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Why Psychologists Should by Default Use Welch’s t-test 
Instead of Student’s t-test
Marie Delacre*, Daniël Lakens† and Christophe Leys*

When comparing two independent groups, psychology researchers commonly use Student’s t-tests. 
Assumptions of normality and homogeneity of variance underlie this test. More often than not, when 
these conditions are not met, Student’s t-test can be severely biased and lead to invalid statistical 
inferences. Moreover, we argue that the assumption of equal variances will seldom hold in psychological 
research, and choosing between Student’s t-test and Welch’s t-test based on the outcomes of a test of 
the equality of variances often fails to provide an appropriate answer. We show that the Welch’s t-test 
provides a better control of Type 1 error rates when the assumption of homogeneity of variance is not 
met, and it loses little robustness compared to Student’s t-test when the assumptions are met. We argue 
that Welch’s t-test should be used as a default strategy.

Keywords: Welch’s t-test; Student’s t-test; homogeneity of variance; Levene’s test; Homoscedasticity; 
statistical power; type 1 error; type 2 error

Independent sample t-tests are commonly used in the 
psychological literature to statistically test differences 
between means. There are different types of t-tests, such 
as Student’s t-test, Welch’s t-test, Yuen’s t-test, and a boot-
strapped t-test. These variations differ in the underlying 
assumptions about whether data is normally distributed 
and whether variances in both groups are equal (see, e.g., 
Rasch, Kubinger, & Moder, 2011; Yuen, 1974). Student’s 
t-test is the default method to compare two groups in psy-
chology. The alternatives that are available are consider-
ably less often reported. This is surprising, since Welch’s 
t-test is often the preferred choice and is available in prac-
tically all statistical software packages. 

In this article, we will review the differences between 
Welch’s t-test, Student’s t-test, and Yuen’s t-test, and we 
suggest that Welch’s t-test is a better default for the social 
sciences than Student’s and Yuen’s t-tests. We do not 
include the bootstrapped t-test because it is known to fail 
in specific situations, such as when there are unequal sam-
ple sizes and standard deviations differ moderately (Hayes 
& Cai, 2007). 

When performing a t-test, several software packages 
(i.e., R and Minitab) present Welch’s t-test by default. 
Users can request Student’s t-test, but only after explic-
itly stating that the assumption of equal variances is 

met. Student’s t-test is a parametric test, which means 
it relies on assumptions about the data that are ana-
lyzed. Parametric tests are believed to be more powerful 
than non-parametric tests (i.e., tests that do not require 
assumptions about the population parameters; Sheskin, 
2003). However, Student’s t-test is generally only more 
powerful when the data are normally distributed (the 
assumption of normality) and the variances are equal in 
both groups (homoscedasticity; the assumption of homo-
geneity of variance; Carroll & Schneider, 1985; Erceg-Hurn 
& Mirosevich, 2008). 

When sample sizes are equal between groups, Student’s 
t-test is robust to violations of the assumption of equal 
variances as long as sample sizes are big enough to allow 
correct estimates of both means and standard deviations 
(i.e., n ≥ 5),1 except when distributions underlying the 
data have very high skewness and kurtosis, such as a chi-
square distribution with 2 degrees of freedom. However, 
if variances are not equal across groups and the sample 
sizes differ across independent groups, Student’s t-test 
can be severely biased and lead to invalid statistical infer-
ences (Erceg-Hurn & Mirosevich, 2008).2,3 Here, we argue 
that there are no strong reasons to assume equal variances 
in the psychological literature by default nor substantial 
costs in abandoning this assumption.

In this article, we will first discuss why we need a default 
test and why a two-step procedure where researchers 
decide whether or not to use Welch’s t-test based on a 
check of the assumption of normality and equal variances 
is undesirable. Then, we will discuss whether the assump-
tion of equal variances is plausible in psychology and point 
out research areas where this assumption is implausible. 
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We will then review differences between Student’s t-test, 
Welch’s t-test, and Yuen’s t-test and show through simula-
tions that the bias in Type 1 error rates when Yuen’s t-test 
is used is often severely inflated (above 0.075, which is 
“critical inflation”, following Bradley, 1978) and that the 
bias in Type 1 error rates when Student’s t-test is used has 
a larger impact on statistical inferences than the rather 
modest impact on the Type 2 error rate of always using 
Welch’s t-test by default. Given our analysis and the availa-
bility of Welch’s t-test in all statistical software, we recom-
mend a procedure where Welch’s t-test is used by default 
when sample sizes are unequal. 

