
When comparing independent groups researchers often 
analyze the means by performing a Student’s t-test or 
classical Analysis of Variance (ANOVA) F-test (Erceg-Hurn 
& Mirosevich, 2008; Keselman et al., 1998; Tomarken & 
Serlin, 1986). Both tests rely on the assumptions that 
independent and identically distributed residuals (1) are 
sampled from a normal distribution and (2) have equal 
variances between groups (or homoscedasticity; see Lix, 
Keselman, & Keselman, 1996). While a deviation from the 
normality assumption generally does not strongly affect 
either the Type I error rates (Glass, Peckham, & Sanders, 
1972; Harwell, Rubinstein, Hayes, & Olds, 1992; Tiku, 
1971) or the power of the F-test (David & Johnson, 1951; 
Harwell et al., 1992; Srivastava, 1959; Tiku, 1971), the 
F-test is not robust against unequal variances (Grissom, 
2000). Unequal variances can alter both the Type I error 
rate (David & Johnson, 1951; Harwell et al., 1992) and 
statistical power (Nimon, 2012; Overall, Atlas, & Gibson, 
1995) of the F-test.

Although it is important to make sure test assumptions 
are met before a statistical test is performed, research-
ers rarely provide information about test assumptions 
when they report an F-test. We examined statistical tests 
reported in 116 articles in the Journal of Personality and 
Social Psychology published in 2016. Fourteen percent 
of these articles reported a one-way F-test, but only 
one article indicated that the homogeneity of variances 
assumption was taken into account. They reported cor-
rected degrees of freedom for unequal variances, which 
could signal the use of the W-test instead of the classical 
F-test. A similar investigation (Hoekstra, Kiers & Johnson, 
2012) yielded conclusions about the lack of attention to 
both the homoscedasticity and the normality assump-
tions. Despite the fact that the F-test is currently used by 
default, better alternatives exist, such as the Welch’s W 
ANOVA (W-test), the Alexander-Govern test, James’ sec-
ond order test, and the Brown-Forsythe ANOVA (F*-test). 
Although not the focus of the current article, additional 
tests exist that allow researchers to compare groups either 
based on other estimators of central tendency than the 
mean (see for example Erceg-Hurn & Mirosevich, 2008; 
Wilcox, 1998), or based on other relevant parameters of 
distribution than the central tendency, such as standard 
deviations and the shape of the distribution (Grissom, 
2000; Tomarken & Serlin, 1986). However, since most 
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researchers currently generate hypotheses about differ-
ences between means (Erceg-Hurn & Mirosevich, 2008; 
Keselman et al., 1998), we think that a first realistic first 
step towards progress would be to get researchers to cor-
rectly test the hypothesis they are used to.

Although the debate surrounding the assumptions of 
the F-test has been widely explored (see for example the 
meta-analysis of Harwell et al., 1992), applied research-
ers still largely ignore the consequences of assumption 
violations. Non-mathematical pedagogical papers sum-
marizing the arguments seem to be lacking from the lit-
erature, and the current paper aims to fill this gap. We will 
discuss the pertinence of the assumptions of the F-test, 
and focus on the question of heteroscedasticity (that, as 
we will see, can have major consequences on error rates). 
We will provide a non-mathematical explanation of how 
alternatives to the classical F-test cope with heteroscedas-
ticity violations. We conducted simulations in which we 
compare the F-test with the most promising alternatives. 
We argue that when variances are equal between groups, 
the W-test has nearly the same empirical Type I error rate 
and power as the F-test, but when variances are unequal, 
it provides empirical Type I and Type II error rates that are 
closer to the expected levels compared to the F-test. Since 
the W-test is available in practically all statistical software 
packages, researchers can immediately improve their sta-
tistical inferences by replacing the F-test by the W-test.

Normality and Homogeneity of Variances under 
Ecological Conditions
For several reasons, assumptions of homogeneity of 
variances and normality are always more or less violated 
(Glass et al., 1972). In this section we will summarize the 
specificity of the methods used in our discipline that can 
account for this situation.

Normality Assumption
It has been argued that there are many fields in psychol-
ogy where the assumption of normality does not hold 
(Cain, Zhang & Yuan, 2017; Micceri, 1989; Yuan, Bentler 
& Chan, 2004). As argued by Micceri (1989), there are sev-
eral factors that could explain departures from the nor-
mality assumption, and we will focus on three of them: 
treatment effects, the presence of subpopulations, and 
the bounded measures underlying residuals.

