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ABSTRACT
In this study we perform an atmospheric inversion based on a shrinkage estimator. This method is used to estimate
surface fluxes of CO2, first partitioned according to constituent geographic regions, and then according to constituent
processes that are responsible for the total flux. Our approach differs from previous approaches in two important ways.
The first is that the technique of linear Bayesian inversion is recast as a regression problem. Seen as such, standard
regression tools are employed to analyse and reduce errors in the resultant estimates. A shrinkage estimator, which
combines standard ridge regression with the linear ‘Bayesian inversion’ model, is introduced. This method introduces
additional bias into the model with the aim of reducing variance such that errors are decreased overall. Compared with
standard linear Bayesian inversion, the ridge technique seems to reduce both flux estimation errors and prediction errors.
The second divergence from previous studies is that instead of dividing the world into geographically distinct regions
and estimating the CO2 flux in each region, the flux space is divided conceptually into processes that contribute to
the total global flux. Formulating the problem in this manner adds to the interpretability of the resultant estimates and
attempts to shed light on the problem of attributing sources and sinks to their underlying mechanisms.

1. Introduction

The technique of inverse modelling is widely used for solving
problems in fields ranging from electrocardiography to seismol-
ogy (e.g. Rudy and Messinger-Rapport, 1988; Yan et al., 1989).
Inverse problems arise when one has a known physical model
that relates input variables to observations, and one wishes to
solve for the inputs. An important special case of inverse mod-
elling occurs when the physical model represents a linear re-
lationship between the inputs and the observations. While the
linearity assumption greatly simplifies the formulation, linear
inversion problems often suffer from poor conditioning. Errors
are likely to be introduced from many sources, including flaws
in the physical theory and measurement errors in the observed
data. Another potentially large source of error is colinearity.
Colinearity occurs when two or more of the inputs, alone or
in combination, when propagated through the physical model,
have similar effects on the observations. This condition can be
pathological because widely varying input sets cannot be readily
distinguished from each other through the observations, causing
the inverse solutions to suffer from extremely high variance.
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In this study we attempt to solve for surface fluxes of carbon
dioxide, using atmospheric carbon dioxide concentration mea-
surements and an atmospheric transport model. In so doing, we
develop a novel formulation to the atmospheric inversion prob-
lem and re-examine linear inverse problems as special cases of
linear regression problems, allowing us to borrow techniques
from the regression literature to improve our inverse solutions.

2. The problem

Carbon dioxide is continually being both emitted and sequestered
at the Earth’s surface. Natural biological and chemical mech-
anisms, as well as anthropogenic processes, contribute to the
Earth’s total carbon budget. Each of these processes acts as ei-
ther a source or a sink of carbon dioxide, and the sum of all
the sources and sinks (sources will be labelled as positive fluxes
and sinks as negative fluxes by convention) ends up in the atmo-
sphere.

Before a flux-contributing element forges its signature on the
atmosphere, it is subject to atmospheric circulation, which radi-
cally alters its characteristic pattern. What we wish to solve for
is the magnitude of the annual surface fluxes associated with
each process. What we have at our disposal is a series of CO2

concentration measurements taken throughout a global network
of monitoring stations and a model that calculates the results of
atmospheric transport for a given flux distribution.
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Past applications of inversion models to global carbon flux
quantification have predominantly employed the linear Bayesian
inversion methods described in Tarantola (1987) (other ap-
proaches include ‘mass-balance’ inversions and state-space ap-
proaches, both described in Enting (2002)). In addition to shar-
ing common methods, most are similar in that they solved for a
spatial distribution of carbon sources and sinks, with the spatial
regions defined as continuous blocks (Tans et al., 1990; Rayner
et al., 1999; Gurney et al., 2002). A smaller number of studies
have solved for a ‘process’ parameter, such as light use efficiency
or 13C discrimination (e.g. Knorr and Heimann, 1995; Kaminski
et al., 2002; Randerson et al., 2002), and a few include some
spatially overlapping components in addition to discrete blocks
(e.g. Enting et al. 1995). Here we treat the ‘Bayesian inversion’
model as a form of shrinkage regression and extend it to yield
more accurate flux measurements.

3. Bayesian inversion

In the Bayesian inversion technique (Tarantola, 1987), each flux-
contributing unit has a prescribed spatio-temporal distribution
of its resultant flux. Since it is assumed that any possible atmo-
spheric concentration distribution is the result of some combi-
nation of fluxes due to these units, the set of flux units is called a
basis. Normalizing each basis component to a total annual flux of
1 PgC yr−1, we can let the vector m represent the scaling factor
associated with each normalized flux map necessary to recon-
struct observed atmospheric concentrations, represented by the
vector dobs.

This normalized basis is subject to atmospheric transport,
which is assumed to be a linear function. That is, we assume
that the concentration at any point can be expressed as a lin-
ear combination of concentrations due to the normalized basis
components. Thus, the result of atmospheric transport on the nor-
malized basis can be represented by a matrix G, with Gm being
the concentrations predicted by the coefficient vector m. Instead
of solving for m by minimizing the residual sum of squares

RSS = (dobs − Gm)T (dobs − Gm), (1)

the Bayesian strategy is to improve estimates by incorporating
prior knowledge of the flux magnitudes. From a non-Bayesian
point of view, the RSS solution to the inversion problem is un-
biased but suffers from high variance, leading to high MSE
(MSE = bias2 + variance). A reasonable strategy might be to
decrease MSE by reducing the variance of the estimate, even at
the cost of introducing some bias.

