

Watching brief

Date of first	
report of the	09 May 2022 [1]
outbreak	
	Indonesia is currently experiencing a foot-and-mouth disease (FMD)
Disease or	outbreak in livestock, caused by the foot-and-mouth disease virus
outbreak	(FMDV), an aphthovirus species (family <i>Picornaviridae</i>) [2].
	FMD is believed to have first been described in the 16 th century in
	cattle in Italy [3]. FMD is enzootic in Asia, South America, Africa and
	the Middle East, with sixty-nine countries recognised as FMD-free by
	the World Organisation of Animal Health (WOAH) [4].
	FMDV has seven serotypes: O, A, C, SAT 1, SAT 2, SAT 3, Asia 1 [5].
Origin	Serotypes O and A are most commonly identified globally, occurring in
	Africa, Asia and South America [6-8]. The SAT and Asia 1 serotypes
	are generally restricted to Africa and Asia, respectively, though
	incursions into other regions have occurred [9]. Serotype C, last
	documented during outbreaks in Brazil and Kenya in 2004, appears to
	be no longer circulating in livestock and is possibly extinct, though

	there are concerns of iatrogenic re-introduction with vaccines through
	laboratory escapes or improper inactivation [10,11].
	The current Indonesian outbreak is due to FMDV serotype O (O/ME-
	SA/Ind-2001e sublineage) [7].
	Though inconclusive, the source is suspected to be illegal importation
Suspected Source	of animals [1,12], perhaps from nearby countries where Serotype O is
	endemic [7].
	The first case is suspected to have occurred in cattle on 12 April 2022
Date of outbreak	in Jawa Timur province [1]. WOAH confirmed 3,496 cases in Jawa
beginning	Timur and Aceh provinces on 6 May 2022, and suspended Indonesia's
	FMD-free status with effect from 12 April 2022 [4,13,14].
Date outbreak	Ongoing as of 05 Sontember 2022
declared over	Ongoing as of 05 September 2022.
	Indonesia (26 of 37 provinces as of 3 Nov 2022) (Figure 1)
Affected countries & regions	<figure></figure>

Figure 1. Heatmap of FMD livestock cases by province in
Indonesia. Data sourced from the Ministry of Agriculture of the
Republic of Indonesia, 2022, FMD Outbreak Management and Prevention
Information. https://crisiscenterpmk.ditjenpkh.pertanian.go.id/ [15]
As of 3 November 2022, out of 54,767,135 livestock, there have been
570,137 cases (morbidity rate = 1.04%), 9,785 deaths (mortality rate =
0.02%), 12,650 culled, and 5,199,595 vaccinated. Most cases have
occurred in cattle (94.27%), followed by buffalo (4.56%), goats
(0.80%), sheep (0.36%), and pigs (0.02%) [15].
Clinical features may appear within 2-14 days after infection, with
severity and prevalence varying across host species. A study on the
2010-2011 FMD epidemic in South Korea reported the following
clinical manifestations [16-20]:
• Blisters/vesicles on feet, in and around the mouth, on mammary
glands, genitalia or other sites of skin (6.8% in goats up to
58.9% in pigs),
• Erosions of buccal mucosa or skin (9.3% in deer up to 28.6% in
beef cattle),
• Lameness that is potentially sudden or severe (2.4% in beef
cattle up to 18.2% in goats),

