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ABSTRACT
Smoothing splines have been used extensively in the analysis of gas concentration data from bubbles in ice cores.
Since the fit is a linear projection of the data, propagation of data uncertainty through the fitting process is formally
straightforward and, as we demonstrate, readily achievable from pre-existing spline-fitting procedures. The uncertainty
propagation can be extended to determining both uncertainties in derivatives and uncertainties in quantities that reflect
rates of input to the atmosphere. As an example, we apply the technique to 1000 yr of methane data from a Law Dome
ice core.

1. Introduction

Smoothing splines have been used extensively in trace gas stud-
ies, particularly for ice-core data (e.g. Joos et al., 1999; Trudinger
et al., 1999). Among the advantages of smoothing splines for
such studies is the ability to handle unequally spaced data. In
addition, as smoothing splines are differentiable functions, the
derivative can be used to infer information about sources.

This note describes the process of propagating data uncer-
tainty through the spline-fitting process. As a side benefit, we
also show how to propagate uncertainty ranges for the deriva-
tives. For concentrations, f (t), of compounds with atmospheric
lifetime τ , uncertainty ranges can also be calculated for combi-
nations such as ḟ (t) + f (t)/τ that reflect source strengths.

The properties of splines have been widely studied but ex-
pressed using a range of different normalizations (Cox, 1983;
Silverman, 1984, 1985). Enting (1987) summarized some of the
most important results, using a normalization consistent with the
computer routines given by de Boor (1978).

For a set of N data points taking values z j at times t j , the
smoothing spline fit, f̂ (t), is defined as the instance of the func-
tion F(t) that minimizes

� =
N∑

j=1

[F(t j ) − z j ]
2 + λ

∫ tN

t1

[F̈(t)]2 dt (1a)
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or more generally with data weights, v j :

� =
N∑

j=1

[F(t j ) − z j ]
2/v2

j + λ

∫ tN

t1

[F̈(t)]2 dt (1b)

or formally, treating � as a functional,

�[ f̂ (t)] ≤ �[F(t)] ∀ twice differentiable F(t). (1c)

The solution is a cubic spline, that is, a piecewise cubic with
nodes at the t j and with f̂ (t) and its first and second derivatives,
˙̂f (t) and ¨̂f (t), continuous everywhere. We use the notation f̂ (t)

to indicate that we are treating the spline as an estimate of an
ideal smooth variation, f (t), which we are trying to estimate in
the presence of data uncertainty.

Note that the de Boor code requires distinct times, t j . There-
fore, data sets containing replicate times need to be converted
into an equivalent form without such replicates. This can be done,
without changing the value of (1b), by using the mean of data
values at each replicate time, with a weight of 1/

√
m when m

times coincide, [or more generally (
∑

1/v2
j )

−1/2].
Note also that for large N, (typically between 1000 and 2000

when using 32-bit arithmetic), the de Boor algorithm becomes
unstable. In such cases, the use of splines with fewer nodes
(Granek, 1995) should be considered. For the reasons given by
Enting (1986), the suggestion by de Boor that the problem be
addressed by choosing a node-spacing that gives the requisite
smoothing with λ = 0 is likely to be unsuitable for many appli-
cations.
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2. Cases

Various forms of spline fitting can be described by writing (1a)
and (1b) as

� = S + λQ. (2)

These forms are as follows.

(1) Choose λ on the basis of desired filtering. This is the
main case that has been used in earlier work by ourselves and
our CSIRO collaborators. For case (1a), spline smoothing acts as
a low-pass filter with an effective frequency response φ(θ ) given
by

φ(θ ) = 1/
[
1 + (θ/θ0.5)4

]
, (3a)

with the frequency for 50% attenuation given by

θ0.5 = (λ�t)−1/4, (3b)

or equivalently the period for 50% attenuation:

P0.5 = 2π/θ0.5 = 2π(λ�t)1/4, (3c)

where �t is the mean data spacing. For the generalization (1b),
�t needs to be replaced by an effective data spacing given by
the mean of �t × v2

j .
(2) Choose λ on the basis of data fit, that is, minimize Q

given S. Enting (1987) noted that this is the form given by de
Boor (1978) and other workers. It is implemented by using case
(1), iterating over λ until the condition on S was satisfied. The
code used in our studies was derived from that given by de Boor
by removing the iterative loop [and converting to the parameter,
p = 1/(1 + λ), actually used in de Boor’s code].