In the Bayesian paradigm, we prescribe a prior distribution
P(m) over the magnitudes m of the normalized basis, which re-
flects our knowledge and beliefs about m. If this distribution is
Gaussian, and errors Ct due to the transport model and errors
Cd in the atmospheric observations are both Gaussian, Tarantola
(1987) shows that we can consider them together as a single co-

variance matrix CT = Ct + Cd, and that the posterior distribution
P(m|dobs) is also Gaussian.

The final ‘estimates’ are the components of the mean vector of
the posterior distribution. Since the posterior is normal, the mean
is equal to the mode. Thus, we seek to find the maximum over
this density function. This is equivalent to finding the minimum
of the quadratic function

S(m) = (Gm − dobs)T C−1
T (Gm − dobs)

+ (m − mprior)T C−1
M (m − mprior). (2)

A potential source of large errors in calculations like these
arises from colinearity. Colinearity occurs when two or more
geographic regions or processes contribute similarly to the total
concentrations at the observations stations. The consequence of
collinear regression variables is that some coefficients tend to
grow highly positive, while others tend to cancel them out by
being highly negative. This condition leads to extremely high
variance, and thus high expected error, in the resultant regression
model.

4. Another look at colinearity and the
bias-variance trade-off

In order to address the errors induced by colinearity among the
bases, it is useful to recast the inversion problem in terms of
regression theory. The first step is to view ‘inversion theory’ in
the linear case as described by Tarantola (1987) as a Bayesian
version of ordinary least squares regression, with aspherical pri-
ors on the regression coefficients. In fact, an identical regression
model has a long history and has been extensively analysed in
the statistical literature (see Lindley and Smith, 1972).

There are many regression models designed to address the is-
sue of colinearity among input variables. It is well known that m̂,
the least squares estimate of m, is the minimum variance unbi-
ased linear estimator. Often, however, the least squares estimator
has a very high variance, and prediction errors can be reduced by
inducing a little bit of bias in order to dramatically decrease the
variance. Most variance-reduction methods that might be of in-
terest use either subset selection methods or shrinkage methods.
In subset selection, one chooses only a subset of the predictor
variables to use as regressors. These techniques are inappropri-
ate in the context of this inversion study because they would
require completely discarding one or more of the geographic
units or processes of interest. Shrinkage involves shrinking re-
gression parameters along certain dimensions in the input space
(Friedman et al., 2001).

Shrinkage methods include ridge regression (Hoerl and
Kennard, 1970), truncated principal components regression (e.g.
Cooley and Lohnes, 1971; Harman, 1976), partial least squares
(Wold, 1975), and the LASSO (Tibshirani, 1996). Frank and
Friedman (1993) conclude that ridge regression is slightly prefer-
able to variable selection, principal components, and partial
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least squares for reducing prediction error in most contexts. The
LASSO also performs well, but requires the additional com-
putational burden of quadratic programming and often shrinks
regression coefficients all the way to zero. Truncated principal
components regression has appeared in the inversion literature
(e.g. Fan et al., 1999), but the results are notoriously difficult to
interpret. For these reasons, we now restrict our focus to ridge
regression.

With ridge regression, one seeks to shrink the regression co-
efficients by adding a penalty term to the OLS cost function:

m̂ridge = argmin
m

N∑
i=1

⎡⎣ (
dobsi − m0 −

p∑
j=1

gi j m j

)2

+ λridge
p∑

j=1

m2
j

⎤⎦. (3)

The parameter λridge is called the ridge parameter. The ridge
parameter scales the size penalty on the regression coefficients
and therefore controls the amount of shrinkage. How to choose
a good value for λridge will be addressed below.

Centring the inputs by replacing each gij with gi j − ḡ j and
estimating m0 by d̄obs = ∑N

1 dobsi /N , the ridge estimator can be
rewritten in matrix form as

m̂ridge = argmin
m

Sridge(m), (4)

where Sridge(m) = (dobs − Gm)T (dobs − Gm) + λridgemT m. This
expression has the closed-form solution

m̂ridge = (GT G + λridgeI)−1GT dobs. (5)

Note that by adding the λridgeI term, a constant multiple of the
p × p identity matrix, to GT G, a constant term is added to the
main diagonal of GT G, guaranteeing that the matrix is non-
singular. This becomes important if GT G is not of full rank, as
would be the case if the number of relevant processes exceeded
the number of CO2 monitoring stations. This fact is equally im-
portant when GT G is close to singular in terms of numerical rank
(see Golub and Van Loan, 1996).

The amount of coefficient shrinkage in the ridge regression
model is not invariant to scaling of the inputs. For this reason,
it is common practice to standardize the inputs to be mean zero
and variance one before applying the procedure. In this appli-
cation, however, all the covariates are in the same units and are
normalized to unit flux, so such standardization is not necessary.

Ridge regression is equivalent to linear regression with zero-
mean normal priors of common variance on the regression co-
efficients (Lindley and Smith, 1972). The ridge parameter can
be seen as a parameter that specifies the covariance matrix
(a constant multiple of the identity matrix) of the prior distri-
bution. Thus, ridge regression is a special case of the Bayesian
inversion model, with the prior distribution of the fluxes being
N(0,(σ 2/λridge)I). This not a surprising result, if one notices the

similarities between the loss functions of the ridge regression
and the Bayesian inversion models.