 Salivation, predominantly in cattle (2.9% in pigs up to 66 beef cattle), Fever (0.6% in pigs up to 2.4% in beef cattle), 	.9% in
 beef cattle), Fever (0.6% in pigs up to 2.4% in beef cattle), 	
• Fever (0.6% in pigs up to 2.4% in beef cattle),	
• Loss of appetite/anorexia (14.1% in pigs up to 38.9% in b	eef
cattle).	
Transmission occurs typically via direct contact with infected an	mals,
or indirect contact with their excretions/secretions, raw meat pro-	lucts,
or fomites (e.g. contaminated animal feed and water) [16,17]. Inf	ected
animals may shed virus during the incubation period, which is ty	pically
2-14 days [17,21]. FMDV may survive for months under favoura	ble
environmental conditions [17].	
Less frequently, aerosol transmission can occur over short and lo	ng
distances, influenced by host species (e.g. aerosol emissions are	nuch
higher in swine compared to sheep and cattle [22-24]), number/lo	ocation
uransmission	
of transmitting animals, topographical and meteorological condit	ions,
of transmitting animals, topographical and meteorological condit and FMDV serotype [17,23,25].	ions,
of transmitting animals, topographical and meteorological condit and FMDV serotype [17,23,25]. Live FMDV may persist in the oropharynx of some ruminants, k	ions, 10wn
of transmitting animals, topographical and meteorological condit and FMDV serotype [17,23,25]. Live FMDV may persist in the oropharynx of some ruminants, k as "carriers" [26], presenting a low but possible contagion risk [2	ions, 10wn 7].
of transmitting animals, topographical and meteorological condit and FMDV serotype [17,23,25]. Live FMDV may persist in the oropharynx of some ruminants, k as "carriers" [26], presenting a low but possible contagion risk [2] The presence of domestic carrier animals has important implication	ions, 10wn 7]. 0ns for
of transmitting animals, topographical and meteorological condit and FMDV serotype [17,23,25]. Live FMDV may persist in the oropharynx of some ruminants, k as "carriers" [26], presenting a low but possible contagion risk [2 The presence of domestic carrier animals has important implicati FMD-free countries in terms of their ability to maintain FMD-free	ions, 10wn 7]. ons for e
of transmitting animals, topographical and meteorological condit and FMDV serotype [17,23,25]. Live FMDV may persist in the oropharynx of some ruminants, k as "carriers" [26], presenting a low but possible contagion risk [2 The presence of domestic carrier animals has important implication FMD-free countries in terms of their ability to maintain FMD-free status and engage in international trade. However, carrier persister	ions, nown 7]. ons for e mce

	transmission under natural conditions is inconsistent [26,28-30]. Since
	carriers and non-carriers appear to exhibit similar viral shedding in
	saliva and nasal fluids, it is suggested that ongoing transmission from
	carriers may occur when oropharyngeal cells are damaged [26,31].
	Highly potent vaccines may reduce carriage prevalence, unless
	exposure occurs soon after vaccination [5].
	FMD is not considered a risk to human health. FMDV primarily infects
	animals and is not readily transmissible to humans as it crosses the
	species barrier with difficulty [4,16,32]. Though human FMD cases
	have been reported, they have been mild, extremely rare, and linked to
	close contact with infected animals or consumption of their
	unprocessed products [6,32-34].
	FMD affects cloven-hoofed mammals (artiodactyla), including
	domesticated ruminants, pigs and about 70 wildlife species [5,6,35].
	The global FMD prevalence in livestock is estimated to be 77% [4].
	Cattle are considered to be most susceptible to infection, particularly
Host Species	via airborne routes as they inhale larger volumes of air [5,17,33]. FMD
	is generally more severe in cattle and pigs, and milder in Asian water
	buffalo, sheep and goats [6,17]. Wild African buffalo, with subclinical
	infections and possible persistence of more than five years, may present
	a potential reservoir for transmission to domestic cattle [6,16,17]. Cattle

	usually remain carriers for up to six months, whereas pigs are unlikely
	to become carriers [17,36].
Case fatality rate	CFR is low in adults (1-5%), however may be high ($\geq 20\%$) in young
(CFR)	animals [3,17-19,37].
	The following complications may occur, with potentially significant
	economic implications [19,38-44]:
	Hoof malformations
	Chronic lameness
Complications	Secondary infection
	• Mastitis
	Impaired milk production
	• Abortion (particularly smaller ruminants)
	• Acute myocarditis (commonly causes death in young animals)
	Inactivated virus vaccines are available. Routine vaccination is used in
	countries to maintain "FMD-free with vaccination" status and
	emergency, high potency vaccines are used during outbreaks where
Available	FMD is endemic [16]. However, neither natural nor vaccine-induced
prevention	immunity against one FMDV serotype provides cross-protection
	against other serotypes [17]. Thus, vaccines are commonly prepared
	from at least two different serotypes to provide broad antigenic

	coverage. However, immunity only lasts approximately six months and
	re-vaccination is required in endemic areas [6,16].
	Other preventive measures include implementing movement restrictions
	on animals and animal products, and culling of infected and contact
	animals [16]. Biosecurity measures, including active and passive
	surveillance and disinfecting equipment (e.g., transport vehicles, cattle
	pens), can also help prevent transmission.
Available	There is currently no available treatment, except for supportive care in
treatment	endemic countries [19,45].
	The last reported FMD outbreak in Indonesia occurred in 1983. The
	outbreak began in cattle, buffalo, and sheep in Cepu, and resulted in
	13,976 cases [46,47]. With mass vaccination, movement restrictions,
	culling and disinfection, Indonesia regained FMD-free status in 1986
	[47].
Comparison with	FMDV serotype O also caused the 2001 UK epidemic, which cost
past outbreaks	USD\$20 billion in lost trade, outbreak management costs, and tourism
	impacts [6,48]. Sheep were the main transmitters during this outbreak
	and were marketed in large numbers, resulting in widespread
	transmission before the first case notification [48]. Other contributing
	factors included [48]:
	• Delays identifying, culling and disposing of animals

