
It’s a freaking bad day. You’ve spent countless hours on the 
Internet trying to figure out how multilevel modeling works, 
but the only things you can find are academic papers filled 
with jargon, obscure equations, and indecipherable lines of 
code. ‘Why can’t I understand anything about stats?!’ you 
ask yourself. Well, you’ve got to cool it now! Learning multi-
level modeling can be a real bear, and this paper is precisely 
made for you to get the hang of it as easily as possible.

If you’re here, you probably already know that the 
general aim of multilevel modeling is to simultaneously 
analyze data at a lower level (usually participants) and at 
a higher level (usually clusters of participants). In other 
words, multilevel modeling enables one to disentangle the 
effects of lower-level variables (e.g., individual effects) from 
the effects of higher-level variables (e.g., contextual effects) 
and examine how lower-level and higher-level variables 
interact with one another (interactions involving variables 
at different levels are called ‘cross-level interactions’).

Let us give you an example. In early 2000, a New 
Zealand team of scientists conducted research involving 

approximately 700 cats from 200 households (i.e., on 
average, 3.5 cats per household; Allan et al., 2000). The 
team treated the cats (level-1 units) as nested in house-
holds (level-2 units) and used multilevel modeling to dis-
entangle the effects of level-1 cat variables (e.g., does the 
cat have long legs?) from the effects of level-2 household 
variables (e.g., is there a dog in the household?) in predict-
ing cat obesity. They found that short-legged cats living in 
dog-free households tend to be chubbier.1

After reading the present paper, you will be able to 
handle this kind of (feline) two-level hierarchical design. 
Our paper is divided into four parts:

•	 PART 1 presents the three key principles of two-level 
linear modeling (two levels mean two types of residu-
als, predictors, and level-1 effect parameters).

•	 PART 2 presents a ready-to-use three-step procedure 
for conducting two-level linear modeling using SPSS, 
Stata, R, or Mplus.

•	 PART 3 presents the results from a series of simula-
tions comparing the performances of the above 
statistical software.

•	 PART 4 gives a Q&A addressing multilevel modeling is-
sues pertaining to statistical power (Q1), effect sizes (Q2), 
complex design (Q3), and nonlinear regression (Q4).
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The empirical example used in the present tutorial is 
based on genuine data pertaining to ’90s and post-’00s 
boy band member hotness and Instagram popularity.2 We 
published the findings in various predatory journal using 
fake names (e.g., Abelkermit et al., 2021a, 2021b, 2021c). 
Our mock paper actually offered a good example of how 
to report multilevel analyses. The mock paper, the boy 
band dataset, and the software-specific instructions and 
scripts to perform our three-step procedure are available 
on the OSF (https://osf.io/4yhbm/ DOI: 10.17605/OSF.
IO/4YHBM).

…Oh and yeah, we’ve hidden the names of twelve boy-
band songs that reached the top quartile of the U.S. 
Billboard chart (including the best song ever from *NSYNC). 
The first reader to send the corresponding author the 
ten correct names will receive a signed picture of Justin 
Timberlake (displayed in Figure 1). The editor and review-
ers were not allowed to take part in this competition.

PART 1. The Three Key Principles of Two-Level 
Linear Modeling
The Aim of This Part Is for You to Understand How Two-
Level Modeling Works
A Very Brief Recap on Linear Regression
Imagine you conduct a study on the popularity of the best-
selling ’90s and post-’00s boy band leaders. You spend your 
day patiently gathering the number of Instagram followers 
of each of these boy band leaders and used a continuous 
scale ranging from 1 = not popular (≤100 Instagram fol-
lowers) to 7 = Beyoncé popular (100,000,000 followers).3

At the end of the day, you have a dataset of N = 50 boy 
band leaders that you intend to analyze using regression. 
Regression can be thought of as a tool for describing data 
using an object named ‘MODEL.’ Obviously, we’re only 
social scientists, and we can only expect our models to 
explain so much of the real world; in other words, our 
models can never be perfectly accurate, and the amount 

Figure 1: The 8 × 10 hand signed photo of the great Justin Timberlake that YOU could win (upper panel), along with its 
numbered hologram Certificate of Authenticity (lower panel).

https://osf.io/4yhbm/
https://doi.org/10.17605/OSF.IO/4YHBM
https://doi.org/10.17605/OSF.IO/4YHBM
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by which a model fails to properly represent the data is 
referred to as ‘RESIDUALS’ (Judd et al., 2017).

As such, the ‘E = MC2’ of data analysis is:

	 DATA MODEL RESIDUALS= + � (Eq. 1)

Importantly, all regression equations have the same for-
mat as the above equation. In your case, the simplest 
regression equation you can use to describe your boy 
band leader data is a regression with no predictor and 
where the constant is the mean:

	 i 0 iY B e= + � (Eq. 2)

To make sense of Equation 2, take a look at Figure 2:

Yi → Each circle in Figure 2 represents the observed 
popularity score Yi of a particular boy band leader 
i (‘DATA’ in Eq. 1). For instance, Justin Timberlake 
(*NSYNC) has a popularity score of Y1 = 6.75.

B0 → The horizontal thick line in Figure 2 rep-
resents the mean popularity score B0 (‘MODEL’ in 
Equation 1). You can see that the mean popularity 
score for all boy band leaders is B0 = 4.75 (your very 
simple model). Note that B0 is called the ‘intercept’ 
when the regression equation includes a predictor.

ei → The vertical dotted lines in Figure 2 rep-
resent the residuals ei associated with each boy 

band leader i (‘RESIDUALS’ in Equation 1). These 
correspond to the distance of the observed pop-
ularity score Yi of boy band leader i from the 
mean popularity score B0 (i.e., the distance from 
the model). For instance, you can see that the 
observed score of Justin Timberlake (Y1 = 6.75) is 
not properly described by the mean (B0 = 4.75), 
and that the magnitude of the error is e1 = Y1 – B0 
= 2.00.

In simple ordinary least square linear regression, the 
aggregate of the residuals is the variance of the residuals, 
written as var(ei). It is calculated by taking the mean of the 
squared residuals: var(ei) = (e1

2 + e2
2 + … + eN

2)/N (the mean 
of the squared distance of Justin Timberlake, Joey Zehr, 
Nick Jonas, etc., from the model). In a nutshell, the gen-
eral goal of regression is to estimate whether making your 
model more complex by adding a particular predictor will 
lead to a reduction in the unexplained remaining varia-
tions of your outcome. For instance, you could include 
the level of boy band leader hotness Xi as an additional 
predictor in your equation (Yi = B0 + B1 × Xi + ei) and see 
whether doing so leads to a significant reduction in var(ei). 
In the context of null hypothesis testing, and assuming 
that you formulated a prediction for this variable, this 
reduction would entail accepting the hypothesis that boy 
band leader hotness is associated with boy band leader 
popularity.

Figure 2: Graphical representation of a linear regression with no predictor (Eq. 2) in which the observed popularity 
score Yi (y-axis) of a particular boy band leader i (x-axis) corresponds to the mean popularity score B0 (horizontal thick 
line) plus the residuals ei (vertical dotted lines). Notes: Only the first 13 observations are represented; despite the 
controversial fact that there is no official leader in One Direction, we treated Harry Styles as their boy band leader.
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The First Principle of Two-Level Modeling: Two Levels 
Mean Two Types of Residuals
Now imagine you conduct a study on the popularity of all 
members of the best-selling ’90s and post-’00s boy bands 
(not only the boy band leaders). You spend another day 
gathering the number of Instagram followers of each of 
these new members, and you end up with a dataset of 
N = 175 boy band members. The structure of your data-
set is different than before. You now have a two-level 
hierarchically structured dataset with two types of units: 
N  =  175 members (level-1 units) nested in K = 50 boy 
bands (level-2 units or clusters; i.e., a mean cluster size of 
n = 3.50 members per boy band).

