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ABSTRACT
This remote sensing study compares growth occurring in three urban types between 2005 
and 2014: peri-urban, rural and urban, in a fast-growing metropolitan region west of Mexico 
City. Future urban growth for the period 2014–24 is modelled using the land-use/cover 
change (LUCC) model Geomod. Urban expansion is correlated with some socio-territorial 
factors and the impacts are assessed for the loss of biomass. In both periods, the urban 
zone differed the most from the other two in terms of urban expansion. The Geomod 
predictions overestimate the urban expansion in the urban zone and underestimate it in 
the peri-urban and rural zones. Significant differences exist in the average urban expansion 
between zones. The main urban growth drivers were elevation, population density, 
distance to previous urban land and distance to roads. A substantial loss of biomass is due 
to urban growth, including expansion and infill. The research reveals significant differences 
in growth between peri-urban, rural and urban areas, and contributes spatial information 
for designing focused land-use policies in dynamic urban contexts.

POLICY RELEVANCE

This article contributes to understanding the differentiated urban growth of urban, peri-
urban and rural areas, which can translate into more precise and effective public policies. 
Urban expansion and infill patterns differ. For peri-urban and rural areas, the main growth is 
infill, so actions should be implemented to sustainably manage the vacant or undeveloped 
land within an existing human settlement to prevent further expansion, but also to avoid 
the loss of priority areas for the provision of ecosystem services. In urban areas where the 
main urban increment is expansion, sensible consolidation decisions need to be taken to 
avoid further urban expansion and the incorporation of urban green space.

*Author affiliations can be found in the back matter of this article
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1. INTRODUCTION
Urban areas have experienced rapid growth in the last century. In 1900, approximately 10% of the 
world’s population lived in urban settlements. This increased to more than 50% in the first decade 
of the 2000s, and it is expected to continue increasing (Grimm et al. 2008). Population growth 
also drives urban expansion (Seto et al. 2011). By 2030 the urban area is expected to expand by 
1.2 million km2 and will be triple the size compared with the year 2000 (Seto et al. 2012). This 
accelerated expansion of the urban settlements in many parts of the world frequently occurs 
in a disorderly and dispersed way, which increases the consumption of resources and generates 
environmental problems (Arha et al. 2014; Seto et al. 2012; Zijlstra 2011). A large proportion of this 
urban expansion generally occurs in peri-urban areas, which are transition zones where urban and 
rural activities overlap and where rural landscape characteristics are quickly modified by industrial, 
commercial or residential land uses (Heider et al. 2018; Pribadi & Pauleit 2015; Tian 2015; Winarso 
et al. 2015). This land-use transformation is known as peri-urbanisation, and over time the land 
uses of these areas are converted to residential, commercial or service uses, until they completely 
lose their rurality (Aguilar et al. 2022; Coq-Huelva & Asián-Chaves 2019; Geneletti et al. 2017).

These peri-urban areas are essential to the sustainability of the cities since they still contain natural 
ecosystems that provide biodiversity and ecosystem services (Dobbs et al. 2018). These spaces are 
heterogeneous from the social, environmental and economic points of view. In the case of cities 
in the Global South, including Mexico City, peri-urban areas represent spaces of social conflict, 
governance problems and challenges to the conservation of natural land (Aguilar et al. 2022).

Urban growth can also take place in purely rural and urban environments. As conditions that 
influence land-use change can vary among these zones, it is pertinent to analyse and quantify the 
differences in the urban growth dynamics and its environmental impacts. This can then help to 
generate and implement focused sustainable land-use policies for each environment (Ortiz-Báez 
et al. 2021).

Several studies have reported the successful use of remote sensing methods to quantify urban 
change (Daudt et al. 2018; Dou & Han 2022; Liu et al. 2020; Reba & Seto 2020; Wellmann et al. 
2020), and many models have been used to project future urban growth (Karimi et al. 2021; Lyu et 
al. 2019; Poelmans & van Rompaey 2010; Yang et al. 2019). Some of these spatiotemporal studies 
also consider the environmental effects and driving forces of urban growth (Huang et al. 2018; 
Zhang et al. 2018). For example, Seto et al. (2012) assessed the direct impact of urban expansion 
on carbon pools around the world, and Hernández-Flores et al. (2017) studied the urbanisation 
driving forces in the periphery of north Mexico City reporting as main factors the welfare population, 
population working in the third sector, distance to schools, distance to urban areas, distance to 
roads, population growth rate, precipitation, and the immigrated population growth rate.