First, although the mean can be influenced by the treat-
ment effects, experimental treatment can also change the 
shape of a distribution, either by influencing the skewness, 
quantifying the asymmetry of the shape of the distribu-
tion, and kurtosis, a measure of the tendency to produce 
extreme values. A distribution with positive kurtosis will 
have heavier tails than the normal distribution, which 
means that extreme values will be more likely, while a dis-
tribution with negative kurtosis will have lighter tails than 
the normal distribution, meaning that extreme values will 
be less likely (Westfall, 2014; Wilcox, 2005). For example, 
a training aiming at reducing a bias perception of threat 
when being exposed to ambiguous words will not uni-
formly impact the perception of all participants, depend-
ing on their level of anxiety (Grey & Mathews, 2000). This 

could influence the kurtosis of the  distribution of bias 
score.

Second, prior to any experimental treatment, the pres-
ence of several subpopulations may lead to departures 
from the normality assumptions. A subgroup might 
exist that is unequal on some characteristics relevant 
to the measurements, that are not controlled within 
the studied group, which results in mixed distributions. 
This unavoidable lack of control is inherent of our field 
given its complexity. As an illustration, Wilcox (2005) 
writes that pooling two normally-distributed popula-
tions that have the same mean but different variances 
(e.g.  normally distributed scores for schizophrenic and 
not schizophrenic participants) could result in distri-
butions that are very similar to the normal curve, but 
with thicker tails. As another example, when assessing a 
wellness score for the general population, data may be 
sampled from a left-skewed distribution, because most 
people are probably not depressed (see Heun et al., 
1999). In this case, people who suffer from depression 
and people who do not suffer from depression are part 
of the same population, which can leads to asymmetry 
in the distribution.

Third, bounded measures can also explain non-normal 
distributions. For example, response time can be very 
large, but never below zero, which results in right-skewed 
distributions. In sum, there are many common situa-
tions in which normally distributed data is an unlikely 
assumption.

Homogeneity of Variances Assumption
Homogeneity of variances (or homoscedasticity) is a math-
ematical requirement that is also ecologically unlikely 
(Erceg-Hurn & Mirosevich, 2008; Grissom, 2000). In a pre-
vious paper (Delacre, Lakens & Leys, 2017), we identified 
three different causes of heteroscedasticity: the variability 
inherent to the use of measured variables, the variability 
induced by quasi-experimental treatments on measured 
variables, and the variability induced by different experi-
mental treatments on randomly assigned subjects. One 
additional source of variability is the presence of uniden-
tified moderators (Cohen et al., 2013).

First, psychologists, as many scholars from various fields 
in human sciences, often use measured variables (e.g. age, 
gender, educational level, ethnic origin, depression level, 
etc.) instead of random assignment to conditions. Prior 
to any treatment, parameters of pre-existing groups can 
vary largely from one population to another, as suggested 
by Henrich, Heine, and Norenzayan (2010). For example, 
Green, Deschamps, and Páez (2005) have shown that 
the scores of competitiveness, self-reliance and interde-
pendence are more variable in some ethnic groups than 
in others. This stands true for many pre-existing groups 
such as gender, cultures, or religions and for various out-
comes (see for example Adams et al., 2014; Beilmann et 
al., 2014; Church et al., 2012; Cohen & Hill, 2007; Haar 
et al., 2014; Montoya & Briggs, 2013). Moreover, groups 
are sometimes defined with the intention to have differ-
ent variabilities. For example, as soon as a selective school 
admits its students based on the results of aptitude tests, 
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the variability will be smaller compared to a school that 
accepts all students.

Second, a quasi-experimental treatment can have dif-
ferent impacts on variances between pre-existing groups, 
that can even be of theoretical interest. For example, in 
the field of linguistics and social psychology, Wasserman 
and Weseley (2009) investigated the impact of language 
gender structure on sexist attitudes of women and men. 
They tested differences between sexist attitude scores of 
subjects who read a text in English (i.e. a language with-
out grammatical gender) or in Spanish (i.e. a language 
with grammatical gender). The results showed that (for a 
reason not explained by the authors), the women’s score 
on the sexism dimension was more variable when the 
text was read in Spanish than in English (SDspanish = .80 > 
SDenglish = .50). For men, the reverse was true (SDspanish = .97 
< SDenglish = 1.33).1

Third, even when the variances of groups are the same 
before treatment (due to a complete succesful randomiza-
tion in group assignment), unequal variances can emerge 
later, as a consequence of an experimental treatment 
(Box, 1954; Bryk & Raudenbush, 1988; Cumming, 2005; 
Erceg-Hurn & Mirosevich, 2008; Keppel & Wickens, 2004). 
For example, Koeser and Sczesny (2014) have compared 
arguments advocating either masculine generic or gen-
der-fair language with control messages in order to test 
the impact of these conditions on the use of gender-fair 
wording (measured as a frequency). They report that the 
standard deviations increase after treatment in all experi-
mental conditions.