In this situation you cannot use traditional regression, 
because it would violate the assumption of independence 
of the residuals, that is, the basic assumption that the 
residual associated with a given data point is independ-
ent of the residual of another data point (Snijder & Bosker, 
1999; the two other basic assumptions are normality and 
homoscedasticity). Specifically, in your dataset it is easy to 
understand that members of similar boy bands are likely 
to share similar levels of popularity; thus, the residuals 
associated with any two members of the same boy band 
will be closer than the residuals associated with any two 
members of different boy bands. If you choose to ignore 
this problem and use traditional regression, you will most 
certainly obtain biased standard errors, which will result in 
false-positive or false-negative findings (depending on the 
nature of nonindependence; Scariano & Davenport, 1987).

In this situation, you therefore need to use two-level 
linear regression. Like traditional regression, two-level 
regression aims to describe data using an object named 
‘MODEL.’ Similar to traditional regression, the amount by 
which such a model fails to properly represent the data is 
referred to as ‘RESIDUALS.’ However, this time there are 
two types of residuals (Hox, 2017): (i) the amount by which 
the model fails to properly represent the between-clus-
ter variations is referred to as ‘LEVEL-2 RESIDUALS’ and 
(ii) the amount by which the model fails to properly repre-
sent the within-cluster variations is referred to as ‘LEVEL-1 
RESIDUALS.’

As such, the ‘E = MC2’ of two-level modeling is:

	
DATA MODEL LEVEL 2 RESIDUALS

LEVEL 1 RESIDUALS

= + - +
-

� (Eq. 3)

Importantly, all two-level regression equations have the 
same format as the above equation. In your case, the sim-
plest two-level linear regression equation you can use to 
describe your boy band data is a regression with no predic-
tor and where the constant is the overall mean:

	 ij 00 0j ijY B u e= + + � (Eq. 4)

To make sense of Equation 4, take a look at Figure 3:

Yij → Each circle in Figure 3 represents the observed 
popularity score Yij of a particular boy band mem-
ber i from a particular boy band j (‘DATA’ in Equa-
tion 3). For instance, Justin Timberlake (*NSYNC) 

has an actual popularity score of Y41 = 6.75, his 
buddy Lance Bass has a score of Y51 = 4.73, and 
Kevin Jonas (The Jonas Brother) has a score of Y13 
= 6.45.

B00 → The horizontal thick line in Figure 3 
represents the overall mean popularity score B00, 
regardless of clustering (‘MODEL’ in Equation 3). 
You can see that the mean popularity score for all 
boy band members and across all boy bands is B00 
= 3.46 (your very simple model). Note that B00 is 
also called the ‘fixed intercept’ when the two-level 
regression equation includes a predictor.

u0j → The vertical thick dotted lines in Figure 3 
represent the level-2 residuals u0j (also called inter-
cept residuals or ‘random intercept’) associated 
with each boy band j (‘LEVEL-2 RESIDUALS’ in 
Equation 3). These correspond to the distance of 
the specific mean popularity score of a given boy 
band j from the overall mean popularity score B00. 
For instance, you can see that the observed mean 
popularity score of *NSYNC (NSYNC = 4.83) is not 
properly described by the overall mean (B00 = 3.46), 
and that the magnitude of the level-2 error is 
u01 = NSYNC – B00 = 1.37.

eij → The vertical thin dotted lines represent the 
level-1 residuals eij associated with each boy band 
member i within boy band j (‘LEVEL-1 RESIDUALS’ 
in Equation 3). These correspond to the distance of 
the observed popularity score of boy band member 
i from the specific mean score of his boy band j. For 
instance, you can see that the observed popularity 
score of Justin Timberlake (Y41 = 6.75) is not prop-
erly described by the specific mean score of his boy 
band (NSYNC = 4.83) and that the magnitude of 
the level-1 error is e41 = Y41 – NSYNC = 1.92.

Therefore, in two-level linear regression there are two 
aggregates of residuals. First, the variance of level-2 residu-
als, written as var(u0j), is calculated by taking the mean 
of the squared level-2 residuals: var(u0j) = (u01

2 + u02
2 + … 

+ u0K
2)/K (the mean of the squared distance of *NSYNC, 

The Click Five, The Jonas Brothers, etc., from the overall 
mean). This captures the unexplained between-cluster 
variations. When var(u0j) is larger than zero, this indicates 
that popularity varies between boy bands, with some 
bands being more popular than others.

Second, the variance of level-1 residuals, written as 
var(eij), is calculated by taking the mean of the squared 
level-1 residuals: var(eij) = (e11

2 + e21
2 + … + enK

2)/N (the 
mean of the squared distance of Justin Timberlake, Lance 
Bass, …, Kevin Jonas, etc., from their boy band-specific 
means. This captures the unexplained within-cluster vari-
ations. When var(eij) is larger than zero, this indicates that 
popularity varies within boy bands, with some members 
being more popular than others.

Just for your general information, traditional regression 
and multilevel modeling use two different methods of esti-
mation (Goldstein, 2013). Traditional regression typically 
uses the ordinary least squares (OLS) estimator (the coeffi-
cients and variance terms are estimated by minimizing the 



Sommet and Morselli: Multilevel Linear Modeling 5

average squared differences between the predicted values 
and the data), whereas multilevel modeling typically uses 
the maximum likelihood (ML) estimator (the coefficients 
and variance terms are jointly estimated by maximizing 
the likelihood of the predicted values given the data).4 
However, the general goal of multilevel modeling is the 
same as traditional regression, that is, estimating whether 
a predictor for which you formulated a prediction con-
tributes to explaining between- and/or within-cluster 
changes in the value of your outcome.

The Second Principle of Two-Level Modeling: Two 
Levels Mean Two Types of Predictors
Now imagine you focus on two particular predictors: boy 
band period of success, and boy band member hotness. 
As we are about to see, these predictors represent the two 
types of predictors in two-level modeling: level-2 predic-
tors and level-1 predictors.

First, let’s focus on period of success. You operational-
ized this variable by distinguishing ’90s boy bands (whose 

greatest year of success fell between 1990 and 2000; 
coded ‘–0.5’) from post-’00s boy bands (whose great-
est year of success came after 2000; coded ‘+0.5’). This 
is a higher-level unit characteristic or a level-2 variable. 
There is a straightforward rule for recognizing such a 
variable: The value of a level-2 variable CANNOT change 
within clusters, but CAN ONLY change between clusters 
(see Figure 4, column 5). Level-2 variables are noted Xj 
(uppercase) and—as you can see—the letter X only comes 
with a j subscript (no i subscript) because: (i) Xj CANNOT 
vary from one level-1 unit i to another within a given clus-
ter (e.g., because *NSYNC’s period of success was the ’90s, 
Justin Timberlake and his buddy Lance Bass’s automati-
cally have the value) and (ii) Xj CAN ONLY vary from one 
level-2 unit j to another (e.g., from *NSYNC [a ’90s boy 
band] to The Click Five [a post-’00s boy band]). The boy 
band dataset uploaded on the OSF includes other exam-
ples of level-2 variables: boy band number of weeks in the 
U.S. chart, boy band biggest hit, and number of YouTube 
views of biggest hits.