This periphery in Mexico City, as in many other cities of developing countries, is characterised by 
high urban growth rates and informal settlements of poor residents in precarious living conditions, 
where rural–urban and urban–urban immigration plays a crucial role (Heider et al. 2018). In fact, 
the urbanisation process in Mexico, particularly in its capital city, began in the 1940s during the 
industrialisation and institutionalisation of the country characterised by a chaotic migration from 
the countryside to the city. It has been distinguished by a rapid urban expansion, diffuse and 
fragmented growth, and a conurbation with small and medium peripheral settlements. The urban 
growth pattern of the Mexican megalopolis corresponds to that observed in other megacities and 
can be synthesised into five types: infill, extension, linear development, expansion and large-scale 
projects (Camagnia et al. 2002).

The present study uses remote sensing techniques and the spatially explicit land-use model 
Geomod to analyse the historical and future urban growth in a fast-growing region west of Mexico 
City. This growth was compared between three development zones: urban, rural and peri-urban. 
Statistical tests were applied to assess the differences in urban growth between zones. Urban 
expansion is correlated with some socio-territorial factors. Urban growth is also assessed for its 
impact on the loss of biomass.
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2. MATERIAL AND METHODS
2.1 STUDY AREA

The study area encompassed 30,802 ha in three municipalities west of Mexico City: Huixquilucan 
de Degollado, Cuajimalpa de Morelos and Álvaro Obregón (Figure 1). The significance of this area 
lies in the fact that it encloses the Santa Fe mega-project created in the early 1980s to establish 
an urban centre that would promote economic activity and development of the real estate sector 
(Moreno-Carranco 2014). This mega-project has triggered the urban sprawl and a mix of land 
uses (financial, commercial, housing and services), with a high-income population established 
mainly in the centre of the mega-project surrounded by low-income communities lacking services 
and infrastructure. The rapid expansion of Santa Fe has brought several social, economic and 
environmental consequences to both rural and urban areas to the west of Mexico City, which already 
faces multiple problems. Some of these problems are air pollution, solid waste accumulation, land 
subsidence, landslides, floods and health risks (Romero-Lankao et al. 2014). The urban growth in 
rural and peri-urban regions of the study area by unplanned or illegal settlements has increased 
these problems and caused the loss of ecosystem services of the surrounding natural and rural 
systems (Calderon-Contreras & Quiroz-Rosas 2017).

The study area was divided into three zone types: urban, rural and peri-urban. The individual 
polygons that comprise the urban and rural areas were the basic geostatistical areas (Spanish: 
AGEB), which are the smallest geographical unit used by the Mexican government’s geographical 
and statistics agency to generate statistics and which cover all Mexico (INEGI 2014). An urban 
AGEB is an:

area occupied by a group of blocks, generally ranging from 1 to 50, perfectly delimited 
by streets, avenues, walkways or any other easily identifiable feature in the terrain and 
whose land use is mainly residential, industrial, service, commercial, etc.

(INEGI 2010)

A rural AGEB is an:

area located in rural regions, whose territorial extension is variable and characterised 
by agricultural or forestry land use. It contains rural localities and natural features 
(e.g. swamps, lakes, deserts, etc.), and engineered features (railroad tracks, power lines, 
roads, etc.).

(INEGI 2010)

The peri-urban areas were delimited following González-Arellano et al. (2021), who applied 
Shannon’s entropy index to identify peri-urban spaces based on the degree of land-use diversity 
and their spatial contiguity with urban boundaries (Table 1). The land-use layer was obtained from 
CONABIO (2015).