Ridge regression has appeared, explicitly and implicitly, in the
inversion literature in the past. Mansbridge and Enting (1986)
explore ridge regression as an alternative to OLS regression in
the context of an ocean tracer inversion. Björkström (2001) ad-
vocates the use of ridge regression for a variety of inversion
problems. Ridge regression has also previously been used for in-
versions under the name ‘regularization’ (e.g. Fan et al., 1999).
Krakauer et al. (2004) describe a generalized ridge regression
model for inversions for carbon fluxes. It is interesting to note
that several recent inversion studies aiming to solve for CO2

fluxes have used ridge regression. For example, Law et al. (2002)
describe an inversion where all prior source magnitudes are as-
signed a value of zero, with uncertainties of 10 Gt C. This, of
course, specifies a ridge regression model. The authors of this
paper reason that the large uncertainty of 10 Gt C ‘avoids bias-
ing the answer too much’. However, we shall see that because
of the one-to-one correspondence between the prior uncertainty
in the Bayesian inversion model and the shrinkage parameter in
the ridge regression model, it is possible to find prior uncertainty
values that bias the resultant estimates optimally.

The ridge estimator does a good job of reducing the variance
of regression models, but it does not take into account our prior
knowledge about the sign and magnitude of the surface fluxes.
Ideally, one would like to take advantage of the variance reduc-
tion properties of the ridge estimator and also leverage outside
information to obtain the best possible estimate. One possible so-
lution is to combine ridge regression with the Bayesian paradigm
by penalizing the magnitude of the regression coefficients, as
well as penalizing the weighted deviation from prior estimates.
With this in mind, we return to the Bayesian inversion model
developed above.

It is possible to view the Bayesian formulation in a non-
Bayesian way, as a kind of shrinkage estimator. In fact, com-
parison of the function S(m) with Sridge(m) shows that they are
quite similar. If we consider the matrix CT not as a covariance
matrix, but as an element-wise collection of shrinkage parame-
ters, we see that we can consider this model to be itself a form
of ridge regression, only instead of shrinking towards zero, we
are shrinking towards our prior flux estimates. It is with this in
mind that we introduce a combined shrinkage estimator.

The resulting model, which we will call a combined ridge,
seeks to minimize the loss function

SC−ridge(m, λridge) = (Gm − dobs)T C−1
T (Gm − dobs)

+ (m − mprior)T C−1
M (m − mprior)

+ λridgemTm. (6)

The closed form solution is easily obtained as

m̂C−ridge(λridge) = (
GTC−1

T G + C−1
M + λridgeI

)−1

× (
GTC−1

T dobs + C−1
M mprior

)
. (7)
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Although this model has been presented as a non-Bayesian
shrinkage model, it has an equally applicable Bayesian inter-
pretation. The combined shrinkage model is again a Bayesian
linear regression, with a prior on the regression coeffi-
cient vector being a normal distribution with mean (C−1

M +
λridge I)−1 C−1

M mprior and covariance matrix (C−1
M + λridgeI)−1.

Note that this is the similar to the prior in the ordinary Bayesian
inversion case, with the prior mean adjusted toward zero ac-
cording to the relative weights of CM and λridgeI and the prior
covariance matrix shrunken along the main diagonal. The result
is that the ridge penalty effectively offsets the effects of priors
that are unwarrantedly large in magnitude, yielding improved
posterior estimates.

Expressing the model in this way also makes it clear that the
combined ridge model is an empirical Bayes method, rather than
a fully Bayesian formulation, as the prior distribution is a func-
tion of the data (through the determination of λridge). Krakauer
et al. (2004) propose a similar empirical Bayes model. However,
instead of modifying the usual prior distribution by adjusting
the mean and the main diagonal of the prior covariance toward
zero by an amount controlled by a tunable parameter as we do
here, they use the tunable parameter to scale the prior covariance
matrix. Viewed as a shrinkage estimator, we differentially shrink
flux estimates toward some combination of zero and prior esti-
mates according to an approximately optimal estimation error
criterion. They shrink only toward prior estimates and choose a
shrinkage parameter by minimizing a generalized cross valida-
tion function, a slightly different approximate optimality crite-
rion than the cross validation function described below. These
and other similar strategies have long been established in the
regression literature (e.g. Golub et al., 1979) as powerful tools
for improving both parameter estimates and predictions.

4.1. Choosing the ridge parameter

Much attention has been focused on how best to estimate the
optimal λridge (e.g. Golub et al., 1979; Gibbons, 1981; Nordberg,
1982; Lee, 1987). In most contexts, optimality is defined as
the value of λridge that minimizes prediction error. That is, it
is the value of λridge that minimizes the errors if one were to use
the regression model to predict the concentration at a new CO2

monitoring station.
The most common approach to minimizing prediction er-

ror is K-fold cross-validation. The idea behind cross-validation
is to divide the input data into K equally sized partitions, re-
peatedly estimating m̂C−ridge(λridge) K times, each time omitting
one of the partitions to use for validation. More concretely, let
m̂C−ridge(k)(λridge) be the ridge estimator with partition k removed
from dobs and G. The argument is that if λridge is chosen well, then
the kth partition of Gm̂C−ridge(k)(λridge) should be a good predictor
of the omitted portion of dobs. Averaging the squared error of
Gm̂C−ridge(k)(λridge) over all k, one arrives at the cross-validation
estimate of prediction error.