Consequences of Assumption Violations
Assumptions violations would not be a matter per se, if 
the F-test was perfectly robust against departures from 
them (Glass et al., 1972). When performing a test, two 
types of errors can be made: Type I errors and Type II 
errors. A Type I error consists of falsely rejecting the null 
hypothesis in favour of an alternative hypothesis, and the 
Type I error rate (α) is the proportion of tests that, when 
sampling many times from the same population, reject 
the null hypothesis when there is no true effect in the 
population. A Type II error consists of failing to reject the 
null hypothesis, and the Type II error rate (β) is the propor-
tion of tests, when sampling many times from the same 
population, that fail to reject the null hypothesis when 
there is a true effect. Finally, the statistical power (1 – β) is 
the proportion of tests, when sampling many times from 
the same population, that correctly reject the null hypoth-
esis when there is a true effect in the population.

Violation of the Normality Assumption
Regarding the Type I error rate, the shape of the distri-
bution has very little impact on the F-test (Harwell et 
al., 1992). When departures are very small (i.e. a kurtosis 
between 1.2 and 3 or a skewness between –0.4 and 0.4), 
the Type I error rate of the F-test is very close to expecta-
tions, even with sample sizes as small as 11 subjects per 
group (Hsu & Feldt, 1969).

Regarding the Type II error rate, many authors under-
lined that departures from normality do not seriously 

affect the power (Boneau, 1960; David & Johnson, 1951; 
Glass et al., 1972; Harwell et al., 1992; Srivastava, 1959; 
Tiku, 1971). However, we can conclude from Srivastava 
(1959) and Boneau (1960) that kurtosis has a slightly 
larger impact on the power than skewness. The effect 
of non-normality on power increases when sample sizes 
are unequal between groups (Glass et al., 1972). Lastly 
the effect of non-normality decreases when sample sizes 
increase (Srivastava, 1959).

Violation of Homogeneity of Variances Assumption
Regarding the Type I error rate, the F-test is sensitive to 
unequal variances (Harwell et al., 1992). More specifi-
cally, the more unequal the SD of the population’s sam-
ples are extracted from, the higher the impact. When 
there are only two groups, the impact is smaller than 
when there are more than two groups (Harwell et al., 
1992). When there are more than two groups, the F-test 
becomes more liberal, meaning that the Type I error 
rate is larger than the nominal alpha level, even when 
sample sizes are equal across groups (Tomarken & Serlin, 
1986). Moreover, when sample sizes are unequal, there is 
a strong effect of the sample size and variance pairing. In 
case of a positive pairing (i.e. the group with the larger 
sample size also has the larger variance), the test is too 
conservative, meaning that the Type I error rate of the 
test is lower than the nominal alpha level, whereas in 
case of a negative pairing (i.e. the group with the larger 
sample size has the smaller variance), the test is too lib-
eral (Glass et al., 1972; Nimon, 2012; Overall et al., 1995; 
Tomarken & Serlin, 1986).

Regarding the Type II error rate, there is a small 
impact of unequal variances when sample sizes are equal 
(Harwell et al., 1992), but there is a strong effect of the 
sample size and variance pairing (Nimon, 2012; Overall 
et al., 1995). In case of a positive pairing, the Type II error 
rate increases (i.e. the power decreases), and in case of 
a negative pairing, the Type II error decreases (i.e. the 
power increases).

Cumulative Violation of Normality and Homogeneity 
of Variance
Regarding both Type I and Type II error rates, following 
Harwell et al. (1992), there is no interaction between nor-
mality violations and unequal variances. Indeed, the effect 
of heteroscedasticity is relatively constant regardless of 
the shape of the distribution.