The urban zone, where the land use is mainly residential, industrial, services and commercial, with 
little land-use diversity, covered 12,224 ha, containing 269 AGEB. The rural zone, where land use 
is mainly agriculture and forest, comprises 16,291 ha in five AGEB. Finally, the peri-urban zone, 
where there is urban growth in the fringe with either natural vegetation or a rural environment, 
with a high diversity of land uses, encompasses 2287 ha including 22 AGEB (Figure 1).

The three zones show significant differences in population, business and road densities (Table 1). 
As expected, the urban areas present higher values in these variables than the peri-urban and 
rural areas. These socio-territorial indicators and education years and single women percentage 
show a centre–periphery gradient. In contrast, the variables occupants per dwelling, percentage of 
indigenous households and fertility rate show a periphery–centre gradient. These statistics show 
that, in general, peri-urban areas present both similarities with the urban (built environment) and 
the rural areas (natural environment). This mixed condition of the peri-urban areas (both urban 
and rural) explains their high value in the land-use entropy index.
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2.2 METHODS

2.2.1 LAND-USE CHANGE ANALYSIS

The land-use change from non-urban to urban was analysed using an accepted classification 
with the maximum likelihood method. SPOT 5 satellite images of the dry season (November–
December) of 2005, 2010 and 2014 were used. These images were obtained from the Mexican 
Reception Station (ERMEX). They were radiometrically corrected using the black body subtraction 
method and orthorectified. To comply with Jensen (2007) and McCoy (2005), who proposed to use 
several pixels of at least 10 times the total of bands included in the classification, 209 training sites 
for 2005, 225 for 2010 and 159 for 2014 were used.

SOCIO TERRITORIAL INDICATORS URBAN PERI-URBAN RURAL

Population density (/ha) 159.8 43.5 2.1

Business density (business/ha) 4.4 1.8 0.01

Road density (m/ha) 284.5 217.7 27.5

Education years 10.6 9.1 8.0

Occupants per dwelling 3.7 3.9 4.2

Percentage of the dependent population 34.9% 34.3% 36.5%

Percentage of indigenous households 2.2% 2.9% 3.9%

Percentage of single women 30.0% 26.6% 27.3%

Fertility rate (children per woman) 1.8 2.0 2.4

Build land percentage 91.8% 74.7% 2.4%

Cultivated land percentage 4.3% 5.3% 3.5%

Natural land percentage 4.1% 16.6% 19.5%

Entropy of land use (bits) 0.3 0.8 0.5

Table 1: Socio territorial 
indicators for the three zone 
types: urban, peri-urban and 
rural.

Figure 1: Study area: urban, 
rural and peri-urban zones to 
the west of Mexico City.
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All land-use categories used in the classification were finally reclassified into urban and non-urban. 
An accuracy assessment procedure was carried out for each year’s classification. More than 50 
accuracy assessment sites for each category were used. These sites were taken from QuickBird 
satellite images from 2005, 2010 and 2014. An error matrix was generated for each date, which is 
the most accepted measure to represent the thematic accuracy (Congalton & Green 2009). All image 
processing was accomplished in ENVI, and all spatial analysis processes were developed in ArcGIS.

2.2.2 LAND-USE CHANGE MODELLING

The model Geomod, available in TerrSet, was used to predict the transformation from non-urban 
to urban. This model is one of the most extensively used worldwide (Mirzapour et al. 2020; Nahib 
et al. 2018; Shade & Kremer 2019; Yesuf et al. 2021). It can only predict the transition from one 
category to another (e.g. urban and non-urban), extrapolating the land-use change from date 1 to 
a given time 2. It allows the user to set the amount of change obtained in time 2. A linear model 
was generated with data from 2005 and 2014 to estimate the urban area in 2024:

453631.602 228.084 ,y x= − +

where y is the urban area and x is the year.

Geomod selects the change locations based on three decision rules: nearest neighbours, 
stratification by subregions and suitability maps. The model then simulates future change by 
selecting areas with the highest suitability values (Hall et al. 1995; Pontius et al. 2001; Pontius 
& Malanson 2005). The present study followed the specialised literature to generate the layer of 
land suitability for urbanisation that has reported several urban growth drivers (Hall et al. 1995; 
Pontius & Schneider 2001). Seven drivers with a categorical scale were used (Table 2). In this layer, 
high suitability values are assigned to those places with similar biophysical attributes to those 
places that have changed to urban, and low suitability values are given to sites where biophysical 
attributes are similar to non-urban areas. Equal weights were allocated to all drivers.