1. Randomly divide the rows of G and the corresponding
entries of dobs into K groups of roughly equal size.

2. Set aside the kth group of data, and use the remaining
K − 1 groups of data to calculate m̂C−ridge(k)(λridge).

3. Repeat step 2 for k = 1, 2, . . . , K and calculate

CV(λridge) = 1

K

K∑
k=1

×
{ ∑

i∈kth group

[[
Gm̂C−ridge(k)(λridge)

]
i − dobsi

]2

}

4. Repeat steps 1–3 for many values of λridge, to find

λ̂
ridge
CV = argmin

λridge
(CV(λridge)) (8)

(Golub et al., 1979).

An important consideration, however, is whether the above
view of the ‘optimality’ of λ̂ridge

CV is appropriate in the present
context. As the goal here is to estimate fluxes, we are in the un-
usual situation of having the regression coefficients themselves,
rather than predictions they induce, as the primary quantities of
interest. In light of this unusual perspective, it might be advan-
tageous to employ a strategy other than minimizing prediction
error in choosing a ridge parameter. One possible approach is
to simply make up hypothetical regression coefficients, simulate
observations from these coefficients and the transport matrix,
and perform the shrinkage procedure, choosing the value of λridge

that produces posterior estimates that are as close as possible to
the original coefficients. Conducting this simulation many times
yields a ridge parameter that, under a particular set of assump-
tions, is optimized for producing the most accurate posterior flux
estimates.

More concretely, we choose λridge using the following algo-
rithm:

(a) Let mcoef be a random deviate from the distribution
N(mprior, Cm), and let Gcoef be the original transport matrix G.

(b) Calculate dcoefideal = Gcoefmcoef, the vector of observa-
tions if mcoef were the true fluxes, Gcoef described atmospheric
transport exactly, and there were no observational or processing
errors in the CO2 data.

(c) Let dcoef be a random deviate from N (dcoefideal , CD) to
simulate observational noise in the typical range of the combined
uncertainty arising from dobs and G.

(d) Using the simulated values Gcoef and dcoef, calculate

m̂coef(λridge) = argmin[(Gcoefm − dcoef)T C−1
T (Gcoefm − dcoef)

+ (m − mprior)T C−1
M (m − mprior) + λridgemTm]

m

(e) Repeat step 4 for many values of λridge to find

λ̂
ridge
coef = argmin

λridge

∥∥mcoef − m̂coef(λ
ridge)

∥∥, (9)

where ||·|| indicates the Euclidian norm.
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Fig. 1. The basis regions for the ‘baseline’ inversion. Markers on the map indicate the locations of data collection sites in the GlobalView database.
White dots indicate sites that were used in the combined ridge inversion, solid dots indicate sites that were not used in the combined ridge inversion,
and boxes indicate sites that were used in the ‘baseline’ inversion.

When performed many times, on average the above procedure
will estimate the optimal value for the ridge parameter, where
optimality is defined in terms of proximity of posterior flux es-
timates to actual flux values, in situations similar to the CO2

scenario in the reference period.

5. The combined ridge model applied
to a ‘baseline’ inversion problem

To examine the behaviour of model described above, it was ap-
plied to a ‘baseline’ inversion problem. The ‘baseline’ setup is
described in Gurney et al. (2003) and consists of a collection of
22 geographically discrete bases, 11 terrestrial and 11 oceanic re-
gions (Fig. 1). In addition to these regional fluxes, 4 background
fluxes (2 for fossil fuel emissions, one for oceanic fluxes, and
one for neutral biosphere fluxes) were also run through the trans-
port model and subtracted from observed concentrations. This
setup was chosen for comparison purely because of its simplicity,
which makes it amenable to comparisons between the standard
Bayesian and combined ridge inversion models.

The GISS-UCB tracer transport model (Fung et al., 1983)
was used for the forward simulations. This model takes as in-
puts spatio-temporal surface flux distributions and outputs the
results of atmospheric circulation acting on the inputs after a
prescribed length of time. The model operates on a 4 × 5 de-
gree grid and uses hourly integrated winds derived from the
GISS AGCM Model II (Hansen et al., 1983), which was run for
1 yr. Each source distribution was run through the GISS-UCB
model for a total of 4 yr, approximating a steady state. Obser-
vational data used in this experiment is an average over 5 yr
from 76 sites in the Glovalview dataset (Globalview, 2004). The

Bayesian framework requires us to specify prior distributions of
all process fluxes. As described above, all prior distributions are
assumed to be Gaussian. See Gurney et al. (2003) for details and
justification for the prior flux scenario.

Flux estimates obtained from the combined shrinkage model
are shown next to estimates obtained from the standard Bayesian
inversion model. The coefficient error method of calculating
λ̂ridge was used, with 1,000 iterations. The average value 0.322 of
λ̂

ridge
coef was used in the inversion (Fig. 2). As expected, estimates

are shrunken towards zero, relative to estimates from the stan-
dard Bayesian inversion, in many of the regions, some of them
quite substantially. For example, the estimated source in tropi-
cal America decreased by over 25%, and the estimated sink for
southern Africa decreased by over 18%. It should be noted that
in these cases the combined ridge estimates are within one stan-
dard deviation of the posterior mean of the standard Bayesian
inversion. Interestingly though, imposing the ridge penalty had
the opposite effect on a few of the estimated fluxes. Estimates
for boreal North America, boreal Asia, and 7 of the 11 oceanic
fluxes increased in magnitude, albeit some of them very slightly.
We see that the addition of the ridge penalty does not blindly
reduce the magnitudes of flux estimates, but rather redistributes
the flux in a way that lowers overall error on the estimated flux
vector (Fig. 3).

