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Component gas flow during transition metal-only ammonia decomposition experiments 

 

Figure S 1: Total, component, and expected gas flows for the Cr-only (0.5 g) ammonia decomposition experiment. 
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Figure S 2: Total, component, and expected gas flows for the Fe-only (0.5 g) ammonia decomposition experiment. 

 

Figure S 3: Total, component, and expected gas flows for the Mn-only (0.5 g) ammonia decomposition experiment. 
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Component gas flow during LiNH2 ammonia decomposition experiment 

 

Figure S 4: Double exponential fit to the ammonia gas flow profile of the LiNH2 ammonia decomposition experiment at 480 
min (temperature rise to 380°C). The time constant for each exponential decay was 1.15(4) min. 

 

Figure S 5: Measured and expected component gas flows during the cool down period of the LiNH2 ammonia decomposition 
experiment (1560 min onwards). A less than expected NH3 flow is related to the absorption of NH3 by the Li2NH-rich phase 

to re-form the LiNH2 starting material. 
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Exponential fits to the N2 flow during ammonia decomposition experiments 

Blank experiment 

Figure S 6: Double exponential fit to the N2 release at 500°C for the blank reactor experiment. Dotted and dashed lines 
correspond with each component exponential curve, while the solid line is the summed fit. 

 

Figure S 7: Double exponential fit to the N2 release at 540°C for the blank reactor experiment. Dotted and dashed lines 
correspond with each component exponential curve, while the solid line is the summed fit. 
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LiNH2 experiment 

 

Figure S 8: Double exponential fit to the N2 release at 500°C for the LiNH2 experiment. Dotted and dashed lines correspond 
with each component exponential curve, while the solid line is the summed fit. 

 

Figure S 9: Double exponential fit to the N2 release at 520°C for the LiNH2 experiment. Dotted and dashed lines correspond 
with each component exponential curve, while the solid line is the summed fit. 
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Figure S 10: Single exponential fit to the N2 release at 540°C for the LiNH2 experiment.  

 

LiNH2-Cr experiment 

 

Figure S 11: Double exponential fit to the N2 release at 500°C for the LiNH2-Cr experiment. Dotted and dashed lines 
correspond with each component exponential curve, while the solid line is the summed fit. 
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Figure S 12: Single exponential fit to the N2 release at 520°C for the LiNH2-Cr experiment.  

 

Figure S 13: Single exponential fit to the N2 release at 540°C for the LiNH2-Cr experiment.  

 

 

 

 

 



8 
 

LiNH2-Mn experiment 

Figure S 14: Double exponential fit to the N2 release at 500°C for the LiNH2-Mn experiment. Dotted and dashed lines 
correspond with each component exponential curve, while the solid line is the summed fit. 

 

Figure S 15: Double exponential fit to the N2 release at 520°C for the LiNH2-Mn experiment. Dotted and dashed lines 
correspond with each component exponential curve, while the solid line is the summed fit. 
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Figure S 16: Double exponential fit to the N2 release at 540°C for the LiNH2-Mn experiment. Dotted and dashed lines 
correspond with each component exponential curve, while the solid line is the summed fit. 
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LiNH2-Fe experiment 

 

Figure S 17: Double exponential fit to the N2 release at 500°C for the LiNH2-Fe experiment. Dotted and dashed lines 
correspond with each component exponential curve, while the solid line is the summed fit.

 

Figure S 18: Double exponential fit to the N2 release at 520°C for the LiNH2-Fe experiment. Dotted and dashed lines 
correspond with each component exponential curve, while the solid line is the summed fit. 



11 
 

Figure S 19: Single exponential fit to the N2 release at 540°C for the LiNH2-Cr experiment. Dotted and dashed lines 
correspond with each component exponential curve, while the solid line is the summed fit. 

 

Table S 1: Time constants of exponential fits to the N2 flow data of blank reactor, LiNH2, and LiNH2-TM ammonia 
decomposition experiments during the highest three temperature increments.  

 Time constant for gas release per temperature rise / min 

500°C 520°C 540°C 

Blank 2.53(2) 21.0(2) - - 4.67(4) 26.9(2) 

LiNH2 2.12(4)   7.5(3) 2.63(4) 13.8(9) 7.29(6) - 

LiNH2-Cr 1.63(7)       6.19(16) 3.69(3) - 7.50(5) - 

LiNH2-Mn 2.17(3) 19.0(7) 2.67(5)   23.9(14) 3.33(3)    7.47(6) 

LiNH2-Fe 2.03(4) 21(3)  c           2.16(12) 10.9(5)i 5.76(7) - 
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TG-DTA of LiNH2-TM (TM = Cr, Fe, Mn) systems 

 

Figure S 20: Combined TG, DTA, and MS results from the gravimetric study of LiNH2-TM systems under a 70 sccm N2 flow. 
Shown are the gravimetric (black), heat flow (blue), and MS m/z=17 (NH3) and m/z=2 (H2) data. 

 

Figure S 21: X-ray powder diffraction pattern (Cu X-ray source) of the LiNH2-Cr post-reaction material after heating under 70 
sccm argon flow (5°C min-1 to 550°C). A similar experimental design but a greater mass of sample (0.2 g) was used to the 
simultaneous thermal analysis experiment. Shown are the observed data (blue), refined fit (orange) and tick positions of the 
included phases. 
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Figure S 22: Gibbs free energy of lithium ternary nitride formation reactions. Reaction enthalpies have been calculated from 
the literature values for LiNH2 [1] and ternary nitrides [2–6]. The entropic contributions of solid crystalline reactants and 
products are ignored. 

Figure S 23: X-ray powder diffraction pattern (Mo X-ray source) of the LiNH2-Mn material after the simultaneous thermal 
analysis experiment. Shown are the observed data (blue), refined fit (orange), difference between them (grey),  and tick 
positions of the included phases. 
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Figure S 24: Comparison between LiNH2-Mn gravimetric study  using either 70 sccm N2 (green) or Ar (blue) flow. a) Shows 
the TG, b) the DTA, and c) m/z=17 (dark, NH3) and m/z=2 (light, H2) exhaust mass spectrometry data. 
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XRD patterns of post-catalytic transition metal-only materials 

 

Figure S 25: X-ray powder diffraction pattern (Cu X-ray source) of the Cr-only sample after the catalytic experiment. Shown 
are the observed data (blue), refined fit (orange), difference between them (grey), and tick positions of the included phases. 

 

Figure S 26: X-ray powder diffraction pattern (synchrotron X-ray source, λ = 0.8268226 Å) of the Mn-only sample after the 
catalytic experiment. Shown are the observed data (blue), refined fit (orange), difference between them (grey), and tick 
positions of the included phases. 
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Figure S 27: X-ray powder diffraction pattern (Cu X-ray source) of the Fe-only sample after the catalytic experiment. Shown 
are the observed data (blue), refined fit (orange), difference between them (grey), and tick positions of the included phases. 
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