A Geomod output validation was conducted, evaluating the concordance between the predicted 
and the reference map of the same date. It was carried out for 2014 using the satellite image 
classification as a reference map for that year. Since most pixels preserve their same category from 
one date to another (persistence), analysing the percentage of agreement between prediction 
and reference layers will give low percentages of disagreement in the amount and location of 
pixel categories (Pontius et al. 2004). To solve this, the study used a pattern validation through a 
map overlay of the observed earlier land cover image, the observed reference image of the later 
land cover and the predicted image of the later land cover. Since it was impossible to validate the 
prediction for 2024, the model prediction and the validation were run for the period 2010–14. It 
was implemented using the verification tool of the Land Change Modeler, also available in the 
software TerrSet. This tool generated an output layer with four validation categories: (1) correct 
rejections: the model predicted persistence, and it persisted; (2) hits: the model predicted change, 
and it changed; (3) false alarm: the model predicted change, and it persisted; and (4) misses: the 
model predicted persistence, and it changed.

DRIVER CATEGORIES

Terrain slope (%) < 5, 5.1–10, 10.1–15, 15.1–20, > 20

Altitude (masl) < 2500, 2500.1–2800, 2800.1–3100, 3100.1–3400, > 3400

Distance to roads (m) < 500, 500.1–1000, 1000.1–2000, 2000.1–5000, > 5000

Distance to urban areas (m) < 500, 500.1–1000, 1000.1–2000, 2000.1–5000, > 5000

Natural protected areas Yes, No

Population density (/km2) < 10, 10.1–50, 50.1–100, 100.1–300, > 300

Land use Agriculture, forest, urban

Table 2: Driver categories used 
to generate the layer of land 
suitability for urbanisation.
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2.2.3 URBAN GROWTH COMPARISON IN THE THREE ZONE TYPES

For each individual polygon (AGEB) comprising each zone, the net and relative urban growth 
were obtained. The urban growth was differentiated between urban expansion and urban infill. 
Urban infill was conceptualised as the urban growth happening in non-urban areas surrounded 
by the urban category, and urban expansion as the urban growth happening in non-urban areas 
that were not entirely enclosed by the urban category. The actual selection of urban expansion 
and urban infill was performed by converting the urban growth raster layer to vector format and 
selecting separately the polygon containing all the outer growth (expansion) from the individual 
polygons that were surrounded by urban areas (infill).

The average urban expansion (AUE) for each zone was calculated based on the corresponding 
individual AGEB’s relative increment. A Kruskal–Wallis test was implemented to assess the 
independence between zones and the AUE for the periods 2005–14 and 2014–24, to see if there 
were statistically significant differences. Besides, Mann–Whitney tests were computed to locate in 
which pair of zones the AUE statically differs for the two periods. These analyses were carried out 
in the statistical software SPSS.

2.2.4 DRIVING SOCIO-ECONOMIC FACTORS

To correlate urban expansion with specific driving socio-economic and territorial factors, Cramer’s 
V statistics were used. This statistic is based on the chi-squared and measures the relative 
(strength) of an association between two variables. It ranges from 0 (no association) to 1 (perfect 
association). Values close to 0.4 show an association between variables, and values less than 
0.15 indicate a low association (Akintuyi et al. 2021; Fathizad et al. 2019; Subiyanto et al. 2019). 
The independent factors used were elevation, distance to previous urban land, distance to roads, 
population density, education years, occupants per dwelling, percentage of the dependent 
population, percentage of indigenous households and land use.

2.2.5 BIOMASS LOSS ESTIMATION

To estimate the biomass (here the term biomass refers to only above-ground carbon biomass), the 
data from the forest inventory carried out between 2008 and 2010 by Mexico City’s Environmental 
and Land Planning Authority (Spanish: PAOT) were used. The sampling design consisted of 
conglomerates comprised of four circular sampling plots of 400 m2 distributed in an inverted ‘Y’ 
shape (CONAFOR 2012). Per tree biomass was estimated using the allometric equations developed 
by Acosta-Mireles et al. (2002) and Avendaño-Hernández et al. (2009) for the species established 
in the region.