Figure 3: Graphical representation of a two-level linear regression with no predictor (Equation 4) in which the observed 
popularity score Yij (y-axis) of a particular boy band member i (bottom x-axis) from a particular boy band j (top x-axis) 
corresponds to the overall mean popularity score B00 (horizontal thick line) plus the level-2 residuals u0j (vertical thick 
dotted lines) and level-1 residuals eij (vertical thin dotted lines). Notes: Only the first 13 observations are represented; 
normally, B00 is only equivalent to the arithmetic grand-mean when the design is completely balanced (i.e., when the 
number of participants is the same for each cluster); the first author is somewhat prosopagnosic and apologizes in 
advance if he has erroneously interchanged two faces.
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Second, let’s focus on hotness. You operationalized this 
variable by counting the number of time(s) a given boy 
band member appears in Internet hotness rankings, such 
as The Hollywood Gossip’s Hottest Boy Band Members of 
All-Time. This is a lower-level unit characteristic or a level-1 
variable. As before, there is a straightforward rule for rec-
ognizing such a variable: The value of a level-1 variable 
CAN change within clusters, and CAN ALSO vary between 
clusters (see Figure 4, column 6). Level-1 variables are 
noted xij (lowercase) and—as you can see—the letter x 
comes with an i and j subscript because (i) xij CAN vary 
from one level-1 unit i to another within a given cluster 
(e.g., from Justin Timberlake [6 rankings] to his buddy 
Lance Bass [1 ranking]) and (ii) xij CAN ALSO vary from 
one level-2 unit j to another (from *NSYNC [10 rankings] 
to The Jonas Brothers [1 ranking]). The boy band dataset 
uploaded on the OSF includes other examples of level-1 

variables: boy band member height, boy band member 
skin color, or boy band member hair style (e.g., spiked, 
swept, or shaved). The popularity score (as any outcome 
in two-level modeling) is another example of a level-1 
variable.

The Third Principle of Two-Level Modeling: Two Levels 
Mean Two Types of Level-1 Effect Parameters
Now imagine you want to estimate the effect of your 
level-1 predictor xij (hotness) on the popularity score 
Yij, so you build the following one-predictor two-level  
model:

	 ( )ij 00 10 1j ij 0 j ijxY B B u u e= + + ´ + + � (Eq. 5)

Don’t freak out just yet, youngblood! It’s a lot of informa-
tion, so let’s unpack the terms of the equation together:

Figure 4: The 13 first lines of your boy band datasets. Notes: Fans often argue that ‘The Click Five’ is a pop rock band, 
not a boy band; we respectfully disagree with them, and we invite readers to watch The Click Five’s video clip ‘Kidnap 
My Heart’ on YouTube and make up their own mind (this song does not count as a hidden song).

https://www.thehollywoodgossip.com/slideshows/17-hottest-boy-band-members-of-all-time/
https://www.thehollywoodgossip.com/slideshows/17-hottest-boy-band-members-of-all-time/
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Yij, B00, u0j, and eij → First, you should know from 
Equation 4 and Figure 3 that Yij is the outcome 
(the popularity score of member i within boy band 
j), B00 is the fixed intercept (the overall value of Yij 
when predictor xij is set at zero), u0j is the level-2 
residuals (the distance between the observations 
and model predictions at the boy band level), and 
eij is the level-1 residuals (the distance between 
the observations and model predictions at the boy 
band member level).

(B10 + u1j) × xij → Now, focus on your level-1 pre-
dictor xij (boy band member hotness). Things are a 
tad more complicated because there are now two 
level-1 effect parameters: the coefficient estimate 
B10 and the slope residuals u1j. To make sense of 
this, take a look at Figure 5:

①	B10 × xij. The thick slope in Figure 5 represents 
the coefficient estimate B10 (also called the 
‘fixed slope’). It is the overall mean effect of your 
level-1 predictor xij across all clusters. It has the 

same meaning as in any regular linear regres-
sion: An increase of one unit in xij is associated 
with a change of B10 in the value of the outcome 
Yij, regardless of clustering. In your case, you can 
see that B10 = 0.23, which means the following: 
When hotness increases by one unit, popularity 
score increases by 0.23 points on average, while 
leaving aside boy band membership.

②	u1j × xij. The vertical thick dotted curves in 
Figure 5 represent the slope residuals u1j (some-
times called the ‘random slope’). Each curve cor-
responds to the difference between (i) the spe-
cific effect of hotness for boy band j and (ii) the 
overall mean effect of hotness B10. In the same 
way that the mean of the outcome can vary 
from one cluster to another (forming the inter-
cept residuals), the effect of a level-1 variable 
can vary from one cluster to another (forming 
the slope residuals). As an illustration, Figure 5 
shows that the effect of hotness is positive for 
*NSYNC, negative for The Click Five, and null 

Figure 5: Graphical representation of the coefficient estimate or fixed slope B10 (the thick slope – the overall mean 
effect of hotness across boy bands) and the slope residuals u1j (vertical thick dotted curves – the differences between 
the specific effects of hotness in a given boy band compared to the overall mean effect). Notes: Only the first five boy 
bands are represented; obviously, the data for this figure are fictitious (the Backstreet Boys are still way more popular 
than that!).
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for The Backstreet Boys. Simply put, although 
the overall mean effect of hotness on popular-
ity is globally positive, the effect appears to be 
stronger for some bands, weaker for others, 
and even reversed for others. The aggregate of 
the slope residuals is the variance of the slope 
residuals, written as var(u1j). It is calculated by 
taking the mean of the squared slope residuals: 
var(u1j) = (u11

2 + u12
2 + … + u1K

2)/K (the mean of 
the squared differences between the slopes of 
*NSYNC, The Click Fives, The Jonas Brothers, 
etc., and the over mean effect). This captures 
the unexplained between-cluster slope varia-
tions. When var(u1j) is larger than zero, this indi-
cates that the effect of hotness on popularity 
varies between bands.

There is one last thing that adds to the complexity (the 
hardest thing, to be honest): The intercept residuals u0j 
(or level-2 residuals) and the slope residuals u1j can covary 
(Robson & Pevalin, 2016). The degree to which these 
two parameters covary is the covariance term, written as 
cov(u0j, u1j). Taking this covariance term into account is 
important because cov(u0j, u1j) cannot be assumed to be 
zero, and assuming otherwise can inflate the false-positive 
rate (Wang et al., 2019). There are three possible situa-
tions. First, if cov(u0j, u1j) is approximately zero, this means 
that the popularity score at xij = 0 for a given boy band j 
is not systematically related to the strength of the within-
boy band effect of hotness; there is simply no pattern to 
be found here (Figure 6, left panel). Second, if cov(u0j, 
u1j) is positive, this means that a larger popularity score 
at xij = 0 (a larger intercept) tends to be associated with 
a stronger effect (a larger slope). In other words, there is 
a pattern of ‘fanning out’ (there are greater between-boy 
band differences when focusing on hotter members, e.g., 

a floor effect; Figure 6, middle panel). Third, if cov(u0j, u1j) 
is negative, this means that a larger popularity score at xij = 
0 (a larger intercept) tends to be associated with a weaker 
effect (a smaller slope). In other words, there is a pattern 
of ‘fanning in’ (there are slighter between-boy band differ-
ences for hotter members, e.g., a ceiling effect; Figure 6, 
right panel).

Finally, we want to draw your attention to the fact that 
estimating the effect of a level-2 predictor Xj (e.g., period 
of success) is much more straightforward than estimating 
the effect of a level-1 predictor xij (e.g., hotness). In that 
case, the interpretation of the level-2 coefficient estimate 
B01 × Xj is the same as in any traditional linear regression: 
An increase of one unit in Xj is associated with a change 
of B01 in the value of the outcome Yij (in our example, 
compared to members from ’90s boy bands, the popular-
ity score of members from post-’00s boy bands is higher 
by B01 points on average). Importantly, there are no slope 
residuals here because it is impossible for the effect of a 
level-2 predictor to vary within clusters (in our example, 
because members of a given boy band are either all from a 
’90s boy band or all from a post-’00s boy band, the effect 
of period of success cannot vary from one boy band to 
the next).