Limitations of Two-Step Procedures
Readers may have learned that the assumptions of nor-
mality and of equal variances (or the homoscedasticity 
assumption) must be examined using assumption checks 
prior to performing any t-test. When data are not normally 
distributed, with small sample sizes, alternatives should 
be used. Classic nonparametric statistics are well-known, 
such as the Mann-Whitney U-test and Kruskal-Wallis. How-
ever, unlike a t-test, tests based on rank assume that the 
distributions are the same between groups. Any departure 
to this assumption, such as unequal variances, will there-
fore lead to the rejection of the assumption of equal dis-
tributions (Zimmerman, 2000). Alternatives exist, known 
as the “modern robust statistics” (Wilcox, Granger, & Clark, 
2013). For example, data sets with low kurtosis (i.e., a dis-
tribution flatter than the normal distribution) should be 
analyzed with the two-sample trimmed t-test for unequal 
population variances, also called Yuen’s t-test (Luh & Guo, 
2007; Yuen, 1974). However, analyses in a later section will 
show that the normality assumption is not very important 
for Welch’s t-test and that there are good reasons to, in 
general, prefer Welch’s t-test over Yuen’s t-test.

With respect to the assumption of homogeneity of vari-
ance, if the test of the equality of variance is non-signif-
icant and the assumption of equal variances cannot be 
rejected, homoscedastic methods such as the Student’s 
t-test should be used (Wilcox et al., 2013). If the test of the 
equality of variances is significant, Welch’s t-test should be 
used instead of Student’s t-test because the assumption of 
equal variances is violated. However, testing the equality 
of variances before deciding which t-test is performed is 
problematic for several reasons, which will be explained 
after having described some of the most widely used tests 
of equality of variances.

Different Ways to Test for Equal Variances
Researchers have proposed several tests for the assump-
tion of equal variances. Levene’s test and the F-ratio test 
are the most likely to be used by researchers because they 
are available in popular statistical software (Hayes & Cai, 
2007). Levene’s test is the default option in SPSS. Levene’s 
test is the One-Way ANOVA computed on the terms |xij-θ̂j|, 
where xij is the ith observation in the jth group, and θ̂j is 
the “center” of the distribution for the jth group (Carroll 
& Schneider, 1985). In R, the “center” is by default the 
median, which is also called “Brown Forsythe test for equal 
variances”. In SPSS, the “center” is by default the mean 

(which is the most powerful choice when the underlying 
data are symmetrical).4 The F-ratio statistic is obtained by 
computing SD2/SD1 (standard deviation ratio, SDR). A 
generalization of the F-ratio test, to be used when there 
are more than two groups to compare, is known as the 
Bartlett’s test. 

The F-ratio test and the Bartlett test are powerful, but 
they are only valid under the assumption of normality and 
collapse as soon as one deviates even slightly from the 
normal distribution. They are therefore not recommended 
(Rakotomalala, 2008).

Levene’s test is more robust than Bartlett’s test and the 
F-ratio test, but there are three arguments against the use 
of Levene’s test. First, there are several ways to compute 
Levene’s test (i.e., using the median or mean as center), and 
the best version of the test for equal variances depends on 
how symmetrically the data is distributed, which is itself 
difficult to statistically quantify. 

Second, performing two tests (Levene’s test followed 
by a t-test) on the same data makes the alpha level and 
power of the t-test dependent upon the outcome of 
Levene’s test. When we perform Student’s or Welch’s t-test 
conditionally on a significant Levene’s test, the long-run 
Type 1 and Type 2 error rates will depend on the power 
of Levene’s test. When the power of Levene’s test is low, 
the error rates of the conditional choice will be very close 
to Student’s error rates (because the probability of choos-
ing Student’s t-test is very high). On the other hand, when 
the power of Levene’s test is very high, the error rates of 
the conditional choice will be very close to Welch’s error 
rate (because the probability of choosing Welch’s t-test is 
very high; see Rasch, Kubinger, & Moder, 2011). When the 
power of Levene’s test is medium, the error rates of the 
conditional choice will be somewhere between Student’s 
and Welch’s error rates (see, e.g., Zimmerman, 2004). This 
is problematic when the test most often performed actu-
ally has incorrect error rates.