(3) Choose λ on the basis of smoothness, that is, minimize S
given Q. Enting (1987) noted early applications of this approach
in CO2 studies.

(4) Generalized cross-validation (GCV) (Craven and
Wahba, 1979), which corresponds to choosing λ so that the fit is
consistent with the residuals being white noise.

For equispaced data, the uncertainty associated with using
filtering to separate a signal, s(t), from noise can be expressed as
a mean-square error in the estimate ŝ obtained by digital filtering
as:

E{[ŝ(t) − s(t)]2}

=
∫ π

−π

|φ(θ )|2he(θ ) dθ +
∫ π

−π

|1 − φ(θ )|2hs(θ ) dθ (4)

where hs(θ ) and he(θ ) are the power spectra of signal and noise,
respectively [see Box 4.1 of Enting, 2002 for a discussion of
normalisation]. The first term represents a variance due to the
filter failing to remove all noise. The second term represents a
bias due to the filter distorting the signal (most commonly by
removing high-frequency variation). From this perspective, the
present note is concerned only with the first term, addressing the
issue of how much the data uncertainty degrades the smoothed

curve. Specifically, our uncertainty calculations reflect the un-
certainty in the slowly varying components of concentrations,
growth rates and sources. The issue, encapsulated in the second
term of (4), of how much pointwise difference there is between an
ideal smooth curve and an actual instantaneous value is beyond
the reach of this type of data analysis.

3. Error propagation

The solution to the spline-fitting problem can be simplified by
writing a general spline function, F(t), as a sum of cubic B-
splines (de Boor, 1978), functions B[4]

j (t) that are zero outside
the range t j < t < t j+4,

F(t) =
∑

j

a j B[4]
j (t). (5)

(Since the minimizer of � is known to be a spline, the actual
minimization calculations can be restricted to the relevant set of
splines.)

The minimization of either (1a) or (1b) leads to a set of linear
equations for the a j , written in vector form as:

z = Aâ (6a)

whence

â = A−1z, (6b)

where the notation â indicates that we treat these as estimates
of some true a, the difference, â − a, reflecting uncertainties in
the data, z j . Since A−1 is the inverse of a sparse matrix, rather
than being sparse itself, A−1 is never calculated explicitly. Its
operation on vectors is implemented by solving sparse matrix
equations in the smoothing spline procedures.

These estimated B-spline coefficients lead to estimates, f̂ (t),
expressed as a vector

f̂ = BA−1z, (7a)

where B is a matrix of B-spline values, evaluated at a set of K
times, T k , which need not correspond to nodes, t j , that is,

Bkj = B[4]
j (Tk). (7b)

Similarly, we can calculate derivatives as

˙̂f = ḂA−1z, (8)

where Ḃ is a matrix of values of derivatives of B-splines. Note
that what we actually calculate is ˙̂f, derivatives of the estimate,
and we use these as ˆ̇f, estimates of the derivative of the ideal f (t).

Formally, data uncertainties, expressed in terms of a covari-
ance matrix R (whose elements R jk are the covariances of ob-
servations z j and zk) can be propagated as

cov[f̂ − f] = BA−1R(A−1)TBT. (9)
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However, since, as noted above, A−1 is the inverse of a banded
matrix, it is computationally more efficient to put

cov[â − a] = V =
[ ∑

j,k

R jkb[ j](b[k])T

]
, (10a)

where b[ j] is defined by

b[ j] = A−1y[ j] for j = 1 to N , (10b)

where y[ j] has zero elements except for the jth component which
is 1. Comparison of (6b) and (10b) shows that the b[ j] can be
obtained by applying the smoothing spline fitting procedure to
data y[ j]. (Note that these N calculations all have to use the same
value of λ and the same weights, v j ).

We can then put

cov[f̂ − f] = BVBT (11a)

and, using the derivative of the estimate as an estimate of the
derivative,

cov[ˆ̇f − ḟ] = ḂVḂT. (11b)

Similarly, combinations associated with estimating source
strengths, such as ḟ + f/τ for a constituent with lifetime τ , can
be expressed as

cov[ˆ̇f + f̂/τ − ḟ − f/τ ] = [Ḃ + B/τ ]V[Ḃ + B/τ ]T. (11c)

Note that, in general,

cov[ˆ̇f + f̂/τ − ḟ − f/τ ] �= cov[ˆ̇f − ḟ ] + cov[f̂ − f]/τ 2. (12)

The formalism for propagating uncertainties becomes partic-
ularly simple when R is diagonal with non-zero elements
R j j = u2

j and only pointwise uncertainties are required for the
f (t) [and/or ḟ (t) or combinations of these]. One has

var[ f̂ (Tk) − f (Tk)] =
∑

j

R j j

∑
i

[
B[4]

i (Tk)b[ j]
i

]2
, (13)

where, for any particular k, the sum over i is restricted due to the
finite range for which B[4]

i (T k) is non-zero.
The weights v j used in the spline fitting (1b) need not have

any special relation to the data uncertainties, u j . Indeed, the
standard definition of smoothing splines, (1a), uses v j ≡ 1. The
most useful cases would seem to be the following.