Brief Summary of PART 1
After reading Part 1, you should have a good grasp on the 
three key principles of two-level linear modeling. The first 
principle is that ‘two levels mean two types of residuals.’ 
This is illustrated by Figure 3: Observations can vary both 
between clusters (forming the variance of level-2 residuals 
or the variance of the intercept residuals) and within clus-
ters (forming the variance of level-1 residuals). The second 
principle is that ‘two levels mean two types of predictors.’ 
This is illustrated by Figure 4: Predictors can be level-2 
variables (higher-level characteristics that CANNOT vary 

Figure 6: Graphical representations of the covariance between the intercept residuals (or level-2 residuals) u0j and the 
slope residuals u1j. In the left panel, the covariance is equal to zero (no pattern), in the middle panel, the covariance is 
positive (higher boy band-specific intercepts come with larger slopes), and in the right panel, the covariance is negative 
(higher boy band-specific intercepts come with smaller slopes). Note: Again, the data for this figure are fictitious.
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within clusters) or level-1 variables (lower-level character-
istics that CAN vary within clusters). The third principle is 
that ‘two levels mean two types of level-1 effect parame-
ters.’ This is illustrated by Figure 5: The effect of a level-1 
variable is described by a coefficient estimate or a fixed 
slope (the overall mean effect across clusters) and the var-
iance of slope residuals (the variations of the effect from 
one cluster to another). Moreover—and as illustrated by 
Figure 6—the intercept residuals and slope residuals can 
covary (e.g., larger cluster-specific intercepts may imply 
larger cluster-specific effects). We know it’s a lot to digest, 
but no diggity: Once you understand these three key 
principles, what you have yet to learn about multilevel 
modeling is truly a matter of details! Table 1 provides a 
summary of the main notations and definitions of two-
level modeling concepts that you will encounter in the 
present paper.

PART 2. A Three-Step Procedure for Conducting 
Two-Level Linear Modeling
The Aim of This Part Is for You to Learn How to Perform 
Two-Level Linear Modeling

You’re pretty happy. You’ve read Part 1, and you under-
stand the three key principles of two-level linear mode-
ling. But now that you’re in front of your computer… you 
don’t know what to do!

Stay with us a little bit longer: Part 2 is a ready-to-use 
three-step procedure for conducting two-level linear 
modeling using SPSS, Stata, R, or Mplus. Before read-
ing it, download the contents of the folder named after 
your favorite statistical software from the OSF (https://
osf.io/4yhbm/ DOI: 10.17605/OSF.IO/4YHBM). In this 
folder, you will find: (i) the complete software-specific 

instructions, (ii) the boy band dataset and (iii) the script to 
perform our three-step procedure.

While reading Part 2, we strongly recommend you try to 
reproduce the procedure using the relevant script. When 
doing this, remember that your dataset has N = 175 mem-
bers (level-1 units) nested in K = 50 boy bands (level-2 
units), and imagine you formulated the following three 
hypotheses:

The level-2 main effect hypothesis. Compared to ’90s 
boy band members, post-’00s boy band members 
have a higher popularity score.

The level-1 main effect hypothesis. The higher 
the boy band member hotness, the higher the boy 
band member popularity score.

The cross-level interaction hypothesis. For ’90s boy 
bands, the higher the member hotness, the higher 
the member popularity score; for post-’00s boy 
bands, this link is attenuated.

The three-step procedure used to test these hypotheses is 
organized as follows:

STEP #0. Centering variables
STEP #1. Building an empty model to determine if 
multilevel modeling is needed.
STEP #2. Building intermediate models to estimate 
the (co)variance terms
STEP #3. Building the final model and interpreting 
the 95% CIs

Figure 7 presents a decision tree summarizing the three-
step procedure.

Table 1: Summary of the main notations and definitions of two-level modeling concepts.

Level 2
K level-2 units (clusters)
with n observations per cluster (mean cluster size)

Level 1
N level-1 units (observations)

The first 
principle:
Two types of 
residuals

u0j

Level-2 residuals or intercept residuals (“random 
intercept”)
Distance of the cluster-specific means from the overall 
mean
Tip: The aggregated index of level-2 residuals is var(u0j)

eij

Level-1 residuals
Distance of the observations from the cluster-specific means
Tip: The aggregated index of level-1 residuals is var(eij)

The second 
principle:
Two types of 
variable

X1j, X2j, X3j, etc.
Level-2 predictors
Cluster characteristics 
Tip: They CANNOT vary within clusters

x1ij, x2ij, x3ij, etc.
Level-1 predictors
Observation characteristics 
Tip: They CAN vary within clusters

The third 
principle:
Two types of 
level-1 effects 
parameters

B00, B01, B02, B03, etc.
Fixed intercept (B00) and level-2 coefficient estimates 
(B01…)
Overall mean/intercept and effects of X1ij, X2ij, X3ij, etc.

B10, B20, B30, etc.
Level-1 coefficient estimates or fixed slopes
Overall mean effect of x1ij, x2ij, x3ij, etc., across all 
clusters

N/a
Slope residuals are not possible for level-2 predictors

u1j, u2j, u3j, etc.
Variation of the effect of the level-1 predictors or 
slope residuals (“random slopes”)
Differences between the cluster-specific slopes and the 
fixed slope
Tip 1: The variance term is var(u1j), var(u2j), etc.
Tip 2: The covariance term is cov(u0j, u1j), etc.

https://osf.io/4yhbm/
https://osf.io/4yhbm/
https://doi.org/10.17605/OSF.IO/4YHBM
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STEP #0. Centering Variables
Main question to be answered: Do you want to estimate 
the general effect or the pooled within-cluster effect of 
your level-1 predictor?

First, you need to reflect on the way you will center 
your predictor(s). Different types of centering will lead 
you to estimate different effects, particularly concerning 
your level-1 predictor(s). There are basically two centering 
approaches when it comes to level-1 predictors: grand-
mean centering and cluster-mean centering (Myers et al., 
2010; beware, some software programs other than the 
software programs discussed in this primer may automati-
cally center the variables for you).

Grand-mean centering a level-1 predictor means sub-
tracting the overall mean of the level-1 predictor M00 from 
each individual observation xij, namely:

	 gmc
ij ij 00x x M= - � (Eq. 6)

In your dataset, grand-mean centering hotness means 
subtracting the overall hotness mean from each boy band 
member’s hotness value (subtracting the same overall 
sample mean from Justin Timberlake’s, Lance Bass’, or 
Kevin Jonas’ hotness value). Thus, a positive value indi-
cates that the boy band member is hotter than the typical 
boy band member in the overall sample (and reciprocally 

Figure 7: Decision tree illustrating the three-step procedure for two-level linear modeling. Note: *We recommend 
always centering your predictor when your model includes an interaction term.
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for a negative value). For instance, Justin Timberlake’s 
grand-mean centered hotness value is x41

gmc = +7.53, sign-
aling that he is, on average, hotter than the other singers.

With interaction terms, grand-mean centering is con-
venient for estimating main effects, although it is not a 
strict requirement. Without interaction terms, grand-
mean centering will neither change the value nor the 
interpretation of the coefficient estimate B10. Uncentered 
and grand-mean centered level-1 predictors will both lead 
you to estimate the general between-observation effect: A 
deviation of one unit in hotness from the overall sample 
mean will be associated with a change of B10 in the popu-
larity score. Because the coefficient estimate corresponds 
to the general between-observation effect, it is a mixture 
of the within- and between-boy band effects. However, 
grand-mean centering will also change the value of the 
fixed intercept B00, which—as in a traditional regression—
will become the overall value of Yij when predictor xij

gmc 
is set at zero, that is, the predicted popularity score of a 
boy band member with an average level of hotness across 
boy bands.