Third, and relatedly, Levene’s test can have very low 
power, which leads to Type 2 errors when sample sizes 
are small and unequal (Nordstokke & Zumbo, 2007). As 
an illustration, to estimate the power of Levene’s test, we 
simulated 1,000,000 simulations with balanced designs 
of different sample sizes (ranging from 10 to 80 in each 
condition, with a step of 5) under three SDR where the 
true variances are unequal, respectively, 1.1, 1.5, and 2, 
yielding 45,000,000 simulations in total. When SDR = 1, 
the equal variances assumption is true when SDR > 1 the 
standard deviation of the second sample is bigger than 
the standard deviation of the first sample and when SDR 
< 1 the standard deviation of the second sample is smaller 
than the standard deviation of the first sample. We ran 
Levene’s test centered around the mean and Levene’s test 
centered around the median and estimated the power (in 
%) to detect unequal variances with equal sample sizes 
(giving the best achievable power for a given total N; see 
Figure 1).5

As we can see in the graph, the further SDR is from 1, 
the smaller the sample size needed to detect a statistically 
significant difference in the SDR. Furthermore, for each 
SDR, power curves of the Levene’s test based on the mean 
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are slightly above power curves of the Levene’s test based 
on the median, meaning that it leads to slightly higher 
power than Levene’s test based on the median. This can 
be due to the fact that data is extracted from normal dis-
tributions. With asymmetric data, the median would per-
form better. When SDR = 2, approximately 50 subjects are 
needed to have 80 percent power to detect differences, 
while approximately 70 subjects are needed to have 95 
percent power to detect differences (for both versions of 
Levene’s test). To detect an SDR of 1.5 with Levene’s test, 
approximately 120 subjects are needed to reach a power 
of 0.80 and about 160 to reach a power of 0.95. Since such 
an SDR is already very problematic in terms of the type 1 
error rate for the Student’s t-test (Bradley, 1978), needing 
such a large sample size to detect it is a serious hurdle. This 
issue becomes even worse for lower SDR, since an SDR as 
small as 1.1 already calls for the use of Welch’s t-test (See 
table A3.1 to A3.9 in the additional file). Detecting such 
a small SDR calls for a huge sample size (a sample size of 
160 provides a power rate of 0.16).

Since Welch’s t-test has practically the same power as 
Student’s t-test, even when SDR = 1, as explained using 
simulations later, we should seriously consider using 
Welch’s t-test by default.

The problems in using a two-step procedure (first test-
ing for equality of variances, then deciding upon which 
test to use) have already been discussed in the field of sta-
tistics (see e.g., Rasch, Kubinger, & Moder, 2011; Ruxton, 
2006; Wilcox, Granger, & Clark, 2013; Zimmerman, 2004), 
but these insights have not changed the current practices 
in psychology, as of yet. More importantly, researchers do 
not even seem to take the assumptions of Student’s t-test 
into consideration before performing the test, or at least 
rarely discuss assumption checks. 

We surveyed statistical tests reported in the journal SPPS 
(Social Psychological and Personality Science) between 
April 2015 and April 2016. From the total of 282 studies, 
97 used a t-test (34.4%), and the homogeneity of variance 
was explicitly discussed in only 2 of them. Moreover, based 
on the reported degrees of freedom in the results section, 
it seems that Student’s t-test is used most often and that 
alternatives are considerably less popular. For 7 studies, 

there were decimals in the values of the degrees of free-
dom, which suggests Welch’s t-test might have been used, 
although the use of Welch’s t-test might be higher but 
not identifiable because some statisticians recommend 
rounding the degrees of freedom to round numbers. 

To explain this lack of attention to assumption checks, 
some authors have argued that researchers might have a 
lack of knowledge (or a misunderstanding) of the para-
metric assumptions and consequences of their violations 
or that they might not know how to check assumptions 
or what to do when assumptions are violated (Hoekstra, 
Kiers, & Johnson, 2012).6 Finally, many researchers don’t 
even know there are options other than the Student’s 
t-test for comparing two groups (Erceg-Hurn & Mirosevich, 
2008). How problematic this is depends on how plausi-
ble the assumption of equal variances is in psychological 
research. We will discuss circumstances under which the 
equality of variances assumption is especially improbable 
and provide real-life examples where the assumption of 
equal variances is violated.