(1) v j = 1 and the u j are set to actual data uncertainties;
(2) both the v j and the u j are set to actual data uncertainties;
(3) it may also be appropriate to use cases where the u j are

various fixed multiples of data uncertainty, in order to produce
bands of ranges for several confidence levels;

(4) there is also the possibility, noted in Section 5, of using
weighting to perform adjustment of the degree of smoothing
within a record.

In each case, these weights would need to be modified, as de-
scribed above, to remove any replicate times, t j .
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Fig. 1. Illustrative example using data from Etheridge et al. (1998)
(shown as open circles). Top to bottom panel: splines as estimates (with
±2 s.d. uncertainties) of concentration, f (in ppb); rate of change, ḟ (in
ppb/yr); rate of input ḟ + f /10.0 (also in ppb/yr). Fits from a
smoothing spline with average 50% attenuation at periods of 26 yr, and
±2 s.d. uncertainties derived from ±10 ppb 2 s.d. data error.

4. Applications

We have implemented the procedure above for calculating un-
certainties (11a–c). A Fortran-90 program makes repeated calls
to the subroutines from de Boor (1978) to obtain the b[ j] as
notional spline fits to data sets, each with a single non-zero
value set to one. These b[ j] are either used to construct uncer-
tainty ranges using the special case (13), or used to construct
V the full covariance matrix for the B-spline coefficients (9)
which is used in (11a–c) to obtain the full autocovariance ma-
trix for the spline, its derivative and the source function. Infor-
mation about the availability of the code can be obtained from
http://ms.unimelb.edu.au/∼enting/spline.html.

As an example, we present CH4 concentration data from Law
Dome ice cores (Etheridge et al., 1998). Figure 1 shows the
results of a spline with λ = 30. From top to bottom, the panels
show the spline fit f̂ (t), its derivative ˙̂f , and the combination
˙̂f (t) + f̂ (t)/τ which, for a lifetime of τ = 10 yr, corresponds
to the estimated rate of input of methane to the atmosphere.
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Since the calculation is using total methane, we use the turnover
time, and not the perturbation lifetime. [This distinction was
introduced by Prather (1994) and illustrated in figure 15.1 of
Enting (2002)]. Inspection of (11c) shows that generalization of
the formalism to include an explicitly time-varying lifetime, τ (t),
is straightforward. The value of τ = 10 yr is chosen here to aid
visual comparisons between sections of Fig. 1, and is somewhat
higher than current best estimates.

The ranges correspond to a ±10 ppb data uncertainty which
Etheridge et al. (1998) gave as corresponding to two standard
deviations in measurement uncertainty. Although the spline fit is
calculated using the full data set, which extends to 1980, the plots
are terminated at 1900. The CH4 concentration increase over
the 20th century is so large compared to the uncertainty ranges
that plotting the full fit at this size would have the uncertainty
ranges comparable to the line thickness. The ±2 s.d. range in
data becomes, by virtue of the linear relations, ±2 s.d. ranges in
the â and the f̂ (t), with (in each case) 5% of individual cases
expected to lie outside these ranges. However, individual cases
will be correlated, with the correlations described by (11a,b,c)
for splines, growth rates and sources.

The panels are drawn so that the scales for f̂ (t)/10, ˙̂f , and
˙̂f (t) + f̂ (t)/10 are equal, allowing ready comparison of the un-
certainties. In our example, the derivative has smaller uncertainty
before 1400 when data density is lower, than after 1400, whereas
the expectation would have been that more data should reduce
the uncertainty. Conversely, the uncertainty in methane input,
˙̂f (t) + f̂ (t)/10, is relatively constant over the whole period.
These and some other counterintuitive features of the results
are explained in the next section.