Cluster-mean centering a level-1 predictor means sub-
tracting the cluster-specific mean of the level-1 predictor 
M(x0j) from each individual observation xij, namely:

	 ( )cmc
ij ij 0 jx x xM= - � (Eq. 7)

In your dataset, cluster-mean centering hotness means 
subtracting the boy band-specific hotness mean from 
each boy band member’s hotness value (subtracting the 
specific *NSYNC-mean from Justin Timberlake’s hot-
ness value, subtracting the specific Jonas Brother-mean 
from Kevin Jonas’s hotness value, etc.). Thus, a positive 
value indicates that the boy band member is hotter than 
the average hotness of his band (and reciprocally for a 
negative value). For instance, Justin Timberlake’s cluster-
mean centered hotness value is x41

cmc = +5.60, signaling 
that he is, on average, hotter than the rest of *NSYNC 
members.

Cluster-mean centering will change both the value and 
the interpretation of the coefficient estimate B10. A clus-
ter-mean centered level-1 predictor will lead you to esti-
mate the pooled within-cluster effect: A deviation of one 
unit in hotness from the boy band-specific mean will be 
associated with a change of B10 in the popularity score. 
The coefficient estimate here corresponds to the aggre-
gated within-boy band slopes (the typical within-boy band 
effect). Note that dichotomous level-1 predictors can also 
be cluster-mean centered (Enders & Tofighi, 2007) and 
that level-2 predictors can only be grand-mean centered 
(because they are constant within each cluster). However, 
cluster-mean centering will also change the value of the 
fixed intercept B00, which will now become the overall 
value of Yij when predictor xij

cmc is set at zero, that is, the 
predicted popularity score of a boy band member with the 
average level of hotness within his boy band.5

Summary and recommendations. The centering deci-
sion pertaining to a level-1 predictor depends on the kind 
of effect you want to test: Grand-mean center the predic-
tor (or keep it uncentered) if you are interested in the 

absolute, between-observation effect and cluster-mean 
center the predictor if you are interested in the relative, 
within-cluster effect.

Here’s an extract of our mock paper pertaining to 
STEP #0:

‘All of the variables were centered. We cluster-mean 
centered our level-1 variable, namely, hotness (sub-
tracting the boy band-specific hotness mean from 
each observation), to obtain the estimation of the 
pooled within-boy band effect.’

STEP #1. Building an Empty Model to Calculate the 
ICC/DEFF
Main questions to be answered: How much of the vari-
ation in your outcome is related to between-cluster dif-
ferences and do you really need multilevel modeling?

Now that you have made a decision regarding center-
ing, the next thing you want to do is to build an empty 
model (i.e., a model with no predictor [see Equation 4], 
also known as an ‘unconditional mean model’ or ‘random-
intercept model’) and calculate the Intraclass Correlation 
Coefficient (ICC) (Hox, 2017; Snijders & Bosker, 2011).

	
( )

( ) ( )
0 j

0 j ij

Between - cluster variance
ICC

Total variance var var

var u

u e
= =

+
� (Eq. 8)

As you can see in the above equation, the ICC corresponds 
to the proportion of the between-cluster variance var(u0j) 
(in your case, the between-boy band variations) in the 
total variance var(u0j) + var(eij) (in your case, the between-
boy band variations plus the within-boy band variations; if 
the meaning of these variance terms is not clear, go back 
to Figure 3).

The ICC quantifies the degree of resemblance of the 
observations belonging to the same cluster, and can range 
from 0 to 1. An ICC of 0 indicates perfect independence 
of the residuals. In this case, the observations are com-
pletely independent of cluster membership: Each and 
every boy band has the same mean popularity score (there 
is no between-boy band variation). However, an ICC of 
1 indicates perfect interdependence of the residuals. In 
that case, the observations are completely dependent on 
cluster membership: Each and every member of any boy 
band has the same popularity score (there is no within-
boy band variation).

ICCs of 0.01, 0.05, and 0.20 can be considered as small, 
medium, and large levels of within-cluster homogeneity, 
respectively (Kreft & de Leeuw, 1998). In your dataset, 
ICC = 0.82 (it is very large), meaning that 82% of the vari-
ance in popularity score can be attributed to between-boy 
band differences; conversely, this means that 18% of the 
variance in popularity score can be attributed to within-
boy band differences.

Authors sometimes argue that when the ICC falls below 
a certain threshold (e.g., ICC < 0.05), one can ignore the 
hierarchical structure of their data and use traditional 
regression (for a relevant discussion, see Hayes, 2006). 
However, simulation studies show that an ICC as low as 
0.01 can multiply the false-positive rate by four when 
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using traditional regression (Musca et al., 2011), revealing 
that a non-zero, small ICC cannot be taken as an indication 
that multilevel modeling is unwarranted (Huang, 2018).

To determine whether or not multilevel modeling is 
needed, the Design EFFect is more informative (Kish, 
1965; Muthén & Satorra, 1995):

	 ( )DEFF 1 –1 ICCn= + ´ � (Eq. 9)

The DEFF takes both the mean cluster size (n) and within-
cluster homogeneity (ICC) into account in order to quan-
tify the degree to which a multilevel sample differs from a 
simple random sample (with perfectly independent residu-
als). The DEFF can range from 1 (no difference) to n (a 
maximal difference). In your dataset, DEFF = 3.04, mean-
ing that the sampling variance of the popularity score (the 
population sampling error) is about three times larger 
than if your 175 members belonged to 175 different boy 
bands (Dattalo, 2008).

Authors usually argue that when the DEFF falls below 
2, one can simply ignore the hierarchical structure of 
their data and use traditional regression (Peugh, 2010). 
However, such a threshold may be too liberal, as a more 
recent simulation study showed that when the DEFF is as 
small as 1.5, the estimation of standard errors from tradi-
tional regressions is sometimes biased (Lai & Kwok, 2015).

Summary and recommendations. In STEP #1, you 
need to build an empty model to calculate (i) the ICC (to 
estimate the proportion of the variance accounted for by 
clustering) and (ii) the DEFF (to determine whether or not 
multilevel modeling is needed). We recommend that if 
DEFF < 1.5, clustering *may* be ignored and traditional 
regression *may* be used.

Here is the extract of our mock paper pertaining to 
STEP #1.

‘As a first step, we built an empty model and cal-
culated the ICC and the DEFF. The ICC was 0.82, 
meaning that 82% of the variance in the popular-
ity score was explained by between boy band dif-
ferences (a large within-cluster homogeneity). The 
DEFF was above 1.5, meaning that multilevel mod-
eling was warranted.’

STEP #2. Building Intermediate Models to Estimate 
the (Co)Variance Terms
Main question to be answered: Does the effect of your 
level-1 predictor vary between clusters, and should 
you estimate the residual slope variance or covariance 
terms?
Now that you have made a decision regarding the need to 
use multilevel modeling, ask yourself whether you have 
theoretical reasons to expect the effect of your level-1 
predictor to vary between clusters? (Maxwell & Delaney, 
2004). If the answer is ‘YEP,’ you have to figure out 
whether you need to estimate this kind of variation. If the 
answer is ‘NOPE,’ you can directly go to STEP #3 (there is 
no need to test for this kind of variation).