Homogeneity of Variance Assumptions
The homogeneity of variances assumption is rarely true in 
real life and cannot be taken for granted when performing 
a statistical test (Erceg-Hurn & Mirosevich, 2008; Zumbo & 
Coulombe, 1997). Many authors have examined real data 
and noted that SDR is often different from the 1:1 ratio 
(see, e.g., Grissom, 2000; Erceg-Hurn & Mirosevich, 2008). 
This shows that the presence of unequal variances is a 
realistic assumption in psychological research.7 We will 
discuss three different origins of unequal standard devia-
tions across two groups of observations.

A first reason for unequal variances across groups is 
that psychologists often use measured variables (such as 
age, gender, educational level, ethnic origin, depression 
level, etc.) instead of random assignment to condition. In 
their review of comparing psychological findings from all 
fields of the behavioral sciences across cultures, Henrich, 
Heine, and Norenzayan (2010) suggest that parameters 
vary largely from one population to another. In other 
words, variance is not systematically the same in every 
pre-existing group. For example, Feingold (1992) has 

Figure 1: Estimated power of Levene’s test as a function of sample size, SDR and centering parameter.
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shown that intellectual abilities of males were more vari-
able than intellectual abilities of females when looking 
at several standardized test batteries measuring general 
knowledge, mechanical reasoning, spatial visualization, 
quantitative ability, and spelling. Indeed, the variability 
hypothesis (that men demonstrate greater variability 
than women) is more than a century old (for a review, see 
Shields, 1975). In many research domains, such as math-
ematics performance, there are strong indicators that 
variances ratios differ between 1.1 and 1.2, although vari-
ances ratios do not differ in all countries, and the causes 
for these differences are not yet clear. Nevertheless, it is 
an empirical fact that variances ratios can differ among 
pre-existing groups. 

Furthermore, some pre-existing groups have different 
variability by definition. An example from the field of 
education is the comparison of selective school systems 
(where students are accepted on the basis of selection 
criterions) versus comprehensive school systems (where 
all students are accepted, whatever their aptitudes; see, 
e.g., Hanushek & W ößmann, 2006). At the moment that a 
school accepts its students, variability in terms of aptitude 
will be greater in a comprehensive school than in a selec-
tive school, by definition. 

Finally, a quasi-experimental treatment can have a dif-
ferent impact on variances between groups. Hanushek 
and W ößmann (2006) suggest that there is an impact 
of the educational system on variability in achieve-
ment. Even if variability, in terms of aptitude, is greater 
in a comprehensive school than in a selective school 
at first, a selective school system at primary school 
increases inequality (and then variability) in achieve-
ment in secondary school. Another example is variabil-
ity in moods. Cowdry, Gardner, O’Leary, Leibenluft, & 
Rubinow (1991) noted than intra-individual variability 
is larger in patients suffering from premenstrual syn-
drome (PMS) than in normal patients and larger in nor-
mal patients than in depressive patients. Researchers 
studying the impact of an experimental treatment on 
mood changes can expect a bigger variability of mood 
changes in patients with PMS than in normal or depres-
sive patients and thus a higher standard deviation in 
mood measurements.

A second reason for unequal variances across groups 
is that while variances of two groups are the same when 
group assignment is completely randomized, deviation 
from equality of variances can occur later, as a consequence 
of an experimental treatment (Cumming, 2013; Erceg-
Hurn & Mirosevich, 2008; Keppel, 1991). For example, 
psychotherapy for depression can increase the variabil-
ity in depressive symptoms, in comparison with a con-
trol group, because the effectiveness of the therapy will 
depend on individual differences (Bryk & Raudenbush, 
1988; Erceg-Hurn & Mirosevich, 2008). Similarly, Kester 
(1969) compared the IQs of students from a control group 
with the IQs of students when high expectancies about 
students were induced in the teacher. While no effect of 
teacher expectancy on IQ was found, the variance was 
bigger in the treatment group than in the control group 
(56.52 vs. 32.59, that is, SDR ≈ 1.32). As proposed by Bryk 

and Raudenbush (1988), this can result from the interac-
tion between the treatment and the students’ reactions: 
students can react differently to the induced expectations. 
More generally, whenever a manipulation has individual 
moderators, variability should increase compared to a 
control condition.

Knowing whether standard deviations differ across 
conditions is important information, but in many fields, 
we have no accurate estimates of the standard deviation 
in the population. Whereas we collect population effect 
sizes in meta-analyses, these meta-analyses often do not 
include the standard deviations from the literature. As a 
consequence, we regrettably do not have easy access to 
aggregated information about standard deviations across 
research areas, despite the importance of this informa-
tion. It would be useful if meta-analysts start to code 
information about standard deviations when performing 
meta-analyses (Lakens, Hilgard, & Staaks, 2016), such that 
we can accurately quantify whether standard deviations 
differ between groups, and how large the SDR is. 