6. Process inversion

We now turn our attention to a slightly different formulation of
the inversion problem where the basis is not a set of spatially
discrete geographic regions, but instead consists of a set of spa-
tially overlapping distributions that are conceptually discrete. In
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the past, a few CO2 inversion studies have used the phrase pro-
cess inversion to characterize an approach that solves for one or
more parameters in a model that scales CO2 uptake and release
on the basis of a satellite vegetation index, temperature, or other
environmental characteristics (e.g. Knorr and Heimann, 1995;
Kaminski et al., 2002; Randerson et al. 2002). We have a very dif-
ferent concept, defining a process inversion as one that partitions
flux among a number of fundamentally different mechanisms. Of
the inversions designed to partition flux among non-overlapping

Fig. 2. A typical coefficient error curve estimated by the algorithm
described in 9:1–5. Here, the minimum of the function lies near the
value 0.322 that was used for the combined ridge inversion.

Fig. 3. Flux estimates obtained from the combined ridge inversion compared with estimates obtained from the standard Bayesian inversion. The
numbers above the bars indicate how much the ridge estimate ‘shrunk’ relative to the standard estimate as a percentage of the standard estimate.

geographic regions, many have worked with a small number of
regions, typically entire or large parts of continents and oceans
(Pacala et al., 2001). Other approaches begin with a larger num-
ber of regions (Kaminski et al., 1999). Still, the common element
among studies has been the definition of source/sink regions that
are simple, non-overlapping, and defined on the basis of a ge-
ographical scheme. This approach to defining spatial domains
has both advantages and limitations. The main advantages are
(1) the (potential) spatial independence of source/sink regions
and (2) the (potential) simplicity of connecting inferred sources
and sinks to political boundaries. The main disadvantage of this
approach is the difficulty of interpreting fluxes defined only spa-
tially.

With linear inversion models, there is no intrinsic reason that
the source/sink regions need to be simple in shape, uniform in
flux density, or non-overlapping. The fluxes that contribute to the
sources and/or sinks need only to be functionally independent.
For the inversion to discriminate effectively, they also need to
be spatially distinctive. This does not, however, mean that the
contributing fluxes cannot overlap spatially.

Using a process-based basis instead of a purely geographical
basis does not require changes to the mathematical formulation
of the inversion, but it greatly alters its interpretability. Specifi-
cally, it allows us to directly address a problem that has attracted
great attention recently, the problem of attributing sources and
sinks to underlying mechanisms (Schimel et al., 2001). Here, we
explore the idea that Bayesian inversion can be used as a tool for
addressing the attribution problem.
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Fig. 4. The basis maps used in the ‘process’ inversion

The starting point for our ‘process’ inversion is a pair of im-
portant postulates. First, this approach depends on the idea that
we can, with reasonable confidence, create a map of the spa-
tial signature of each of the candidate mechanisms. Second,
the spatial map needs to be stable to the variation in the total
flux due to a given mechanism. With these two postulates,
the effect of the inversion is to scale the flux maps associ-
ated with each mechanism and to identify the combination of
scaled maps that best explains the global distribution of CO2

concentrations.

6.1. Flux distributions

In principle, the set of process distributions should account for all
possible CO2 fluxes. For this study, 9 candidate processes were
included, plus an additional pseudo-process that is spatially uni-

form and accounts for the CO2 already present in the atmosphere
at the beginning of the reference period. One may think of this
pseudo-process as the y-intercept of a linear regression model.
The processes that were included are: fossil fuel emissions
(Andres et al., 1996), ocean carbon exchange (Takahashi et al.,
2002), the equilibrated biosphere (modelled using CASA—see
Potter et al., 1993), plant fertilization resulting from elevated
levels of atmospheric CO2 (Field and Shaby, in preparation), net
changes in temperate cropland (Ramankutty and Foley, 1999),
tropical deforestation (Defries et al., 2002), regrowth of disturbed
tropical forest (DeFries et al., 2002), changes in the forest inven-
tory in northern nations (Goodale et al., 2002), and fire suppres-
sion (Mouillot and Field, 2005). All processes are represented
by spatially and temporally explicit flux distributions, which are
then input to an GISS-UCB atmospheric transport model and
run for 5 yr (Fig. 4).
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The processes included in this study are not completely func-
tionally independent, as they would be in an ideal setup. Instead,
they are the best reasonable approximation to an orthogonal ba-
sis that we could construct given the available data. There are
two immediate consequences of the bases not being function-
ally independent. The first is additional estimation error, again
in the form of colinearity. The ridge penalty will mitigate this
effect. The second is ambiguity in the interpretation of results.
For example, when looking at the estimated flux due to fire sup-
pression, one should keep in mind that part of this flux has been
accounted for in the forest inventory basis.

6.2. Priors

Prior flux means were derived from the same sources as their cor-
responding spatio-temporal distributions. Standard deviations
were set at 1 PgC for each process, with the exception of the
neutral biosphere and tropical regrowth, whose fluxes are known
to be extremely small (DeFries et al., 2002), and fossil fuel
emissions and ocean fluxes, whose magnitudes are fairly well
constrained.

6.3. Treatment of observational data

What is treated here as observational data was taken from the
Globalview-CO2 database. Globalview itself contains no actual
observed measurements, but consists of smoothed, interpolated,
and extended time series derived from measurements contained
in the CMDL and WDCGG data archives. Smoothing, interpo-
lation, and extension procedures are described fully by Masarie
and Tans (1995). In addition to weekly concentration estimates,
Globalview provides weight figures w(i, j) at annual intervals
for year i at monitoring station j. w(i, j) is computed as follows:

w(i, j) = α(i, j) ·
√

N (i, j)

RSD(i, j)
,

where RSD(i,j) is the residual standard deviation of the actual
flask measurements about the fitted smooth curve f̂ j(i), N(i,j)
is the number of residuals used in the RSD calculation, and α(i,j)
is a scaling factor.