Based on mathematical explanations and Monteo 
Carlo simulations we chose to compare the F-test with 
the W-test and F*-test and to exclude the James’ second-
order and Alexander-Govern’s test because the latter two 
yield very similar results to the W-test, but are less readily 
available in statistical software packages. Tomarken and 
Serlin (1986) have shown that from the available alterna-
tives, the F*-test and the W-test perform best, and both 
tests are available in SPSS, which is widely used software 
in the psychological sciences (Hoekstra et al., 2012). For 
a more extended description of the James’ second-order 
and Alexander-Govern’s test, see Schneider and Penfield 
(1997).
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The Mathematical Differences Between the 
F-test, W-test, and F*-test
The mathematical differences between the F-test, W-test 
and F*-test can be explained by focusing on how standard 
deviations are pooled across groups. As shown in (1) the F 
statistic is calculated by dividing the inter-group variance 
by a pooled error term, where 2

js  and nj are respectively 
the variance estimates and the sample sizes from each 
independent group, and where k is the number of inde-
pendent groups:
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The degrees of freedom in the numerator (2) and in the 
denominator (3) of the F-test are computed as follows:

 1ndf k= −  (2)

 ,ddf N k= −  (3)

With 1
k
j jN n== ∑ . As a generalization of the Student’s 

t-test, the F-test is calculated based on a pooled error term. 
This implies that all samples are considered as issued from 
a common population variance (hence the assumption of 
homoscedasticity). When there is heteroscedasticity, and 
if the larger variance is associated with the larger sample 
size, the error term, which is the denominator in (1), is 
overestimated. The F-value is therefore smaller, leading to 
fewer significant findings than expected, and the F-test is 
too conservative. When the larger variance is associated 
with the smaller sample size the denominator in (1) is 
underestimated. The F-value is then inflated, which yields 
more significant results than expected.

The F* statistic proposed by Brown and Forsythe (1974) 
is computed as follows:
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Where xj and 2
js  are respectively the group mean and 

the group variance, and 
¨

x  is the overall mean. As it can 
be seen in (4) the numerator of the F* statistic is equal 
to the sum of squares between groups (which is equal 
to the numerator of the F statistic when one compares 
two groups). In the denominator, the variance of each 
group is weighted by 1 minus the relative frequency of 
each group. This adjustment implies that the variance 
associated with the group with the smallest sample size 
is given more weight compared to the F-test. As a result, 
when the larger variance is associated with the larger 
sample size, F* is larger than F, because the denomina-
tor decreases, leading to more significant findings com-
pared to the F-test. On the other hand, when the larger 
variance is associated with the smaller sample size, F* is 
smaller than F, because the denominator increases, lead-

ing to fewer significant findings compared to the F-test. 
The degrees of freedom in the numerator and in the 
denominator of F*-test are computed as follows (with 
the same principle as the denominator computation of 
the F* statistic):

 1ndf k= −  (5)
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Formula (7) provides the computation of the W-test, 
or Welch’s F-test. In the numerator of the W-test the 
squared deviation between group means and the general 
mean are weighted by 2

j

j

n

s  instead of nj (Brown & Forsythe, 
1974). As a consequence, for equal sample sizes, the 
group with the highest variance will have smaller weight 
(Liu, 2015).
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The degrees of freedom of the W-test are approximated 
as follows:

 1ndf k= −  (8)
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When there are only two groups to compare, the F*-test 
and W-test are identical (i.e., they have exactly the same 
statistical value, degrees of freedom and significance). 
However, when there are more than two groups to com-
pare, the tests differ. In the appendix we illustrate the 
calculation of all three statistics in detail for a fictional 
 three-group design for educational purposes.
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Monte Carlo simulations: F-test versus W-test 
versus F*-test
We performed Monte Carlo simulations using R (version 
3.5.0) to assess the Type I and Type II error rates for the 
three tests. One million datasets were generated for 3840 
scenarios that address the arguments present in the litera-
ture. In 2560 scenarios, means were equal across all groups 
(i.e. the null hypothesis is true), in order to assess the Type 
I error rate of the tests. In 1280 scenarios, there were dif-
ferences between means (i.e. the alternative hypothesis is 
true) in order to assess the power of the tests. In all sce-
narios, when using more than 2 samples, all samples but 
one was generated from the same population, and only 
one group had a different population mean.

Population parameter values were chosen in order to 
illustrate the consequences of factors known to play a key 
role on both the Type I error rate and the statistical power 
when performing an ANOVA. Based on the literature review 
presented above, we manipulated the number of groups, 
the sample sizes, the sample size ratio ( -ratio ) = k

j

n
nn , the 

SD-ratio ( -ratio ) = k

j
SD 

 , and the sample size and variance 
pairing. In our scenarios, the number of compared groups 
(k) varied from 2 to 5. Sample sizes of k-1 groups (nj) were 
20, 30, 40, 50, or 100. The sample size of the last group 
was a function of the n-ratio, ranging from 0.5 to 2, in 
steps of 0.5. The simulations for which the n-ratio equals 1 
are known as a balanced design (i.e. sample sizes are equal 
across all groups). The SD of the population from which 
was extracted last group was a function of the SD-ratio, 
with values of 0.5, 1, 2 or 4. The simulations for which the 
SD-ratio equals 1 are the particular case of homoscedastic-
ity (i.e. equal variances across groups).