In your case, the answer is an unequivocal ‘YEP.’ Because 
you formulated a cross-level interaction hypothesis, you 
have theoretical reasons to expect the effect of hotness 
to differ between boy bands (at least, between ’90s and 
post-’00s boy bands). Now to determine the need to esti-
mate this expected variation, you have to build two inter-
mediate models: (i) a constrained intermediate model 
(not taking between-cluster variation of the level-1 effect 
into account) and (ii) an augmented intermediate model 
(taking this variation into account). Then you will have 
to compare the two intermediate models (Aguinis et al., 
2013).

First, let’s focus on the constrained intermediate model. 
This model includes all of your predictors except the cross-
level interactions (because your goal is to estimate the 
crude slope residuals and the cross-level interactions are 
likely to explain a part of the residual variance).

	 cmc
ij 00 10 ij 01 j 0 j ijx XY B B B u e= + ´ + ´ + + � (Eq. 10)

In the above constrained intermediate model equation 
the coefficient estimate B10 (the fixed slope) corresponds 
to the overall effect of your level-1 predictor xij

cmc (cluster-
mean centered hotness), whereas the coefficient estimate 
B01 corresponds to the effect of your level-2 predictor Xj 
(period of success;).

Second, let’s focus on the augmented intermediate 
model:

	 ( ) cmc
00 10 1j ij 01 j 0 j ijx XijY B B u B u e= + + ´ + ´ + + � (Eq. 11)

The only new thing in Equation 11 is the slope residuals 
u1j, which corresponds to the differences between the 
cluster-specific effects of your level-1 predictor xij

cmc (the 
boy band-specific effect of hotness) and the overall effect 
of xij

cmc, that is, the fixed slope B10 (the overall effect of hot-
ness). This implies that two more terms will be estimated: 
(i) the variance of the slope residuals var(u1j) (the amount 
of variation between the boy band-specific slopes) and 
(ii) the covariance term between the intercept and slope 
residuals cov(u0j, u1j) (the association between the boy 
band-specific intercepts and slopes; if this is not clear, go 
back to Figures 5 and 6, respectively).

The next thing you want to do is compare the two mod-
els and test whether the augmented intermediate model 
(including u1j) achieves a better fit than the constrained 
intermediate model (excluding u1j). In your case, this 
means you want to know whether including the between-
boy band variation of the effect of hotness improves the 
accuracy of estimation. To do so, you have to gather a (mis)
fit index for each model named the ‘deviance’ (the smaller 
deviance, the better the fit) and perform the following 
likelihood-ratio test:6

	 ( ) constrained augmentedLR ² 2 deviance deviance= - � (Eq. 12)

In Equation 12, the likelihood-ratio test LR χ² has two 
degrees of freedom. This is because the augmented 
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intermediate model estimates two more terms than the 
constrained intermediate model (var(u1j) and cov(u0j, u1j)). 
There are essentially two possible scenarios here:

SCENARIO A. Devianceaugmented is substantially smaller 
than Devianceconstrained (LR χ² (2) is positive). This means that 
estimating var(u1j) and cov(u0j, u1j) matters (it improves the 
fit!). Thus, u1j needs to be kept in the final model.

SCENARIO B. Devianceaugmented is not substantially dif-
ferent than devianceconstrained (LR χ² (2) is null). This means 
that estimating var(u1j) and cov(u0j, u1j) does not necessar-
ily matter (it does not improve the fit), and u1j could be 
discarded.

In your dataset, the result of the LR χ² is somewhat 
ambiguous, namely, LR χ² (2) = devianceconstrained – devi-
anceaugmented = 415.96–412.08 = 3.88, p = 0.144 (you can find 
the p-value using an online chi-square online calculator).

So, where do you go with this p = 0.144? Well, not eve-
rybody agrees… Some authors argue that models should 
always be maximal (Barr et al., 2013). If you follow their 
guidelines, regardless of the p-value of your LR χ² (2), the 
slope residuals u1j need to be kept in the final model. 
Other authors argue that models should be as parsimoni-
ous as possible in order to avoid overparametrization and 
convergence issues (Bates et al., 2015). If you follow their 
guidelines, given that the p-value of the LR χ² (2) is above 
the alpha level of 0.05, the slope residuals u1j may be dis-
carded. We believe that these guidelines may fall at one of 
two extremes. A more nuanced criterion for accepting the 
significance of the LR χ² (2) may be setting the alpha level 
at 0.20 instead of at 0.05 (as suggested by Matuschek et al., 
2017).7

However, our criterion is certainly not a miracle solu-
tion. You should know that discarding the slope residu-
als of your focal variable(s) may sometimes substantially 
inflate the false-positive rate (for relevant simulations, see 
Schielzeth & Forstmeier, 2009). Thus, in the context of a 
small sample size or theoretical uncertainty (e.g., when 
testing novel effects or when running exploratory analy-
ses), it may be more reasonable to embrace a maximalist 
approach and include all the random slopes that are justi-
fied by the study design.

Summary and recommendations. In STEP #2, you 
need to build two intermediate models: (i) a constrained 
model (not including the slope residuals u1j) and (ii) an 
augmented model (including the slope residuals u1j). Then 
you need to compare the deviance of the two models 
using a two-degree-of-freedom likelihood-ratio test, noted 
as LR χ². We recommend that if the p-value of the LR χ2 (2) 
is less than .20, then the variance and covariance terms 
var(u1j) and cov(u0j, u1j) should be kept in the model. If you 
have several slope residuals to test (u1j, u2j, u3j, etc.), we 
advise you to calculate an LR χ² (2) for each of them.

Here is the extract of our mock paper pertaining to 
STEP #2.

‘As a second step, we built an intermediate model 
using hotness and period of success as predictors, 
and we performed a likelihood-ratio test to see 

whether estimating the slope residuals improved 
the fit. The p-value of the LR χ² (2) was below 0.20, 
meaning that estimating the slope residual vari-
ance and the covariance terms was warranted.’

STEP #3. Building the Final Model and Interpreting 
the Confidence Intervals
Main question to be answered: Are your hypotheses 
supported?

Now that you have made a decision regarding the need 
to include slope residuals, you can finally include your 
cross-level interaction(s) (if you have one) and build your 
final model:

	
( ) cmc

ij 00 10 1j ij 01 j

cmc
11 ij j 0 j ij

x X

x X

Y B B u B

B u e

= + + ´ + ´ +

´ ´ + +
� (Eq. 13)

Interpretation of the main effects
The coefficient estimate of your level-1 main effect (hot-
ness) is B10 = 0.03, 95% CI [–0.14, 0.21]. Because period of 
success is coded –0.5 = ‘’90s boy bands’ and +0.5 = ‘post-
’00s boy bands,’ this coefficient estimate pertains to the 
pooled within-boy band effect of hotness between ’90s 
and post-’00s boy bands (i.e., when Xj = 0). Moreover, the 
coefficient estimate of your level-2 main effect (period of 
success) is B01 = 1.59, 95% CI [0.94, 2.24]. Because hotness 
is cluster-mean centered, this coefficient estimate per-
tains to the average effect of period of success for the typi-
cal member of a given boy band in terms of hotness (when 
xij

cmc = 0). Now that we are clear about the interpretation 
of the coefficient estimates, let’s focus on the interpreta-
tion of the 95% confidence intervals (Cumming, 2014).

First, the 95% CI of your level-1 effect can be interpreted 
as follows: If we repeated the boy band study an infinite 
number of times, 95% of all CIs will contain the true pop-
ulation parameter (Morey et al., 2016). An easier (but less 
precise) interpretation is as follows: We can be 95% con-
fident that the pooled within-boy band effect of hotness 
lies between B10 = –0.14 (the lower bound) and B10 = 0.21 
(the upper bound). Here the fact that the 95% CI includes 
zero means that the effect is not statistically significant at 
the traditional alpha level (p > 0.05); we cannot be confi-
dent that the effect is negative (–0.14 ≤ B10 < 0) or positive 
(0 < B10 ≤ 0.21). Thus, we fail to reject the null hypothesis 
according to which there is no relationship between hot-
ness and popularity.