To convert biomass from conglomerate to hectares, the ‘ratio of means’ was used (Šmelko & 
Merganič 2008):

ˆ
n

ii
n

ii

Y
R

X
= ∑
∑

where Yi is the total biomass in all plots of 400 m2 and Xi is the total area sampled, in i plots. A 
Regression–Kriging (RK) model was then used to generate a spatial layer of biomass distribution 
in all the study area. The RK method is a hybrid interpolation model that uses the combination of 
linear regression methods with ordinary Kriging, where the application of ordinary Kriging is carried 
out on the residuals of the regression (Galeana et al. 2021). In this case, the drift and residual 
predictions are made separately and then integrated (Galeana-Pizaña et al. 2014), as follows:

( ) ( ) ( )0 0 0 22
0 1 1

(* ( )ˆˆ
p n n

k k i j i
k i j

zRK S q S S Z Sβ ωε ω
= = =

= + +∑ ∑ ∑

where zRK(S0) is the point estimate of the variable at an unknown spatial location, βk is the 
coefficients of the drift model, qk is the number of auxiliary variables, ϖi(S0) is the weights 
determined by the semi-variogram, and e is the regression residuals.
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To model the biomass, as a secondary variable, (r2
adj = 0.4026), the Enhanced Vegetation Index 

(EVI) generated from the SPOT-5 used in the study was employed. Afterward, 50% of the 
conglomerates were randomly selected to calibrate the RK; the remaining percentage was taken 
to verify the models. The verification was made by the root mean square error (root mean square 
error—RMSE). Finally, the biomass loss due to urban growth was estimated by identifying those 
forest areas that were urbanised in each period and calculating the corresponding loss by urban 
expansion and urban infill.

3. RESULTS
Accuracies of the SPOT images classifications were at least 90%, which complied with the 
standards established in the specialised literature (de Jong & van der Meer 2004; McCoy 2005). 
The most significant omission errors were in the non-urban category for 2005 and 2010. In 
contrast, the most extensive commission errors were in the urban category for the same years 
(Table 3).

In the three zone types: urban, rural and peri-urban, there were increments of the urban category 
at the expense of the non-urban category. For the period 2005–14, the most significant net 
increment happened in the urban zone with a gain of 21%, followed by the increment in the peri-
urban zone with a gain of 19%. The smallest increment was in the rural zone with a gain of 7% 
(Table 4 and Figure 2).

VALIDATION 
IMAGE

CLASSIFICATION OMISSION 
ERROR (%)

COMMISSION 
ERROR (%)

TOTAL ACCURACY 
(%)

URBAN NON-URBAN TOTAL

2005

Urban 47 8 55 4% 15% 91%

Non-urban 2 53 55 13% 4%

Total 49 61 110

2010

Urban 47 8 55 6% 15% 90%

Non-urban 3 52 55 13% 5%

Total 50 60 110

2014

Urban 51 4 55 6% 7% 94%

Non-urban 3 52 55 7% 5%

Total 54 56 110

YEAR ZONE

URBAN RURAL PERI-URBAN

URBAN 
(HA)

% NON-URBAN 
(HA)

% URBAN 
(HA)

% NON-URBAN 
(HA)

% URBAN 
(HA)

% NON-URBAN 
(HA)

%

2005 5,206 43 7,018 57 202 1 16,089 99 230 10 2,056 90

2010 5,923 48 6,300 52 391 2 15,900 98 365 16 1,922 84

2014 7,815 64 4,409 36 1,281 8 15,010 92 656 29 1,631 71

Table 3: Confusion matrix: 
commission and omission 
errors and total accuracy 
for 2005, 2010 and 2014 
classifications.

Table 4: Area of the urban and 
non-urban categories for the 
urban, peri-urban and rural 
zones.
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Of this urban growth between 2005 and 2014, the urban expansion represented 56% in the urban 
zone, 8% in the peri-urban zone and only 1% in the rural zone. It means that in the rural and peri-
urban areas, more than 90% of the urban growth in this period was infill (Table 5).