All possible combinations of n-ratio and SD-ratio were 
performed in order to distinguish positive pairings (the 
group with the largest sample size is extracted from the 
population with the largest SD), negative pairings (the 
group with the smallest sample size is extracted from the 
population with the smallest SD), and no pairing (sample 
sizes and/or population SD are equal across all groups). 
All of those conditions were tested with normal and non-
normal distributions. When two groups are compared, 
conclusions for the three ANOVA tests (F, F*, W) should 
yield identical error rates when compared to their equiva-
lent t-tests (the F-test is equivalent to Student’s t-test, and 
the F*-test and W-test are equivalent to Welch’s t-test; 
Delacre et al., 2017). When there are more than three 
groups, the F-test becomes increasingly liberal as soon as 
the variances of the distributions in each group are not 
similar, even when sample sizes are equal between groups 
(Harwell et al., 1992; Quensel, 1947).

For didactic reasons, we will report only the results 
where we compared three groups (k = 3). Increasing the 
number of groups increases how liberal all tests are. For 
interested readers, all figures for cases where we compare 
more than three groups are available here: https://osf.
io/h4ks8/. Overall, the larger the sample sizes, the less 
the distributions of the population underlying the sam-
ples impact the robustness of the tests (Srivastava, 1959). 
However, increasing the sample sizes does not improve 
the robustness of the test when there is heteroscedasticity. 

Interested reader can see all details in the following Excel 
spreadsheet, available on github: « Type I error rate.xlsx ».

In sum, the simulations grouped over different sample 
sizes yield 9 conditions based on the n-ratio, SD-ratio, 
and sample size and variance pairing, as summarized in 
Table 1.

In all Figures presented below, averaged results for each 
sub-condition are presented under seven different config-
urations of distributions, using the following legend.

Type I Error Rate of the F-test, W-test, and 
F*-test
As previously mentioned, the Type I error rate (α) is the 
long-run frequency of observing significant results when 
the null-hypothesis is true. When means are equal across 
all groups the Type I error rate of all test should be equal 
to the nominal alpha level. We assessed the Type I error 
rate of the F-test, W-test and F*-test under 2560 scenarios 
using a nominal alpha level of 5%.

When there is no difference between means, the nine 
cells of Table 1 simplify into five sub-conditions:

•	 Equal	n and SD across groups (a)
•	 Unequal	n but equal SD across groups (b and c)
•	 Unequal	SD but equal n across groups (d and g)
•	 Unequal	 n and SD across groups, with positive 

 correlation between n and SD (e and i)
•	 Unequal	 n and SD across groups, with negative 

 correlation between n and SD (f and h)

Table 1: 9 conditions based on the n-ratio, SD-ratio, and 
sample size and variance pairing.

n-ratio

1 >1 <1

SD-ratio 1 a b c

>1 d e f

<1 g h i

Note: The n-ratio is the sample size of the last group divided by 
the sample size of the first group. When all sample sizes are 
equal across groups, the n-ratio equals 1. When the sample 
size of the last group is higher than the sample size of the 
first group, n-ratio >1, and when the sample size of the last 
group is smaller than the sample size of the first group, n-ratio 
<1. SD-ratio is the population SD of the last group divided by 
the population SD of the first group. When all samples are 
extracted from populations with the same SD, the SD-ratio 
equals 1. When the last group is extracted from a population 
with a larger SD than all other groups, the SD-ratio >1. When 
the last group is extracted from a population with a smaller SD 
than all other groups, the SD-ratio <1.

Figure 1: Legend.

https://osf.io/h4ks8/
https://osf.io/h4ks8/
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In Figures 2 to 6 (see Figure 1 for the legend), we com-
puted the average Type I error rate of the three tests under 
these five subcategories. The light grey area corresponds 
to the liberal criterion from Bradley (1978), who regards 
a departure from the nominal alpha level as acceptable 
whenever the Type I error rate falls within the interval [0.5 
× α; 1.5 × α]. The dark grey area corresponds to the more 
conservative criterion from which departures from the 
nominal alpha is considered negligible as long as the Type 
I error rate falls within the interval [0.9 × α; 1.1 × α].