	• Insufficient stakeholder support for vaccination
	• Inconsistent compliance with farm biosecurity measures
	Initial vet shortage
	• Difficulties keeping front-line workers, stakeholders, and the
	public informed
	• Lack of stakeholder consultation
	The current Indonesian outbreak shares some similarities with the 2001
	UK epidemic, such as suspected FMD circulation for weeks before
	initial notification and large movements of animals and people [13].
	However, cattle are the main transmitters and vaccination is the main
	control strategy, alongside culling, disinfection, and movement
	restrictions of FMD-vulnerable cloven-hoofed animals and animal
	products[49,50].
	This is Indonesia's first reported FMD outbreak in nearly 40 years.
	Most livestock in Indonesia are owned by smallholder farms or villages
	across approximately 6,000 inhabited islands [51]. It is thus difficult to
Unusual features	track illegal movements of animals into and within Indonesia.
	The Indonesian government aims to procure 28.7 million vaccine doses
	by the end of the year [50], prioritising vaccination for uninfected
	animals in FMD-affected and surrounding areas [52]. They have also
	implemented a traffic-light system of zone-based movement restrictions

	based on vaccination and disease status to prevent FMD spread into
	unaffected zones [53]. However, it is difficult to track livestock
	vaccination status, particularly in rural areas. Although ear-tagging
	identification has begun, owners have been tying red ribbons around
	necks of cattle to signify vaccination [54]. However, these ribbons may
	be easily lost.
	The outbreak also occurred during Eid al-Adha celebrations during
	April-May and July. Eid al-Adha traditions involve slaughtering of
	animals and sharing meat with family, friends and community
	members. Thus, large movements of unvaccinated animals during these
	celebrations may have majorly contributed to widespread FMD
	transmission.
	transmission. The current FMD outbreak is causing significant economic and
	transmission. The current FMD outbreak is causing significant economic and biosecurity concerns for Indonesia, with forecasted losses of
	transmission. The current FMD outbreak is causing significant economic and biosecurity concerns for Indonesia, with forecasted losses of USD\$1.37-6.60 billion [13,55]. Without prior routine vaccination [56],
	transmission. The current FMD outbreak is causing significant economic and biosecurity concerns for Indonesia, with forecasted losses of USD\$1.37-6.60 billion [13,55]. Without prior routine vaccination [56], Indonesian livestock were completely susceptible to FMD infection
Critical analysis	transmission. The current FMD outbreak is causing significant economic and biosecurity concerns for Indonesia, with forecasted losses of USD\$1.37-6.60 billion [13,55]. Without prior routine vaccination [56], Indonesian livestock were completely susceptible to FMD infection [57]. Although Indonesian authorities have identified the current
Critical analysis	transmission. The current FMD outbreak is causing significant economic and biosecurity concerns for Indonesia, with forecasted losses of USD\$1.37-6.60 billion [13,55]. Without prior routine vaccination [56], Indonesian livestock were completely susceptible to FMD infection [57]. Although Indonesian authorities have identified the current outbreak strain affecting livestock [57], importing or locally producing
Critical analysis	transmission. The current FMD outbreak is causing significant economic and biosecurity concerns for Indonesia, with forecasted losses of USD\$1.37-6.60 billion [13,55]. Without prior routine vaccination [56], Indonesian livestock were completely susceptible to FMD infection [57]. Although Indonesian authorities have identified the current outbreak strain affecting livestock [57], importing or locally producing sufficient doses of an effective vaccine will take time. Additionally, as
Critical analysis	transmission. The current FMD outbreak is causing significant economic and biosecurity concerns for Indonesia, with forecasted losses of USD\$1.37-6.60 billion [13,55]. Without prior routine vaccination [56], Indonesian livestock were completely susceptible to FMD infection [57]. Although Indonesian authorities have identified the current outbreak strain affecting livestock [57], importing or locally producing sufficient doses of an effective vaccine will take time. Additionally, as Indonesia is an archipelago nation [51], ensuring cold chain efficiency
Critical analysis	transmission. The current FMD outbreak is causing significant economic and biosecurity concerns for Indonesia, with forecasted losses of USD\$1.37-6.60 billion [13,55]. Without prior routine vaccination [56], Indonesian livestock were completely susceptible to FMD infection [57]. Although Indonesian authorities have identified the current outbreak strain affecting livestock [57], importing or locally producing sufficient doses of an effective vaccine will take time. Additionally, as Indonesia is an archipelago nation [51], ensuring cold chain efficiency during FMD vaccine storage and transport may be difficult [57,58].