Second, the 95% CI of your level-2 effect can be roughly 
interpreted as follows: We can be 95% confident that the 
effect of period of success lies between B01 = 0.94 (the 
lower bound) and B01 = 2.24 (the upper bound). The fact 
that the 95% CI does not include zero means that the 
effect is statistically significant at the traditional alpha level 
(p < 0.05); we decide that the popularity score of members 
from post-’00s boy bands (coded +0.5) is between 0.94 
and 2.24 higher than the popularity score of members 
from ’90s boy bands (coded –0.5). Thus, we have evidence 
to support the alternative hypothesis, according to which 
there is a positive effect of period of success on popularity.

https://www.socscistatistics.com/pvalues/chidistribution.aspx
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Interpretation of the interaction effects
The coefficient estimate of your cross-level interaction 
(hotness × period of success) is B11 = –0.39, 95% CI [–0.73, 
–0.04]. The fact that the 95% CI does not include zero 
means that the pooled within-boy band effect of hotness 
is statistically significantly different between ’90s and 
post-’00s boy bands. This means that we are not at the 
end of the road yet. The cross-level interaction now needs 
to be decomposed, which can be done using two dummy-
coding models (e.g., see Preacher et al., 2004):

1	 A first dummy-coding model aims to estimate the ef-
fect of hotness within ’90s boy bands. To build this 
model, you have to recode period of success using 
‘0 = ’90s boy band’ and ‘1 = post-’00s boy band,’ re-
compute the product terms, and then re-run the fi-
nal model. In doing so, the coefficient estimate B10 
will become the simple fixed slope of hotness when 
‘period of success = 0,’ that is, the pooled within-boy 
band effect of hotness for ’90s boy bands. Note that 
if period of success were treated as a continuous var-
iable (ranging from 1990 and 2020), you would have 
to add one standard deviation to the variable to ob-
tain the simple fixed slope of hotness when ‘period 
of success = –1 SD’ (older boy bands).

2	� A second dummy-coding model aims to estimate the 
effect of hotness within post-’00s boy bands. To build 
this model, you have to recode period of success us-
ing ‘–1 = ’90s boy band’ and ‘0 = post-’00s boy band,’ 
re-compute the product terms, and then re-run the 
final model. In doing so, the coefficient estimate B10 
will become the simple fixed slope of hotness when 
‘period of success = 0,’ that is, the pooled within-boy 
band effect of hotness for post-’00s boy bands. Note 
that if period of success were treated as a continuous 
variable (ranging from 1990 and 2020), you would 
have to remove one standard deviation from the 
variable to obtain the simple fixed slope of hotness 
when ‘period of success = +1 SD’ (newer boy bands).

Summary and recommendations. In STEP #3, you need to 
include the cross-level interaction(s) to build the final model. 
Interpret the 95% CIs: (i) if including zero, then p > 0.05 
(H0 is maintained); (ii) if excluding zero, then p < 0.05 (H0 
is rejected). When having a significant interaction, build a 
series of dummy-coding models to test simple slopes.

Here is the extract of our mock paper pertaining to 
STEP #3:

‘As a third step, we built the final model using hot-
ness (cluster-mean centered), period of success 
(–0.5 = ‘’90s boy bands’ vs. 0.5 = ‘post-’00s boy  
bands’), and the cross-level interaction as predictors.
[…]
Consistent with our third hypothesis, we observed a 
significant cross-level interaction between hotness 
and period of success, B = –0.39, 95% CI [–0.73, 
–0.04]. A simple slope analysis revealed that the 
pooled within-boy band effect of hotness was 

positive for ’90s boy bands, B = 0.23, 95% CI [0.05, 
0.41], whereas the effect was null for post-’00s boy 
bands, B = –0.16, 95% [–0.45, 0.14]. We called this 
phenomenon “The Justin Timberlake Effect.”’

PART 3. A Simulation Comparing the 
Performances of SPSS, Stata, R, and Mplus 
when Running Two-Level Linear Models
Let us be honest with you: We thought that a tutorial was 
not a sufficient contribution for this paper to be pub-
lished, so we felt compelled to run a bunch of simulations 
comparing the performances of SPSS, Stata, R, and Mplus. 
Running these simulations was nevertheless important as 
researchers use various statistical software programs for a 
variety of reasons. However, when it comes to multilevel 
modeling, different software programs rely on different 
computational and optimization techniques, which can 
exert an influence on statistical outcomes and—by exten-
sion—on research conclusions (Dedrick et al., 2009).

To our knowledge, there is only one simulation study that 
compared the performance of various statistical software 
programs (McCoach et al., 2018), but this study focused on 
differences in the variance term estimation and left aside 
the issue of coefficient estimation. Here we ran a simula-
tion study that compared the performances of SPSS, Stata, 
R, and Mplus when using our three-step procedure to esti-
mate a cross-level interaction coefficient. Does the choice 
of statistical software impact the outcome of the likelihood-
ratio test estimating slope residual variance, the type II error 
rate (false negative), and the type I error rate (false positive) 
when testing a cross-level interaction?

Simulation Conditions
To answer these questions, we simulated a series of two-
level datasets. The following factors were fixed across 
datasets:

•	 Sample sizes. Each dataset was comprised of N = 12,500 
level-1 units nested in K = 50 level-2 units (resembling 
a small secondary survey dataset). This sample size was 
sufficient to detect a small cross-level interaction of 
β11 = 0.10 with var(u1j) = 0.01, with a power of 0.80 and 
an alpha of 0.05 (we performed the power analysis us-
ing the R package simglm; LeBeau, 2020).

•	 Variables and ICC. Each dataset was comprised of an 
outcome variable, a level-1 predictor, and a level-2 
predictor. All variables were drawn from a normal dis-
tribution with a mean of 0 and a standard deviation of 
1. In the population, the links between the outcome 
and predictor variables were zero, and the ICC was 
0.05 (a medium-sized ICC).

The following factors varied across the datasets:

•	 Size of the cross-level interaction. There were three 
conditions: The size of the cross-level interaction in 
the population could be small (β11 = 0.10), very small 
(β11 = 0.05), or zero (β11 = 0.00). We decided to focus 
on small- or less-than-small-sized interactions because 
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real-data interactive effects are usually much smaller 
than main effects (especially for attenuated interac-
tions; see Blake & Gangestad, 2020).

•	 Magnitude of the slope residual variance. There were 
again three conditions: The magnitude of the slope 
residual variance in the population could be small 
(var(u1j) = 0.01), very small (var(u1j) = 0.005), or near 
zero (var(u1j) = 0.001). We decided to focus on small- or 
less-than-small-sized slope residual variance because 
statistical software typically struggles to estimate vari-
ance parameters that are close to zero (McCoach et al., 
2018). For practical reasons, the covariance parameter 
was set to zero.

We simulated 3 (size of the cross-level interaction: small 
vs. very small vs. zero) × 3 (magnitude of the slope residual 
variance: small vs. very small vs. near zero) × 1,000 (data-
sets per condition) = 9,000 datasets. The R script used to 
simulate the data, the complete simulated datasets, and 
the SPSS, Stata, R, and Mplus scripts used to perform the 
analysis can be found on the OSF.