PERIOD ZONE GROWTH (HA) EXPANSION (HA) INFILL (HA)

2005–10 Peri-urban 134 9 125

Rural 194 5 189

Urban 717 289 428

2010–14 Peri-urban 291 25 266

Rural 890 10 880

Urban 1,892 1,174 718

2014–24 Peri-urban 1,131 499 631

Rural 956 69 888

Urban 3,989 2,794 1,195

Table 5: Areas of urban growth, 
urban expansion and urban 
infill.

Figure 2: Land use in urban, 
rural and peri-urban zones: (a) 
2005, (b) 2010, (c) 2014 and 
(d) 2024.
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Comparing the Geomod output with the SPOT classification for 2014, in the urban zone the model 
overestimated in almost 5% the area of the urban category. In the rural and peri-urban zones, 
Geomod underestimated the area of this category by 6% and 11%, respectively (see the areas for 
2014 in Tables 4 and 6).

Geomod’s land-use prediction for 2024 indicated that the urban category would occupy almost 
all the area in the urban zone, with an increment of 27% in 10 years (2014–2024). The urban 
category will only increment 6% in the rural zone, while in the peri-urban zone, the urban category 
will increase by 57% (Table 6 and Figure 2).

The Geomod validation showed 83.9% of correct rejections (model predicted persistence, and it 
persisted) (15,362 ha), 3.7% of hits (model predicted change, and it changed), 6.3% of misses 
(model predicted persistence, and it changed) and 6.1% of false alarms (model predicted change, 
and it persisted). This yields an accuracy of almost 90%.

Regarding the individual AGEBs, the average percentage of urban growth (comprising urban 
expansion and infill) was more considerable in the peri-urban zones, followed by the urban and 
rural zones. However, the average percentage of urban expansion was more prominent in the 
urban zone, followed by the peri-urban and the rural. In contrast, the infill average was more 
significant in the peri-urban followed by rural (Table 7).

For the period 2005–14, the Kruskal–Wallis test showed a dependency between zones and the AUE (p 
< 0.0001). In other words, zone types significantly differ in their urban expansion. The Mann–Whitney 
test indicated the major differences in AUE between the peri-urban and urban zones and the rural 
and urban zones (p < 0.0001). In contrast, there were no significant differences in AUE between the 
peri-urban and rural zones (p > 0.05), which means that the zone that differed the most from the 
other two was the urban. For 2014–24 (the modelling period), the Kruskal–Wallis test also showed 
that zone types significantly differ in their urban expansion (p < 0.0001). However, the Mann–Whitney 
showed major differences in AUE between the urban and rural zones (p < 0.0001), followed by the 
peri-urban and urban zones (p = 0.18), and by the peri-urban and rural zones (p = 0.47). Again, the 
zone that differed the most from the other two was the urban in terms of urban expansion.

The socio-economic and territorial factors that correlated the most with urban growth in the study 
area with an overall Cramer’s coefficient close to 0.40 or higher were elevation, population density, 
distance to previous urban land and distance to roads (Table 8).

YEAR ZONE

URBAN RURAL PERI-URBAN

URBAN 
(HA)

% NON-URBAN 
(HA)

% URBAN 
(HA)

% NON-URBAN 
(HA)

% URBAN 
(HA)

% NON-URBAN 
(HA)

%

2014 8,394 69 3,830 31 252 2 16,038 98 414 18 1,873 82

2024 11,696 96 528 4 1,353 8 14,938 92 1,722 75 564 25

Table 6: Predicted urban and 
non-urban areas for the urban, 
rural and peri-urban zones 
(2014 and 2024).