uncertainties regarding vaccine effectiveness, lack of vaccine affordability or insufficient training in administering vaccines [59,60]. Furthermore, since vaccination does not protect against carriage or heterologous infection, the potential for continued outbreak propagation is concerning. Carriage prevalence in cattle is reportedly between 15-50% [17]. Therefore, culling vaccinated animals may also help to safeguard against persistence, simplify post-outbreak surveillance and expedite recovery of FMD-free status [61-63].

Another challenge for containing this outbreak is a shortage of field veterinarians in affected areas, resulting in delayed management of cases [64], which could contribute to further spread of disease. Thus, there is a need for authorities to provide additional training, resources, and if possible, personnel, to affected areas. Field veterinarians and other personnel should also ensure biosecurity and decontamination measures are implemented thoroughly to prevent further indirect FMDV transmission.

The illegal importation of animals is suggested to have caused the current FMD outbreak. Illegal wildlife trade is prominent in Indonesia, due to weak policies and inadequate monitoring, enforcement, and information sharing [65,66]. Thus, measures addressing future FMD or other animal disease outbreaks should also consider the driving

socioeconomic and governmental factors behind illegal movements of animals [67].

Indonesian livestock farmers and industries will continue to face challenges post-outbreak. Restocking is a lengthy process, involving thorough decontamination, followed by a minimum destocking period, reintroduction of livestock from FMD-free zones (preferably with sentinel animals initially), then intense active surveillance until FMDfree status is regained [68].

The Indonesian outbreak is also causing biosecurity concerns for neighbouring countries, such as Australia, as high tourist traffic could cause FMD-incursion. Australia has already reported detections of FMD viral fragments: in an undeclared beef product carried by a passenger arriving in Adelaide from Indonesia, and in Melbourne pork products illegally imported from China [69,70]. Since Australia has been FMD-free for 150 years, an outbreak could have severe consequences for the livestock industry, with forecasted losses of AUD\$80 billion [60,71,72], underscoring the need for stringent surveillance and biosecurity measures.

FMD may spread rapidly with serious socioeconomic and trade impacts[73]. Rapid outbreak containment is crucial, requiring diseasesurveillance and control measures throughout all impacted and at-riskareas, including rural and poor communities. Co-ordinated, multilateral

	control measures should involve comprehensive consultation and
	communication with stakeholders in order to be successful. Ongoing
	monitoring and continued attention to biosecurity measures will be
	crucial for early detection and management of any further cases, and, in
	the long-term, help ensure that Indonesia has met all requirements to
	regain FMD-free status. After regaining FMD-free status, efforts should
	be focused on preventing future outbreaks, through robust surveillance
	and biosecurity regulations, and intersectoral collaboration between
	government, communities, and individuals, to maintain vigilance
	against further FMD incursions into Indonesia.
	• What is the risk of FMD transmission from carrier animals or
	wildlife and what role do they play in outbreak propagation?
	• How can vaccine hesitancy be addressed to achieve high
	vaccination rates?
	• Could a vaccine be developed that generates life-long immunity
Voy questions	and what are the potential implications?
Key questions	• Which control strategies have been most effective in previous
	and current outbreaks?
	• What social impacts might the outbreak have on Indonesian
	individuals, households and communities?
	• How can other countries support Indonesia with outbreak
	containment and subsequent recovery?