Results
For each software and each simulated dataset, we built a 
two-level model and regressed the outcome on the level-1 
predictor, the level-2 predictor, and the cross-level interac-
tion. For each software and each condition, we calculated 
(i) the convergence rate (the proportion of models con-
verging in 100 iterations, since a nonconvergence issue is 
a recurrent problem in multilevel modeling), (ii) the slope 
residual detection rate (the proportion of the significant 
likelihood-ratio tests with α = 0.20), and (iii) the type I and 
type II error rates for the cross-level interaction (the pro-
portion of [non]significant cross-level interactions with 
α = 0.05). Table 2 present the full set of results.

Convergence rates
Mplus, Stata, and R showed perfect or near-perfect con-
vergence rates, regardless of the conditions (Mplus: 100%; 
Stata: 99%–100%; R: 97%–98%). SPSS showed perfect con-
vergence rates when the magnitude of residual slope vari-
ance was small or even very small, but the convergence rates 
dropped to 88%–90% when the residual slope variance was 
near zero (for similar conclusions, see McCoach et al., 2018).

Slope residual variance detection rates
SPSS, Stata, R, and Mplus showed the same slope residual 
variance detection rates. Overall, the likelihood-ratio test 
correctly detected small and very small residual slope vari-
ances ≤99% of the time. However, the likelihood-ratio test 
was not always reliable for near-zero residual slope vari-
ance: The detection rates were satisfying when the cross-
level interaction was small (≤99%) or very small (81%), 
but not when it was zero (≈53%). This means that the 
likelihood-ratio test may be limited when trying to detect 
tiny between-cluster variations of a level-1 effect. Thus, 
cautious analysts may favor a maximalist approach (i.e., 
always estimating random slope components when test-
ing a cross-level interaction; Heisig & Schaeffer, 2019).

Type II and type I error rates
Conditions #1–3: When the cross-level interaction was 
small (β11 = 0.10), Stata, R, and Mplus showed similar type 
II error rates. Unsurprisingly, when the residual slope vari-
ance was small (Condition #1), the type II error rate was 
20% (because in this condition, the statistical power was 
80%). Unsurprisingly, when the residual slope variance 
was very small or near zero, the type II error rates dropped 
to 6% and 0%, respectively (generally speaking, the power 
to detect a cross-level interaction increases as the resid-
ual slope variance decreases; see Arend & Schäfer, 2019). 
Descriptively speaking, SPSS performed slightly worse 
than Stata, R, and Mplus (approximately +1% in terms of 
the type II error rate).

Conditions #4–6: When the cross-level interaction was 
very small (β11 = 0.05), Stata, R, and Mplus showed simi-
lar type II error rates. When the residual slope variance 
was small (Condition #4), very small (Condition #5), and 
near zero (Condition #6), the type II error rates were 70%, 
55%, and 23%, respectively. SPSS again performed slightly 
worse than Stata, R, and Mplus (approximately +2–3% in 
terms of the type II error rate).

Conditions #7–9: When the cross-level interaction 
was zero (β11 = 0.00), all software showed similar type I 
error rates. When the residual slope variance was small 
(Condition #7), very small (Condition #8), and near zero 
(Condition #9), the type I error rates were 3%, 3%, and 
2% (which for some reason were slightly above the alpha 
level), respectively.

Summary and software recommendations. The sim-
ulations revealed two critical software differences: (i) SPSS 
is more likely to encounter convergence issues than Stata, 
R, or Mplus when the slope residual variance is near zero 
(however, convergence issues rarely affect coefficient esti-
mations) and (ii) SPSS was more likely than Stata, R, or 
Mplus to miss very small cross-level interactions (though 
the differences were not significant with n = 1,000 data-
sets per condition). In summary, SPSS is marginally worse 
than Stata, R, and Mplus in estimating two-level models. 
However, let’s quit playing games:8 SPSS still performs rea-
sonably well, and the results from this simulation cannot be 
used to recommend one statistical software over another.

PART 4. A Q&A Addressing Multilevel Modeling 
Issues
Oooops… It seems we are over the IRPS word limit! Before 
saying bye bye bye, we would like to bring your atten-
tion to our Supplementary Materials (available on the 
OSF), in which you will find answers to the following four 
questions:

Q1. What is a sufficient sample size in multilevel 
modeling? (for further reading on multilevel power 
analysis, see Arend and Schafer, 2019)
Q2. How can I calculate the effect size in multilevel 
modeling? (for further reading on effect size meas-
ures for multilevel models, see LaHuis et al., 2014)
Q3. How do I handle three-level modeling and other 
complex multilevel designs? (for further reading 
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on three-level modeling, cross-classified modeling 
for repeated measures design, and multiple mem-
bership structures, see Peugh, 2014; Baayen et al., 
2008; and Browne et al. 2001, respectively).
Q4. How do I run nonlinear two-level regression 
(logistic, ordered logistic, Poisson)? (for further 
reading on multilevel logistic modeling [binary out-
come], multilevel ordered logistic modeling [ordinal 
outcome], and multilevel Poisson modeling [count 
outcome], see Sommet & Morselli, 2017; Stawski, 
2013, chapter 17; and Aiken et al., 2015, respectively).

Notes
	 1	 For the curious minds who want to find out more 

about cat overweightness, this finding is explained by 
the fact that ‘dogs might intimidate cats when they are 
eating and drive them away from their food’ (p. 194).

	 2	 For boy band enthusiasts who want to know more about 
our sources, the data are based on the Internet Boy Band 
Database, which contains information about boy bands 
with at least one song in the U.S. Billboard Hot 100 
between 1980 and 2018 (Goldenberg et al., 2018).

	 3	 For the smarty-pants who think that linear regres-
sion cannot be used here because the outcome is 
not continuous, the popularity score corresponds to 
the common logarithm of the number of Instagram 
followers (in hundreds) plus one (thus, a continuous 
outcome): 1 ≤ 100 Instagram followers, 2 = 1,000 fol-
lowers, 3 = 10,000 followers, 4 = 100,000 followers, 
5 = 1,000,000 followers, 6 = 10,000,000 followers, and 
7 = 100,000,000 followers.

	 4	 For the attentive users who realized that their software 
could also use the restricted maximum likelihood (REML) 
estimator, know that this estimator has the particularity 
of generating regression coefficients and variance terms 
separately rather than jointly (i.e., in two stages rather 
than one). Given the way it works, REML cannot com-
pare models with different fixed components (Peugh, 
2010). Generally speaking, REML-produced estimates 
are less biased than ML-produced estimates when the 
sample is small (McNeish, 2017), but the difference 
between the two methods should be negligible when 
having K > 25–30 clusters (Elff et al., 2021).

	 5	 For the stat nerds who want to deepen their knowl-
edge, cluster-mean centering will also change the 
value of the variance components (i.e., the variance of 
level-2 residuals, the variance of slope residuals, and 
the covariance term) because cluster-mean-centered 
variance cannot explain variance at the cluster-level 
(by definition), which logically results in a change in 
the variance partitioning (see Bell et al., 2018).

	 6	 For the speedsters who are tempted to cut corners 
and use the p-values given by your statistical software 
rather than performing the LR χ² (2): don’t do it. These 
p-values are often biased because they are derived 
from tests assuming a normal distribution, whereas 
the distribution of variance is left-skewed (Hox, 2017).

	 7	 One way or another, note that a nonsignificant LR χ² 
(2) should not prevent you from examining a cross-
level interaction and proceeding to STEP #3: The fact 
that the between-cluster variations of a level-1 effect 

are nonsignificant does not necessarily mean that 
these variations are absent (absence of evidence is not 
evidence of absence; Nezlek, 2008; for a relevant simu-
lation study, see LaHuis & Ferguson, 2009).

	 8	 (with my heart).

Additional File
The additional file for this article can be found as follows:

•	 Supplementary Materials. Questions and answers 
Q1 to Q4. DOI: https://doi.org/10.5334/irsp.555.s1
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