PERIOD ZONE GROWTH (%) EXPANSION (%) INFILL (%)

2005–10 Peri-urban 6% 1% 6%

Rural 1% 0% 1%

Urban 4% 2% 2%

2010–14 Peri-urban 13% 1% 12%

Rural 5% 0% 5%

Urban 12% 9% 3%

2014–24 Peri-urban 43% 14% 29%

Rural 7% 0% 6%

Urban 22% 17% 5%

Table 7: Percentage average 
urban growth, expansion and 
infill in the peri-urban, rural and 
urban zones.
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The environmental impact of urban growth (infill and expansion), illustrated by the loss of carbon 
storage, revealed a total loss of biomass of 93,835 carbon megagrams (MgC) for the period 2005–
10, 204,590 MgC for 2010–14, and 1,596,780 MgC for 2014–4 (Table 9 and Figure 3). The mean 
square error of the spatial modelling was 43 MgC/ha.

FACTOR V

Elevation 0.5613

Population density 0.5436

Distance to previous urban land 0.3676

Distance to roads 0.3564

Percentage of the dependent population 0.1891

Slope 0.1592

Percentage of indigenous households 0.0695

Land Use 0.0032

Education years 0.0000

Occupants per dwelling 0.0000

Table 8: Cramer’s V-values for 
socio-economic and territorial 
factors.

BIOMASS LOSS

2005–10 (MGC) 2010–14 (MGC) 2014–24 (MGC)

EXPANSION INFILL EXPANSION INFILL EXPANSION INFILL

Urban 8,108 66,684 73,019 47,447 1,166,289 82,100

Peri-urban 188 7,232 1,298 15,668 196,264 37,580

Rural 135 11,488 524 66,634 51,878 62,669

Table 9: Biomass loss due 
to urban infill and urban 
expansion in the urban, peri-
urban and rural zones.

Note: MgC = carbon 
megagrams.

Figure 3 Spatial distribution of 
biomass and urban growth.
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4. DISCUSSION
Urban areas have been spreading in the past and will continue to do so in future. It has been reported 
that much of this increment occurs in peri-urban areas, which are transition zones where urban 
and rural activities overlap and rural landscape characteristics are quickly modified by industrial, 
commercial or residential land uses. However, it also can take place in purely rural and urban areas. 
Since conditions that influence land-use change can broadly vary among these zones, the differences 
in urban growth were analysed and quantified to understand their behaviour and give elements to 
support sustainable land-use policies appropriate for each zone to reduce their environmental impact.

Urban growth between 2005 and 2014 was found in all three zones (urban, rural and peri-urban), 
which is also observed in other worldwide studies (Dou & Han 2022; Li et al. 2022). This net increase 
was higher in the urban zone, followed by the one present in the peri-urban and rural zones; this 
agrees with the urban expansion reported by Li et al. (2022) for cities in Brazil, who state that this 
increment takes place in a polycentric way. Consequently, more than 90% of the urban growth 
in the peri-urban and rural zones in this period was infill of the gaps left by this fragmented and 
scattered urban form. This land-use fragmentation was also found by Ortiz-Báez et al. (2021) in 
peri-urban areas of Ecuador. Although urban infill reduces the use of natural and rural areas for 
urban expansion there are also disadvantages, such as reducing open green spaces suitable for 
natural flood protection or increasing land-use conflicts due to space limitations (Eichhorn et al. 
2021). In a more consolidated urban form such as the one in the urban zone, more than half of 
the urban growth corresponded to expansion.

The relative urban growth in the individual AGEB relating to their total area happened mainly in 
the peri-urban zones, as reported by several authors worldwide (Pribadi & Pauleit 2015; Tian 2015; 
Winarso et al. 2015). It is related to the population increment due to vegetative growth of the 
urban population and rural–urban migrations (Coq-Huelva & Asián-Chaves 2019) mainly of low-
income people creating irregular settlements (Heider et al. 2018; Wigle 2010). In addition, the local 
government has failed to control urban sprawl in areas of high ecological value (Aguilar et al. 2022).

Significant differences arose in the AUE between the three zone types for the multitemporal 
analysis and the modelling exercise. Urban zones differed the most from the other two in the AUE. 
It is partially explained due to the relative similarity between the peri-urban and the rural zones 
in population density which is one of the primary drivers of urban expansion (Li et al. 2022). This 
was one of the main urban growth drivers along with elevation, distance to previous urban land 
and distance to roads. This agrees with Heider et al. (2018) and Hernández-Flores et al. (2017) 
who reported among the main urban driving forces distance to urban areas, distance to roads and 
population growth rate. But they did not agree with the findings of Akintuyi et al. (2021), Fathizad 
et al. (2019) and Subiyanto et al. (2019), perhaps because they analysed other land-use changes 
in addition to urbanisation in countries with very different conditions from the study area.