	• How can FMD-free countries safeguard against the
	socioeconomic impacts of potential outbreaks?
	1. Immediate notification. World Organisation for Animal Health
	09 May 2022.
	2. Domingo E, Baranowski E, Escarmís C, Sobrino F. Foot-and-
	mouth disease virus. Comp Immunol Microbiol Infect Dis. 2002;25(5-
	6):297-308.
	3. Grubman MJ, Baxt B. Foot-and-mouth disease. Clin Microbiol
	Rev. 2004;17(2):465-93.
	4. Foot and mouth disease: World Organisation of Animal Health;
	2022 [Available from: https://www.woah.org/en/disease/foot-and-
References	mouth-disease/.
	5. Spickler AR, Roth JA. NAHEMS Guidelines: Vaccination for
	Contagious Diseases. Center for Food Security and Public Health;
	2015.
	6. Foot-and-mouth disease in ruminants: Centre for Agriculture
	and Bioscience International; 2019 [Available from:
	https://www.cabi.org/isc/datasheet/82822#tooverview.
	7. Preliminary Outbreak Assessment: Foot and Mouth Disease in
	South-East Asia. Department for Environment, Food and Rural Affairs;
	2022.

8. Lloyd-Jones K, Mahapatra M, Upadhyaya S, Paton DJ, Babu A,
Hutchings G, et al. Genetic and antigenic characterization of serotype O
FMD viruses from East Africa for the selection of suitable vaccine
strain. Vaccine. 2017;35(49 Pt B):6842-9.
9. Wubshet AK, Dai J, Li Q, Zhang J. Review on Outbreak
Dynamics, the Endemic Serotypes, and Diversified Topotypic Profiles
of Foot and Mouth Disease Virus Isolates in Ethiopia from 2008 to
2018. Viruses. 2019;11(11).
10. Paton DJ, Di Nardo A, Knowles NJ, Wadsworth J, Pituco EM,
Cosivi O, et al. The history of foot-and-mouth disease virus serotype C:
the first known extinct serotype? Virus Evol. 2021;7(1):veab009.
11. Sangula AK, Siegismund HR, Belsham GJ, Balinda SN,
Masembe C, Muwanika VB. Low diversity of foot-and-mouth disease
serotype C virus in Kenya: evidence for probable vaccine strain re-
introductions in the field. Epidemiology and Infection.
2011;139(2):189-96.
12. As in Australia and New Zealand, Indonesia has been free from
FMD Foot and Mouth Diseases in livestock since 1990. But recently
the disease caused by the virus has resurfaced.: SBS; 2022 [Available
from: https://www.sbs.com.au/language/indonesian/en/podcast-
episode/outbreaks-of-fmd-foot-and-mouth-disease-in-
indonesia/71fvvtweh.

13. Indonesia: Foot and Mouth Disease Outbreak - Emergency Plan
of Action (EPoA), DREF Operation n° MDRID024. Reliefweb:
International Federation of Red Cross And Red Crescent Societies;
2022 12 July 2022.
14. Nason J. Foot and Mouth Disease reported in Indonesia: Beef
Central; 2022 [Available from: <u>https://www.beefcentral.com/news/foot-</u>
and-mouth-disease-outbreak-reported-in-indonesia/.
15. Informasi Penanggulangan Dan Tindakan Pencegahan Wabah
PMK [FMD Outbreak Management and Prevention Information]:
Ministry of Agriculture of the Republic of Indonesia; 2022 [Available
from: https://crisiscenterpmk.ditjenpkh.pertanian.go.id/.
16. Foot and mouth disease (infection with foot and mouth disease
virus). 2022. In: OIE Terrestrial Manual 2022 [Internet]. World
Organisation for Animal Health. Available from:
https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.0
<u>1.08_FMD.pdf</u> .
17. Alexandersen S, Zhang Z, Donaldson AI, Garland AJM. The
Pathogenesis and Diagnosis of Foot-and-Mouth Disease. Journal of
comparative pathology. 2003;129:1-36.
18. Mahmoud MA, Galbat SA. Outbreak of foot and mouth disease
and peste des petits ruminants in sheep flock imported for immediate
slaughter in Riyadh. Vet World. 2017;10(2):238-43.

19. Spickler AR. Foot and Mouth Disease. The Center for Food
Security & Public Health; 2021.
20. Yoon H, Yoon SS, Wee SH, Kim YJ, Kim B. Clinical
Manifestations of Foot-and-Mouth Disease During the 2010/2011
Epidemic in the Republic of Korea. Transboundary and Emerging
Diseases. 2012;59(6):517-25.
21. Orsel K, Bouma A, Dekker A, Stegeman JA, de Jong MCM.
Foot and mouth disease virus transmission during the incubation period
of the disease in piglets, lambs, calves, and dairy cows. Preventive
Veterinary Medicine. 2009;88(2):158-63.
22. Sellers RF, Parker J. Airborne excretion of foot-and-mouth
disease virus. J Hyg (Lond). 1969;67(4):671-7.
23. Colenutt C, Gonzales JL, Paton DJ, Gloster J, Nelson N,
Sanders C. Aerosol transmission of foot-and-mouth disease virus Asia-
1 under experimental conditions. Vet Microbiol. 2016;189:39-45.
24. Alexandersen S, Quan M, Murphy C, Knight J, Zhang Z.
Studies of Quantitative Parameters of Virus Excretion and
Transmission in Pigs and Cattle Experimentally Infected with Foot-and-
Mouth Disease Virus. Journal of Comparative Pathology.
2003;129(4):268-82.

