jpn. For. Soc. 87, 331–339.
- Tang, J., Misson, L., Gershenson, A., Cheng, W. and Goldstein, A. H. 2005. Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the sierra Nevada Mountains. *Agric. For. Meteorol.* **132**, 212–227. (In Japanese with English summary).
- Trumbore, S. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. *Ecol. Appl.* 10, 399–411.
- Zogg, G. P., Zak, D. R., Burton, A. J. and Pregitzer, K. S. 1996. Fine root respiration in northern hardwood forest in relation to temperature and nitrogen availability. *Tree Physiol.* 16, 719–725.