For this study each dobs( j ) was calculated as the average
Glovalview concentration value over the reference period of
1985–1990 at station j. The average was taken over several years
rather than just 1 yr to ensure that dobs is representative of the
entire reference period, not just 1 yr, which could be atypical.
Sites whose weights were less than 1.5 were not considered be-
cause we regarded them to be unreliable, as their corresponding
concentration records were almost entirely ‘extended’, mean-
ing they were not derived from actual observations during the
reference period.

Diagonal entries CD( j,j ) of the data covariance matrix
consist of a constant times w(i,j)2, again averaged over
the reference period i = 1985. . .1990. This is a reason-

Fig. 5. A typical EPE curve estimated by cross-validation error (a) and
a typical coefficient error curve (b). In both of these examples, the
minimum lies near 0.467, the value used in the combined ridge
‘process’ inversion.

able estimate of measurement variance σ 2, as long as
we assume that the smooth curve f̂ j (i) is a good esti-
mate of fj(i), where flask measurements yj = f j (i) +
ε j and ε j ∼ N (0,σ j

2). Off-diagonal entries of CD are left as
zero, and errors CT due to transport are ignored for simplicity.

7. Results

Values of λ̂ridge
CV and λ̂ridge

coef were each calculated 1,000 times.
The respective means of the 1,000 values of λ̂ridge

CV and λ̂ridge
coef

were 0.429, and 0.467 (Fig. 5). These two estimates of the opti-
mal ridge parameter are remarkably close. That the two methods
of calculating λ̂ridge, one which seeks to minimize prediction er-
ror, the other which seeks to minimize coefficient error, yield
results that differ by only about 8% should inspire confidence in
the application of the Bayesian ridge to this inversion problem;
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introducing a small ridge penalty improves upon the standard
Bayesian technique in terms of both estimating fluxes and mak-
ing predictions about CO2 concentrations.

The combined ridge inversion procedure was performed using

with λridge = ¯̂λ
ridge

coef, using the same bases and concentration
inputs as the standard inversion. Variances of the fluxes estimated
using the combined ridge model are markedly smaller than those
obtained using the standard Bayesian inversion model. This ex-
pected, as the posterior covariance matrix for the combined ridge
model is

C
C−ridge
posterior = (

GTCT
−1G + CM

−1 + λridgeI
)−1

(10)

Comparing CC−ridge
posterior with the posterior covariance matrix

for the standard Bayesian model,

C
Bayes
posterior = (

GTCT
−1G + CM

−1
)−1

, (11)

we see that former is a shrunken version of the latter.
Also expectedly, annual flux estimates decreased in absolute

value with the addition of the ridge penalty, some dramatically
(Fig. 6). Fluxes due to the fire suppression and tropical defor-
estation processes, which were suspected to be highly colinear
upon visual inspection, shrunk by 33.7 and 29.5 percent, respec-
tively, relative to fluxes estimated by the standard Bayesian pro-
cedure. Somewhat unexpectedly, the croplands flux decreased
by 42.4%. Though the croplands basis did not seem to have ob-
vious colinearities with any other single basis, it is probable that
it is highly correlated with a linear combination of two or more
other bases. The tropical deforestation and the northern forest
inventory bases, for example, seem to be likely candidates. As
a means of comparison, the same calculation was done with

λridge = λ̂
ridge

CV, yielding similar results, as expected.
The amount of shrinkage in the process inversion is much

greater than the baseline inversion. The enhanced shrinkage is
a result of algorithm (9) selecting a larger shrinkage parameter.
This is probably the case because colinearity among the process
bases is more pronounced than among the geographically dis-
crete bases. The more colinear the bases, the more the model
will shrink the estimates toward zero to control the error.

8. Error analysis

Assessing the quality of these results is not a clear-cut prob-
lem. Uncertainty in inversion studies arises from many sources.
Colinearity among the basis functions, the basis functions them-
selves, the forward transport model, and the treatment of obser-
vation data all contribute errors that are difficult or impossible
to quantify analytically.

Examination of the basis maps suggests how colinearity may
come into play. For example, the distributions of the fire suppres-
sion and tropical deforestation bases overlap considerably. The
results of the standard Bayesian inversion show that the mag-
nitudes of the posterior flux estimates for these two processes

Fig. 6. Results of the combined ridge ‘process’ inversion. Note that the
error bars around the ridge estimates are smaller than those around the
standard Bayesian estimates (a). The amount of shrinkage resulting
from the addition of the ridge penalty is shown (b). Again, numbers
above the bars indicate the percentage change (relative to the Bayesian
inversion) in the estimated flux

grew markedly in magnitude relative to their respective prior es-
timates. m̂fire became more negative, and m̂tropDF became more
positive, effectively cancelling each other out. It is likely that at
least part of this effect is attributable to the spatial covariation
between the two inputs. The addition of the ridge penalty can
limit, but not eliminate, problems caused by colinearity in the
bases.