25. Brown E, Nelson N, Gubbins S, Colenutt C. Airborne
Transmission of Foot-and-Mouth Disease Virus: A Review of Past and
Present Perspectives. Viruses. 2022;14(5):1009.
26. Parthiban ABR, Mahapatra M, Gubbins S, Parida S. Virus
Excretion from Foot-And-Mouth Disease Virus Carrier Cattle and Their
Potential Role in Causing New Outbreaks. PLOS ONE.
2015;10(6):e0128815.
27. Arzt J, Belsham GJ, Lohse L, Bøtner A, Stenfeldt C.
Transmission of Foot-and-Mouth Disease from Persistently Infected
Carrier Cattle to Naive Cattle via Transfer of Oropharyngeal Fluid.
mSphere. 2018;3(5):e00365-18.
28. Bronsvoort BMd, Handel IG, Nfon CK, Sørensen K-J, Malirat
V, Bergmann I, et al. Redefining the "carrier" state for foot-and-mouth
disease from the dynamics of virus persistence in endemically affected
cattle populations. Scientific Reports. 2016;6(1):29059.
29. Paton DJ, Gubbins S, King DP. Understanding the transmission
of foot-and-mouth disease virus at different scales. Current Opinion in
Virology. 2018;28:85-91.
30. Pacheco JM, Smoliga GR, O'Donnell V, Brito BP, Stenfeldt C,
Rodriguez LL, et al. Persistent Foot-and-Mouth Disease Virus Infection
in the Nasopharynx of Cattle; Tissue-Specific Distribution and Local
Cytokine Expression. PLOS ONE. 2015;10(5):e0125698.

31. Stenfeldt C, Eschbaumer M, Rekant SI, Pacheco JM, Smoliga
GR, Hartwig EJ, et al. The Foot-and-Mouth Disease Carrier State
Divergence in Cattle. J Virol. 2016;90(14):6344-64.
32. Prempeh H, Smith R, Müller B. Foot and mouth disease: the
human consequences. The health consequences are slight, the economic
ones huge. Bmj. 2001;322(7286):565-6.
33. Rapid Risk Assessment: Transmission of Foot and Mouth
disease to humans visiting affected areas. European Centre for Disease
Prevention and Control; 2012.
34. Foot-and-mouth disease: Department of Agriculture, Fisheries
and Forestry; 2022 [Available from:
https://www.agriculture.gov.au/biosecurity-trade/pests-diseases-
weeds/animal/fmd#:~:text=FMD%20is%20a%20disease%20of,humans
%20by%20eating%20affected%20meat.
35. Jamal SM, Belsham GJ. Foot-and-mouth disease: past, present
and future. Veterinary Research. 2013;44(1):116.
36. Stenfeldt C, Pacheco JM, Smoliga GR, Bishop E, Pauszek SJ,
Hartwig EJ, et al. Detection of Foot-and-mouth Disease Virus RNA and
Capsid Protein in Lymphoid Tissues of Convalescent Pigs Does Not
Indicate Existence of a Carrier State. Transboundary and Emerging
Diseases. 2016;63(2):152-64.

 37. Hassan MM, Khattak I, Hagh N, Awan F, Mass Vaccination and
Surveillance Reduced the Burden of Foot and Mouth Disease.
2014;2:1-5.
38. Ansari-Lari M, Mohebbi-Fani M, Lyons NA, Azizi N. Impact of
FMD outbreak on milk production and heifers' growth on a dairy herd
in southern Iran. Prev Vet Med. 2017;144:117-22.
39. Chanchaidechachai T, Saatkamp H, Inchaisri C, Hogeveen H.
Analysis of Epidemiological and Economic Impact of Foot-and-Mouth
Disease Outbreaks in Four District Areas in Thailand. Frontiers in
Veterinary Science. 2022;9.
40. Ferrari G, Tasciotti L, Khan E, Kiani A. Foot-and-Mouth
Disease and Its Effect on Milk Yield: An Economic Analysis on
Livestock Holders in Pakistan. Transboundary and Emerging Diseases.
2014;61(6):e52-e9.
41. G G, Kumar G, A K, Hegde R, Kumar N, Prabhakaran K, et al.
Foot and Mouth Disease (FMD) incidence in cattle and buffaloes and
its associated farm-level economic costs in endemic India. Preventive
Veterinary Medicine. 2021;190:105318.
42. Lyons NA, Alexander N, Stärk KDC, Dulu TD, Rushton J, Fine
PEM. Impact of foot-and-mouth disease on mastitis and culling on a
large-scale dairy farm in Kenya. Veterinary Research. 2015;46(1):41.