In Figures 2 and 3 (cells a, b, and c in Table 1), the pop-
ulation variance is equal between all groups, so the homo-
scedasticity assumption is met. The F-test and F*-test only 
marginally deviate from the nominal 5%, regardless of the 
underlying distribution and the SD-ratio. The W-test also 
only marginally deviates from the nominal 5%, except 
under asymmetry (the tests becomes a little more liberal) 
or extremely heavy tails (the test becomes a bit more con-
servative), consistently with observations in Harwell et al. 
(1992). However, deviations don’t exceed the liberal crite-
rion of Bradley (1978).

In Figures 4, 5 and 6 (cells d to i, Table 1) the popu-
lation variance is unequal between groups, so that the 
homoscedasticity assumption is not met. When sample 
sizes are equal across groups (Figure 4) and when there 
is a positive correlation between sample sizes and SDs 
(Figure 5), the Type I error rate of the W-test is closer to 
the nominal 5% than the Type I error rate of the F*-test 
and the F-test, the latter which is consistently at the lower 
limit of the liberal interval suggested by Bradley, in line 
with Harwell et al. (1992), Glass et al. (1972), Nimon 
(2012) and Overall et al. (1995). Heteroscedasticity does 
not impact the Type I error rate of the W-test, regardless 
of the distribution (the order of the distribution shape 
remains the same in all conditions).

When there is a negative correlation between sample 
sizes and SDs (Figure 6), the Type I error rate of the F*-test 
is slightly closer of the nominal 5% than the Type I error 
rate of the W-test, for which the distributions (more spe-
cifically, the skewness) has a larger impact on the Type 
I error rate than when there is homoscedasticity. This 
is consistent with conclusions of Lix et al. (1996) about 

Figure 2: Type I error rate of the F-test, W-test and F*-test 
when there are equal SDs across groups and equal 
sample sizes (cell a in Table 1).

Figure 3: Type I error rate of the F-test, W-test and F*-test 
when there are equal SDs across groups and unequal 
sample sizes (cells b and c in Table 1).

Figure 4: Type I error rate of the F-test, W-test and F*-test 
when there are unequal SDs across groups and equal 
sample sizes (cells d and g in Table 1).

Figure 5: Type I error rate of the F-test, W-test and F*-test 
when there are unequal SDs across groups, and positive 
correlation between sample sizes and SDs (cells e and i 
in Table 1).
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the Alexander-Govern and the James’ second order tests 
(which return very similar results as the W-test, as we 
already mentioned). However, both tests still perform rela-
tively well, contrary to the F-test that is much too liberal, 
in line with observations by Harwell et al. (1992), Glass et 
al. (1972), Nimon (2012) and Overall et al. (1995).

Conclusions
We can draw the following conclusions for the Type I error 
rate:

1) When all assumptions are met, all tests perform ad-
equately.

2) When variances are equal between groups and dis-
tributions are not normal, the W-test is a little less 
efficient than both the F-test and the F*-test, but de-
partures from the nominal 5% Type I error rate never 
exceed the liberal criterion of Bradley (1978).

3) When the assumption of equal variances is violat-
ed, the W-test clearly outperforms both the F*-test 
(which is more liberal) and the F-test (which is either 
more liberal or more conservative, depending on the 
SDs and SD pairing).

4) The last conclusion generally remains true when 
both the assumptions of equal variances and nor-
mality are not met.

Statistical power for the F-test, W-test, and 
F*-test
As previously mentioned, the statistical power (1 – β) of a 
test is the long-run probability of observing a statistically 
significant result when there is a true effect in the popula-
tion. We assessed the power of the F-test, W-test and F*-
test under 1280 scenarios, while using the nominal alpha 
level of 5%. In all scenarios, the last group was extracted 
from a population that had a higher mean than the 
population from where were extracted all other groups 
(μk = μj + 1). Because of that, in some scenarios there is a 
positive correlation between the SD and the mean (i.e. the 
last group has the largest SD and the largest mean) and in 
other scenarios, there is a negative correlation between 
SD and the mean (i.e. the last group has the smallest SD 

and the largest mean). As we know that the correlation 
between the SD and the mean matters for the W-test (see 
Liu, 2015), the 9 sub-conditions in Table 1 were analyzed 
separately.

We computed two main outcomes: the consistency and 
the power. The consistency refers to the relative difference 
between the observed power and the nominal power, 
divided by the expected power:

 
0 E

Consistency
E
−

=  (10)

When consistency equals zero, the observed power is 
consistent with the nominal power (under the paramet-
ric assumptions of normality and homoscedasticity); a 
negative consistency shows that the observed power is 
lower than the expected power; and a positive consist-
ency shows that the observed power is higher than the 
expected power.