5. Discussion

An understanding of the results in Fig. 1 comes from careful
consideration of what questions are actually being answered.
Wider discussion in the context of CO2 time-series is given
by Enting (2000). In particular, as noted above, what is cal-
culated is the effect of data uncertainty on uncertainties in
smooth trends in atmospheric concentrations and growth rate,
not in instantaneous concentrations and growth rates. A criti-
cal point is that different choices of smoothing imply differ-
ent uncertainties. More smoothing means that more actual vari-
ability is removed, and its uncertainty is, by definition, being
excluded.

We mentioned earlier that the spline has smaller uncertainty
before 1400 than after. The degree of smoothing of a spline de-
pends on the data spacing (for example, this is shown by equa-
tion (3c) which can be applied to the data density �t local for
a particular part of the record). The lower data density before
1400 leads to a smoother spline for the earlier part of the record.
The uncertainty in the spline before 1400 is less than the uncer-
tainty in the spline after 1400 mainly because the spline before

1400 has a higher degree of smoothing due to the lower data
density.

The derivative is far more sensitive to the cutoff frequency
than the spline itself, since higher frequencies contribute most to
the derivative. A smoother spline implies less uncertainty in the
derivative of the spline. As noted in connection with equation (4),
information about higher frequency contributions to the actual
atmospheric growth rate is inaccessible due to lack of data. The
effect becomes particularly marked when, as here, the notional
smoothing cutoff time, P0.5 (resulting from the choice of λ) is
comparable to the data spacing. In cases, such as our example,
where there is a distinct change in data spacing, a more uniform
filtering could be achieved by using weighted splines. The cutoff
can be obtained from (3c) with λ replaced by λ × v2

j , so that to
keep P0.5 constant the v2

j should be set proportional to 1/�t local

(see for example Trudinger et al., (1999). The use of constant
weights in our example illustrates both the variation of smoothing
with data density and the related dependence of uncertainty on
chosen smoothing, emphasizing the need to be clear about what
is being estimated. In our example, the change in data density has
little effect on the uncertainty range for methane input, ˙̂f (t) +
f̂ (t)/10.

Another somewhat surprising characteristic of the fit is that
the uncertainty range in the derivative only excludes zero at a
time well after the apparent beginning of the increase after 1700.
Careful inspection of the concentration fit suggests that, at the
smoothing time-scale of around 30 yr, such a large uncertainty
is appropriate. The derivative of the spline fit to concentration is
actually quite variable.

6. Conclusion

With the increasing importance of paleodata in establishing the
various natural and anthropogenic contributions to global climate
change, tools that can assist in quantifying uncertainties have a
vital role to play. We have presented a method for estimating
the uncertainty in smoothing splines due to data uncertainty.
We emphasize in particular that the uncertainty range relates
to the chosen degree of smoothing for the spline and refer to
uncertainties in the smoothed component.

With modern computing power, exact propagation of data un-
certainty through spline fits becomes more convenient, and in
this case more accurate, than analytic approximations based on
asymptotic results.
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Notation

a j Coefficient of jth B-spline.
A Matrix defining the mapping from B-spline coefficients to

data.
B[4]

j (t) The jth B-spline: a cubic spline that is zero outside
the range t j < t < t j+4 (notation from de Boor (1978)—the [4]
indicates the order of the spline).

f̂ (t) Spline fit, with first and second derivatives ˙̂f (t) and ¨̂f (t).
f (t) Ideal ‘error-free’ smooth function of which the spline fit,

f̂ (t), is regarded as an estimate.
F(t) Arbitrary twice differentiable function in set of functions

over which the objective � is (formally) minimised.
K Number of times at which splines, derivatives and their

linear combinations are evaluated.
N Number of nodes.
P0.5 Period of variations subject to 50% attenuation by spline

fit.
Q Characteristic smoothness, defined as integral of square of

second derivative.
S Sum of squares of deviations between spline and data.
t Time.
t j Time of jth node, j = 1 to N.
T k The kth time for which the spline is to be evaluated, k = 1

to K, with default in code as T k = T 0 + k�T .
u j Data uncertainties used in error propagation calculations.
v j Weights used in spline fit.
y[ j] Vector, with element j equal to one and all other elements

zero.
z j The jth data value (occurring at time t j ).
�t Mean data spacing.
�T Spacing of output times.
φ(θ ) Filter response function, in frequency domain.
λ Regularization parameter, defining trade-off between data-

fit and smoothness.
θ Angular frequency.

θ 0.5 Angular frequency for 50% attenuation by spline fit.
� Objective function whose minimum defines smoothing

spline. � = S + λQ.
τ Atmospheric lifetime.
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