Forests and green spaces provide different ecosystem services that can be of local, regional and 
global importance (Alexander & DePratto 2014; Dobbs et al. 2018; Livesley et al. 2016). Among 
the regulating ecosystem services is carbon sequestration, which mitigates climate change 
and air quality problems (Vos et al. 2013). However, as revealed in this study, urbanisation has 
provoked the reduction of carbon sequestration causing the liberation of more than 298,000 MgC 
into the atmosphere between 2005 and 2014. So, if forest and green spaces continue to be lost 
by urbanisation there will be a decrement in the provision of this and other ecosystem services 
and in biodiversity, reducing cultural diversity and diminishing urban resilience to environmental 
shocks and stresses (Colding & Barthel 2013). Furthermore, if forests and green spaces are 
properly managed, they can make valuable contributions to the quality of life of the people, who 
are increasingly concentrated in large cities (Conway et al. 2019) such as Mexico City. Therefore, 
understanding, the particular characteristics of the urban growth for each area type, rural, urban 
and peri-urban, will help to generate and implement specific sustainable land-use policies.

For peri-urban and rural areas the main growth is infill, so actions should be implemented to 
sustainably manage the vacant or undeveloped land within an existing human settlement 
to prevent expansion, but also to avoid the loss of priority areas for the provision of ecosystem 
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services. This issue is relevant for those cities in Mexico and around the world that present an 
increasingly fragmented and scattered urban form. In urban areas, where the main urban 
increment is expansion, sensible consolidation decisions need to be taken to avoid further urban 
expansion and the incorporation of urban green space.

Some recommendations to improve further studies are as follows. It is advisable to test multi-
temporal time series of free images such as Landsat or Sentinel, sacrificing spatial resolution 
but gaining temporal resolution (Deng et al. 2019; Li et al. 2018). To decrease the over- and 
underestimation in urban growth predictions by cellular automata models such as Geomod, models 
that consider the interactions of social actors can be used, e.g. through the use of agent-based 
models and dynamical systems to make modelling more flexible and consider individual variations 
in behavioural rules and random variations (Degenne & Lo Seen 2016; Helbing & Balietti 2013).

5. CONCLUSIONS
This study demonstrates the urban growth differences in peri-urban, rural and urban areas, making 
an explicit distinction between urban expansion and urban infill, revealing the socio-territorial 
factors driving urban growth, and estimating the effect of urban expansion on the loss of biomass. 
This spatial information is useful for designing focused land-use policies in dynamic urban contexts. 
The remote sensing approach showed its applicability to the study of urban growth. The findings 
comply with the standards but use the simplest classification methods.

The modelling exercise predicted urban growth, with high accuracy of nearly 90%, if hits and 
persistence are considered. It opens the possibility for future research to highlight possible 
interventions to control urban sprawl. However, predictions should be carefully used since they 
tend to overestimate urban expansion in the urban zone and underestimate it in the peri-urban 
and rural zones.

There was continuous urban growth in the study area. Nevertheless, this increase differed for 
the three zone types, urban, peri-urban and rural. The zone with more net growth was urban, 
followed by peri-urban and rural. However, the relative urban growth in the individual polygons 
that comprise each zone happened mainly in the peri-urban zones. This could be related to the 
population increment due to vegetative growth and rural–urban migrations mainly of low-income 
people creating irregular settlements. Differentiating between urban expansion and urban infill, 
urban expansion dominated the urban zone, while urban infill represented more than 90% of the 
urban increment in the rural and peri-urban areas. These differences imply the need for focused 
management strategies aimed at peri-urban and rural areas to prevent further expansion and 
maintain the ecosystem services provision. In urban areas, sensible consolidation decisions need 
to be taken to avoid further urban expansion and maintain urban green space.
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