43. Ranjan R, Biswal JK, Subramaniam S, Singh KP, Stenfeldt C,
Rodriguez LL, et al. Foot-and-Mouth Disease Virus-Associated
Abortion and Vertical Transmission following Acute Infection in Cattle
under Natural Conditions. PLoS One. 2016;11(12):e0167163.
44. Wellenberg GJ, van der Poel WH, Van Oirschot JT. Viral
infections and bovine mastitis: a review. Vet Microbiol. 2002;88(1):27-
45.
45. Belsham GJ, Botner A, Lohse L. Foot-and-Mouth Disease in
Animals: MSD Veterinary Manual; 2021 [Available from:
https://www.msdvetmanual.com/en-au/generalized-conditions/foot-and-
mouth-disease/foot-and-mouth-disease-in-animals#v3272956.
46. Young PL, Ibrahim I, Soeharsono, Ronohardjo P, Hunt NT.
Foot-and-mouth disease in cattle, buffalo and sheep in Java. Aust Vet J.
1985;62(11):389.
47. Blacksell SD, Siengsanan-Lamont J, Kamolsiripichaiporn S,
Gleeson LJ, Windsor PA. A history of FMD research and control
programmes in Southeast Asia: lessons from the past informing the
future. Epidemiol Infect. 2019;147:e171.
48. Bourn J, Eales R, Thomas P, Bostock D, Lingard S, Derbyshire
I, et al. The 2001 Outbreak of Foot and Mouth Disease. National Audit
Office; 2002.

49. Traffic control of animal vulnerability to mouth and nail disease
and animal products vulnerable to mouth and nail disease. 2022.
50. Christina B. Indonesia to buy 29 mln foot and mouth disease
vaccine doses as outbreak worsens: Reuters; 2022 [Available from:
https://www.reuters.com/business/healthcare-
pharmaceuticals/indonesia-buy-29-mln-foot-mouth-disease-vaccine-
doses-outbreak-worsens-2022-06-23/.
51. Facts & Figures: Embassy of the Republic of Indonesia,
Washington, DC; [Available from:
https://www.embassyofindonesia.org/basic-facts/.
52. Gov't Boosts Foot and Mouth Disease Vaccination for
Livestock: Cabinet Secretariat of the Republic of Indonesia; 2022
[Available from: https://setkab.go.id/en/govt-boosts-foot-and-mouth-
disease-vaccination-for-livestock/.
53. SURAT EDARAN NOMOR 4 TAHUN 2022 [Circular Letter
Number 4 Year 2022]. Mouth and Nail Disease Task Unit; 2022.
54. Kelly R. Indonesia foot-and-mouth crisis amplifies global
spread risk: Veterinary Information Network; 2022 [Available from:
https://news.vin.com/default.aspx?pid=210&catId=615&Id=11066028.
55. Karyza D. Foot-and-mouth could cost country estimated \$1.37b
a year 2022 [Available from:

	.1
https://www.thejakartapost.com/business/2022/05/29/foot-and	<u>mouth-</u>
could-cost-country-estimated-1-37b-a-year.html.	
56. List of Foot and Mouth Disease Free Members: World	
Organisation for Animal Health; 2010 [Available from:	
https://web.oie.int//eng/Status/FMD/en_fmd_free.htm.	
57. Belsham GJ. Towards improvements in foot-and-mout	n disease
vaccine performance. Acta Veterinaria Scandinavica. 2020;620	1):20.
58. Sieng S, Walkden-Brown S, Kerr J. Variation in Storag	e
Temperatures for Foot and Mouth Vaccine in Cambodia. 2016	:7-9.
59. Connors E. In Indonesia, a foot and mouth battle of epi	с
proportions: The Australian Financial Review; 2022 [Availabl	e from:
https://www.afr.com/world/asia/in-indonesia-a-foot-and-moutl	<u>ı-battle-</u>
of-epic-proportions-20220724-p5b438.	
60. Wijaya S, Souisa H. Farmers concerned at potential for	ot-and-
mouth spread as Australia and Indonesia tackle outbreak: ABC	News;
2022 [Available from: https://www.abc.net.au/news/2022-08-	
14/indonesia-and-australia-work-to-control-foot-and-mouth-	
<u>disease/101314266</u> .	
61. Bradhurst R, Garner G, East I, Death C, Dodd A, Kom	bas T.
Management strategies for vaccinated animals after an outbrea	k of foot-
and-mouth disease and the impact on return to trade. PLoS On	e.
2019;14(10):e0223518.	