In Figures 7, 8 and 9 (cells a, b, and c in Table 1 see 
Figure 1 for the legend), the population variance is equal 
between all groups, meaning that the homoscedastic-
ity assumption is met. When distributions are normal, 

Figure 6: Type I error rate of the F-test, W-test and F*-test 
when there are unequal SDs across groups, and negative 
correlation between sample sizes and SDs (cells f and g 
in Table 1).

Figure 7: Power and consistency of the F-test, W-test and 
F*-test when there are equal SDs across groups and 
equal sample sizes (cell a in Table 1).

Figure 8: Power and consistency of the F-test, W-test and 
F*-test when there are equal SDs across groups, and 
positive correlation between sample sizes and means 
(cell b in Table 1).
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the W-test is slightly less powerful than the F-test and 
F*-test, even though differences are very small. With all 
other distributions, the W-test is generally more power-
ful than the F*-test and F-test, even with heavy-tailed 
distributions, which is in contrast with previous findings 
(Wilcox, 1998). Wilcox (1998) concluded that there is a 
loss of power when means from heavy-tailed distributions 
(e.g. double exponential or a mixed normal distribution) 
are compared to means from normal distributions. This 
finding is based on the argument that heavy-tailed dis-
tributions are associated with bigger standard deviations 
than normal distributions, and that the effect size for such 
distributions is therefore smaller (Wilcox, 2011). However, 
this conclusion is based on a common conflation of kur-
tosis and the standard deviation, which are completely 
independent (DeCarlo, 1997). One can find distributions 
that have similar SD but different kurtosis (see Appendix 
2). However, while the W-test is more powerful than the 
F-test and the F*-test in many situations, it is a bit less 
consistent with theoretical expectations than both other 
tests in the sense that the W-test is generally more power-
ful than expected (especially with high kurtosis, or when 
asymmetries go in opposite directions). This is due to the 
fact that the W-test is more impacted by the distribution 
shape, in line with observations by Harwell et al. (1992). 
Note that differences between W-test and other tests, in 
terms of consistency, are very small.

In Figures 10 to 15 (cells d to i in Table 1 see 
Figure 1 for the legend), the population variance is une-
qual between groups, meaning that the homoscedastic-
ity assumption is not met. When sample sizes are equal 
across groups (Figures 10 and 11), the F-test and the 
F*-tests are equally powerful, and have the same con-
sistency, whatever the correlation between the SD and 
the mean. On the other hand, the power of the W-test 
depends on the correlation between the SD and the mean 
(in line with Liu, 2015). When the group with the larg-
est mean has the largest variance (Figure 10), the largest 
deviation between group means and the general mean 
is given less weight, and as a consequence the W-test is 
less powerful than both other tests. At the same time, the 
test is slightly less consistent than both other tests. When 
the group with the largest mean has the smallest variance 

(Figure 11), the largest deviation between group means 
and the general mean is given more weight, and therefore 
the W-test is more powerful than both other tests. The test 
is also slightly more consistent than both other tests.

When sample sizes are unequal across groups, the 
power of the F*-test and the F-test are a function of the 
correlation between sample sizes and SDs. When there 
is a negative correlation between sample sizes and SDs 
(Figures 12 and 13), the F-test is always more powerful 
than the F*-test. Indeed, as was explained in the previous 
mathematical section, the F-test gives more weight to 
the smallest variance (the statistic is therefore increased) 
while the F*-test gives more weight to the largest variance 
(the statistic is therefore decreased). Conversely, when 
there is a positive correlation between sample sizes and 
SDs (Figures 14 and 15), the F-test is always more con-
servative than the F*-test, because the F-test gives more 
weight to the largest variance while the F*-test gives more 
weight to the smallest variance.

The power of the W-test is not a function of the correla-
tion between sample sizes and SDs, but rather a function 
of the correlation between SDs and means. The test is more 
powerful when there is a negative correlation between 
SDs and means, and less powerful when there is a positive 

Figure 9: Power and consistency of the F-test, W-test and 
F*-test when there are equal SDs across groups, and 
negative correlation between sample sizes and means 
(cell c in Table 1).

Figure 10: Power and consistency of the F-test, W-test 
and F*-test when there are unequal SDs across groups, 
positive correlation between SDs and means, and equal 
sample sizes across groups (cell d in Table 1).