We have presented our results visually (Figs 3 and 6) as point
estimates with ‘error bars’ defined as ±1 standard deviation, as
is consistent with standard practice. This representation, how-
ever, is extremely misleading. In Bayesian analyses, inference
is carried out based on the posterior distribution. These ‘error
bars’ do not represent the posterior distribution in an especially
meaningful way. It is standard in Bayesian analyses to report
‘credible regions’. The most intuitive form of credible regions
is the highest posterior density (‘hpd’) region. This region is
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Fig. 7. 68% hpd ellipses of the joint density of components i and j conditional on all the remaining components being equal to their posterior means.
(a) Shows these ellipses for all pairs i and j. The boxes represent the region implied by ±1 standard deviation. The ellipse for croplands and northern
forest inventory is blown up for illustration. The dotted lines are the ±1 standard deviation intervals.

defined by fixing a level α and choosing the smallest region
that contains a fraction of the posterior probability mass equal
to α. One tends to think of the mean ±1 standard deviation as
containing approximately 68% of the mass of a normal density.
In the case of a multivariate normal, this is absolutely not the
case. What ±1 standard deviation defines is referred to as the
full conditional density of component j (j = 1. . .p). This is the
density of component j, if we assume that the other components
i (i �= j) are known and equal to m̂i �= j . This is obviously not the
case. In fact, the region implied by the ±1 standard deviation
construction conveys little information about the hpd region of
the multivariate normal.

The hpd region for a multivariate normal is an ellipsoid in p
dimensions. The relevant region then is the ellipsoid that contains
the fraction α of them posterior probability mass. The form of
this ellipsoid is given by the vectors x that satisfy

(x − m̂C−ridge)TC
C−ridge−1

posterior (x − m̂C−ridge) = k, (12)

for the appropriate constant k. The quadratic form (x −
m̂C−ridge)TC

C−ridge−1

posterior (x − m̂C−ridge) is distributed as a non-central
χ 2 with p degrees of freedom. Hence, letting α be .68 for consis-
tency, and when p = 10, we get k ≈ 11.5 . The axes of the hpd el-
lipse can be obtained by finding the eigenvectors of the posterior
covariance matrix, with the longest axis being the eigenvector
corresponding to the largest eigenvalue. Note that inspection of
the posterior covariance matrix alone cannot tell us much beyond
the level of correlation between pairs of variables.

Since we cannot plot ellipsoids in 10 dimensions, we illus-
trate the problem in 2 dimensions. Figure 7(a) shows the joint
posterior densities of components i and j conditional on all the
other components being equal to their posterior means, for all
pairs i and j. The boxes represent the regions implied by the ±1
standard deviation intervals, and the ellipses are the 68% hpd
regions. Notice that these regions are not the same. Figure 7(b)
shows a clear example of how the uncertainty reported as in
Figs 3 and 6 is extremely misleading.

Conditional bivariate densities were chosen for illustrative
purposes only—they represent something other than the pos-
terior density, just as the full conditional densities do. While the
hpd region is defined precisely mathematically, it is difficult to
interpret when it exists in high dimensions. It simply does not
make sense to report intervals for each individual component
without considering all of the others at the same time, especially
when strong correlations exist. Table 1 shows the extreme values
of each component in the full 68% hpd ellipse. This is probably
not a good way to quantify uncertainty, but it is interesting to
compare the intervals generated in this way with the ±1 stan-
dard deviation intervals. In most cases, the sizes of the intervals
differ by several fold.

Results of an inversion of this kind are also, of course, subject
to random uncertainties. A useful tool for assessing the variabil-
ity of the posterior means due to the randomness associated with
the data collection sites from which concentration data was used
is the bootstrap (Efron and Tibshirani, 1994). This randomness
includes both the choice of the locations of these sampling sites,
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Table 1. Intervals defined by ±1 S.D. and extreme values of the 0.68
credible ellipse for each component of the posterior.

Interval Extreme values
defined of the 0.68

Component by ± 1 S.D. credible ellipse

Fossil fuel ±0.10 ±0.29
Ocean ±0.34 ±1.16
Neutral biosphere ±0.01 ±0.03
CO2 fertilization ±0.50 ±1.68
Croplands ±0.72 ±2.45
Tropical deforestation ±0.68 ±2.28
Tropical regrowth ±0.10 ±0.29
Northern forest inventory ±0.32 ±1.09
Fire suppression ±0.64 ±2.17
Offset ±0.18 ±0.60

as well as the measurement error and errors related to interpo-
lation and extension. Assuming that the site locations and their
measurements were randomly sampled from an arbitrary mul-
tivariate probability distribution over the entire globe and the
space of concentration values, the bootstrap can be used to es-
timate the distribution of combined ridge posterior means that
arises from the randomness associated with data collection. The
bootstrap procedure proceeds as follows, letting N be the number
of monitoring sites under consideration:

1. Randomly choose, with replacement, N observations and
call this vector dobs( j )

bootstrap

2. Construct CD
bootstrap and Gbootstrap by selecting the respec-

tive rows of CD and G corresponding to the observations selected
for dobs( j )

bootstrap

3. Perform the inversion described above, estimating the
minimum mbootstrap from dobs( j )

bootstrap, CD
bootstrap, and Gbootstrap

4. Repeat steps 1–3 many times

The distribution of the m̂bootstrap estimates approximates the
distribution of m̂C−ridge due to the randomness of the observation
stations.

The results of the resampling simulations using the data de-
scribed above show that posterior flux estimates are within a
standard deviation of the mean of the bootstrap-estimated distri-
bution of m̂C−ridge. All individual posterior estimates are shown
to be relatively insensitive to randomness present in selection
and treatment of CO2 concentration data, with the possible ex-
ception of the CO2-fertilization process. In this case, while the
combined ridge estimate falls within a standard deviation of the
mean of the bootstrap distribution, it predicts a sink that is nearly
twice as great as the bootstrap mean. In all cases, bootstrap stan-
dard deviations are of similar magnitude to standard deviations
of the combined ridge flux estimates (Fig. 8).