62. Terrestrial Code Online Access. 2022. In: Terrestrial Animal
Health Code [Internet]. World Organisation for Animal Health.
Available from: <u>https://www.woah.org/en/what-we-do/standards/codes-</u>
and-manuals/terrestrial-code-online-
access/?id=169&L=1&htmfile=chapitre_fmd.htm.
63. Jasper C. A foot-and-mouth disease vaccine is in use overseas,
so why isn't Australia using it to protect our livestock? 2022 [Available
from: https://www.abc.net.au/news/2022-07-17/why-isnt-australia-
vaccinating-against-foot-and-mouth-disease/101220094.
64. Puan Maharani Desak Percepatan Vaksinasi PMK Hewan
Ternak [Puan Maharani Urges to Accelerate FMD Vaccination for
Livestock]: House of Representatives of the Republic of Indonesia;
2022 [Available from:
https://www.dpr.go.id/berita/detail/id/39244/t/Puan+Maharani+Desak+
Percepatan+Vaksinasi+PMK+Hewan+Ternak.
65. Gokkon B. Indonesia ranks high on legal wildlife trade, but
experts warn it masks illegal trade Mongabay2021 [Available from:
https://news.mongabay.com/2021/12/indonesia-ranks-high-on-legal-
wildlife-trade-but-experts-warn-it-masks-illegal-
trade/#:~:text=Language-
,Indonesia%20ranks%20high%20on%20legal%20wildlife%20trade%2
C%20but,warn%20it%20masks%20illegal%20trade&text=Indonesia%

20sits%20at%20No.,since%201975%2C%20new%20research%20sho
<u>WS</u> .
66. GEF - COMBATTING ILLEGAL WILDLIFE TRADE
(CIWT): United Nations Development Programme; [Available from:
https://www.undp.org/indonesia/projects/gef-combatting-illegal-
wildlife-trade-ciwt.
67. Kassa S, Baez-Camargo C, Costa J, Lugolobi R. Determinants
and Drivers of Wildlife Trafficking: A Qualitative Analysis in Uganda.
Journal of International Wildlife Law & Policy. 2021;24(3-4):314-42.
68. CHAPTER 6 EARLY REACTION CONTINGENCY
PLANNING FOR A FMD EMERGENCY: Food and Agriculture
Organization; [Available from:
https://www.fao.org/3/Y4382E/y4382e09.htm.
69. Davies R, Boisvert E, McNaughton J, Field E. Foot-and-mouth
disease viral fragments found in beef at Adelaide Airport, following
Melbourne pork discovery: ABC News; 2022 [Available from:
https://www.abc.net.au/news/2022-07-21/foot-and-mouth-viral-
fragments-discovered-at-adelaide-airport/101259366.
70. Sullivan K. Foot-and-mouth disease fragments detected in meat
imported to Australia: ABC News; 2022 [Available from:
https://www.abc.net.au/news/2022-07-20/foot-and-mouth-disease-
fragments-detected/101254410.

71. Travellers from Indonesia can help to keep foot-and-mouth
disease out: Department of Agriculture, Fisheries and Forestry; 2022
[Available from: https://www.agriculture.gov.au/about/news/travellers-
from-indonesia-can-help-keeping-fmd-out.
72. Fazakerley J. Protecting Australia from foot-and-mouth disease:
The University of Melbourne; 2022 [Available from:
https://pursuit.unimelb.edu.au/articles/protecting-australia-from-foot-
and-mouth-disease.
73. Old Classification of Diseases Notifiable to the OIE: World
Organisation for Animal Health; [Available from:
https://www.woah.org/en/what-we-do/animal-health-and-
welfare/animal-diseases/old-classification-of-diseases-notifiable-to-the-
oie-list-a/.