Figure 11: Power and consistency of the F-test, W-test 
and F*-test when there are unequal SDs across groups, 
negative correlation between SDs and means, and equal 
sample sizes across groups (cell g in Table 1).
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correlation between SDs and means. Note that for all tests, 
the effect of heteroscedasticity is approximately the same 
regardless of the shape of the distribution. Moreover, 

there is one constant observation in our simulations: 
whatever the configuration of the n-ratio, the consistency 
of the three tests is closer to zero when there is a negative 
correlation between the SD and the mean (meaning that 
the group with the highest mean has the lower variance).

We can draw the following conclusions about the statis-
tical power of the three tests:

1) When all assumptions are met, the W-test falls 
slightly behind the F-test and the F*-test, both in 
terms of power and consistency.

2) When variances are equal between groups and 
distributions are not normal, the W-test is slightly 
more powerful than both the F-test and the F*-test, 
even with heavy-tailed distributions.

3) When the assumption of equal variances is violated, 
the F-test is either too liberal or too conservative, 
depending on the correlation between sample sizes 
and SDs. On the other side, the W-test is not influ-
enced by the sample sizes and SDs pairing. However, 
it is influenced by the SD and means pairing.

4) The last conclusion generally remains true when 
both assumptions of equal variances and normality 
are not met.

Recommendations
Taking both the effects of the assumption violations on 
the alpha risk and on the power, we recommend using 
the W-test instead of the F-test to compare groups means. 
The F-test and F*-test should be avoided, because a) the 
equal variances assumption is often unrealistic, b) tests 
of the equal variances assumption will often fail to detect 
differences when these are present, c) the loss of power 
when using the W-test is very small (and often even neg-
ligible), and d) the gain in Type I error control is consider-
able under a wide range of realistic conditions. Also, we 
recommend the use of balanced designs (i.e. same sample 
sizes in each group) whenever possible. When using the 
W-test, the Type I error rate is a function of criteria such as 
the skewness of the distributions, and whether skewness 
is combined with unequal variances and unequal samples 
sizes between groups. Our simulations show that the Type 

Figure 12: Power and consistency of the F-test, W-test 
and F*-test when there are unequal SDs across groups, 
negative correlation betwen sample sizes and SDs, and 
positive correlation between SDs and means (cell f in 
Table 1).

Figure 13: Power and consistency of the F-test, W-test 
and F*-test when there are unequal SDs across groups, 
negative correlation betwen sample sizes and SDs, and 
negative correlation between SDs and means (cell h in 
Table 1).

Figure 14: Power and consistency of the F-test, W-test 
and F*-test when there are unequal SDs across groups, 
positive correlation betwen sample sizes and SDs, and 
positive correlation between SDs and means (cell e in 
Table 1).

Figure 15: Power and consistency of the F-test, W-test 
and F*-test when there are unequal SDs across groups, 
positive correlation betwen sample sizes and SDs, and 
negative correlation between SDs and means (cell i in 
Table 1).
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I error rate control is in general slightly better with bal-
anced designs.

Note that the W-test suffers from limitations and can-
not be used in all situations. First, as previously men-
tioned, W-test, as all tests based on means, does not 
allow researchers to compare other relevant parameters 
of a distribution than the mean. For these reason, we 
recommend to never neglect the descriptive analysis of 
the data. A complete description of the shape and char-
acteristics of the data (e.g. histograms and boxplots) is 
important. When at least one statistical parameter relat-
ing to the shape of the distribution (e.g. variance, skew-
ness, kurtosis) seems to vary between groups, comparing 
results of the W-test with results of a nonparametric 
procedure is useful in order to better understand the 
data. Second, with small sample sizes (i.e. less than 50 
observations per group when comparing at most four 
groups, 100 observations when comparing more than 
four groups), the W-test will not control Type I error 
rate when skewness is present and detecting departures 
for normality is therefore especially important in small 
samples. Unless you have good reasons to believe that 
distributions underlying the data have small kurtosis 
and skewness, we recommend to avoid alternative tests 
that are based on means comparison, in favour of alter-
natives such as the trimmed means test (Erceg-Hurn & 
Mirosevich, 2008)2 or nonparametric tests. For more 
information about robust alternatives that are based on 
other parameters than the mean, see Erceg-Hurn and 
Mirosevich (2008).

Notes
 1 Note that this is a didactic example, the differences 

have not been tested and might not differ statistically.
 2 The null hypothesis of the trimmed means test 

assumes that trimmed means are the same between 
groups. A trimmed mean is a mean computed on 
data after removing the lowest and highest values 
of the distribution. Trimmed means and means are 
equal when data are symmetric. On the other hand, 
when data are asymmetric, trimmed means and 
means differ.
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