When the same bootstrap procedure is performed using all
available Globalview CO2 time series instead of only those

Fig. 8. When only ‘good’ data series are used, bootstrap means of the
distribution of combined ridge estimates are within one standard
deviation of the flux estimates in all cases (a). If all data series are used,
the bootstrap shows extremely high variance for combined ridge flux
estimates (b). In some cases, flux estimates do not even fall within
these large standard deviations. One may compare the histograms of
the bootstrap-sampled posterior means of the CO2 fertilization variable
when only ‘good’ data are used with the same histogram when all
series are used (c). In the second case, the mean of the distribution is
shifted toward zero, and the variance increases markedly.
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whose weights were greater than 1.5, the means of the bootstrap
distributions of m̂C−ridge differ substantially from combined ridge
estimates of m̂C−ridge, and the variances of bootstrap distributions
of m̂C−ridge increase several fold. In one extreme case, that of the
tropical deforestation basis, the bootstrap procedure estimates a
sink of 0.40 Pg, compared to a source of 0.88 Pg estimated by
the combined ridge inversion. The large variances and shifting
of the means might be interpreted in several ways. One possi-
bility is that the particular subset of sites whose data weights
exceed 1.5 is not a representative sample from the distribution
described above, and the addition of the remainder of the CO2

data corrects this bias. If this were the case, then the flux esti-
mates presented above must be regarded with some scepticism.
Another, more likely, interpretation is that the original subset is
a good representative sample, and adding the remainder of the
data introduces bias and high variance because the additional
data itself suffers from high bias and variance. This additional
data was derived from few or no actual flask measurements taken
during the reference period. It is possible that the high bias and
variance exhibited in the bootstrap simulations indicates that the
extension procedure used to generate these low-weighted time
series does not accurately reconstruct the true concentrations.

9. Discussion

This study puts forth two major ideas that are significant di-
versions from the standard linear Bayesian inversion techniques
that have been applied to problems like estimating surface CO2

fluxes from CO2 concentration data. The first is viewing inver-
sion as a form of regression, and in so doing drawing from the
wealth of available regression techniques to diagnose and reduce
errors. The second is the idea that the flux basis may consist of
maps representing fluxes that arise from conceptually discrete
mechanisms, rather than from geographically discrete regions.

By re-examining the linear Bayesian inversion technique and
applying tools that are commonly employed in the regression
context, it is possible to improve the results of studies like the
one presented here. The application of the bootstrap gives us
insights into the nature of the error distribution that arises from
the treatment of the observational data. This is valuable in itself,
but another, more powerful interpretation of the bootstrap results
is possible. One might view the bootstrap means as a more robust
estimate of the fluxes under consideration. Viewed in this light,
the bootstrap provides a separate set of solutions to the inverse
problem that can be compared with the Bayesian and combined
ridge solutions.

The combined ridge model presents an improvement over the
standard linear Bayesian method. By biasing the model with a
ridge penalty, the resultant decrease in variance improves the
overall error rate. It can be seen from the error curves presented
above that whether we are concerned with prediction error or
coefficient error (i.e. errors in our flux estimates), adding a non-
zero ridge parameter improves the results. Further, simulation

tests show that not only is the optimal ridge parameter non-zero
in both of the contexts under consideration, but also that, for this
problem, the optimal ridge parameters under both interpretations
of optimality are strikingly similar. This suggests that the com-
bined ridge model is an improvement upon the procedure that is
often employed for calculating flux estimates from atmospheric
concentrations of CO2.

Of course, this study only presents a tiny fraction of the tools
available in the regression literature that may be useful in the
inversion context. Further inquiry into these methods may prove
valuable to the atmospheric inverse modelling community.

Starting with a basis consisting of flux distributions due to
specific processes lends important advantages in interpretability
and utility of the results. Insights gained toward solving the at-
tribution problem have the potential to be extremely valuable.
The ability to effectively partition carbon balance into compo-
nents due to different processes is a fundamental prerequisite for
credible models of the future of the carbon cycle. Interest in this
partitioning or attribution problem has increased recently, with
the maturation of the accounting standards for the Kyoto Pro-
tocol (UNFCCC). The report of the seventh conference of the
parties (October–November 2001) of the United Nations Frame-
work Convention on Climate Change decided that credits for
carbon sequestration would be limited to direct effects of ac-
tive management since 1990, after correcting for indirect effects
from past practices, climate change, elevated atmospheric CO2,
and other factors. With this decision, the attribution problem as-
sumes direct policy relevance as well as fundamental scientific
importance.

To what extent can our process-based inversion augment the
results from geographically based analyses? As an approach to
estimating regional fluxes, the process-based inversion is not yet
at a level of maturity to add quantitative constraints. Prerequisites
for this will include both improvements in spatial map associated
with each flux and additional data constraints that can be built
into the inversion. While the process-based inversion cannot yet
improve regional flux estimates, it creates a number of poten-
tially important opportunities. Many of these involve improved
connections between bottom-up process studies and top-down
constraints (Schimel et al., 2001). Others involve contributions
to unravelling the contributions of several spatially overlapping
mechanisms. Ultimately, this kind of approach may facilitate the
task of separating effects on sources and sinks from direct human
actions, indirect human actions, and past practices, as required
by the Marrakech Accords to the Kyoto Protocol (UNFCCC).
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