The Mathematical Differences Between 
Student’s t-test, Welch’s t-test, and Yuen’s 
t-test
So far, we have simply mentioned that Welch’s t-test differs 
from Student’s t-test in that it does not rely on the equality 
of variances assumption. In this section, we will explain 
why this is the case. The Student’s t statistic is calculated 
by dividing the mean difference between group 1 2X X−  by 
a pooled error term, where 2

1s  and 2
2s  are variance estimates 

from each independent group, and where n1 and n2 are the 
respective sample sizes for each independent group (Stu-
dent, 1908):
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The degrees of freedom are computed as follows (Student, 
1908):

	 1 2df –  2n n= + � (2)

Student’s t-test is calculated based on a pooled error term, 
which implies that both samples’ variances are estimates of 
a common population variance. Whenever the variances of 
the two normal distributions are not similar and the sam-
ple sizes in each group are not equal, Student’s t-test results 
are biased (Zimmerman, 1996). The more unbalanced 
the distribution of participants across both independent 
groups, the more Student’s t-test is based on the incorrect 
standard error (Wilcox et al., 2013) and, consequently, the 
less accurate the computation of the p-value will be.

When the larger variance is associated with the larger 
sample size, there is a decrease in the nominal Type 1 
error rate (Nimon, 2012; Overall, Atlas, & Gibson, 1995). 
The reason for this is that the error term increases, and, 
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as a consequence, the Student’s t-value decreases, leading 
to fewer significant findings than expected with a specific 
alpha level. When the larger variance is associated with 
the smaller sample size, the Type 1 error rate is inflated 
(Nimon, 2012; Overall, Atlas, & Gibson, 1995). This infla-
tion is caused by the under-evaluation of the error term, 
which increases Student’s t value and thus leads to more 
significant results than are expected based on the alpha 
level.

As discussed earlier, Student’s t-test is robust to une-
qual variances as long as the sample sizes of each group 
are similar (Nimon, 2012; Ruxton, 2006; Wallenstein, 
Zucker, & Fleiss, 1980), but, in practice, researchers 
often have different sample sizes in each of the inde-
pendent groups (Ruxton, 2006). Unequal sample sizes 
are particularly common when examining measured 
variables, where it is not always possible to determine 
a priori how many of the collected subjects will fall in 
each category (e.g., sex, nationality, or marital status). 
However, even with complete randomized assignment 
to conditions, where the same number of subjects are 
assigned to each condition, unequal sample sizes can 
emerge when participants have to be removed from the 
data analysis due to being outliers because the experi-
mental protocol was not followed when collecting the 
data (Shaw & Mitchell-Olds, 1993) or due to missing val-
ues (Wang et al., 2012). 

Previous work by many researchers has shown that 
Student’s t-test performs surprisingly poorly when vari-
ances are unequal and sample sizes are unequal (Glass, 
Peckham, & Sanders, 1972; Overall, Atlas, & Gibson, 1995; 
Zimmerman, 1996), especially with small sample sizes and 
low alpha levels (e.g., alpha = 1%; Zimmerman, 1996). The 
poor performance of Student’s t-test when variances are 
unequal becomes visible when we look at the error rates 
of the test and the influence of both Type 1 errors and 
Type 2 errors. An increase in the Type 1 error rate leads to 
an inflation of the number of false positives in the litera-
ture, while an increase in the Type 2 error rate leads to a 
loss of statistical power (Banerjee et al., 2009). 

To address these limitations of Student’s t-test, Welch 
(1947) proposed a separate-variances t-test computed by 
dividing the mean difference between group 1 2X X−  by an 
unpooled error term, where 2

1s  and 2
2s  are variance esti-

mates from each independent group, and where n1 and 
n2 are the respective sample sizes for each independent 
group:8
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When both variances and sample sizes are the same in each 
independent group, the t-values, degrees of freedom, and 
the p-values in Student’s t-test and Welch’s t-test are the 
same (see Table 1). When the variance is the same in both 
independent groups but the sample sizes differ, the t-value 
remains identical, but the degrees of freedom differ (and, 
as a consequence, the p-value differs). Similarly, when the 
variances differ between independent groups but the sam-
ple sizes in each group are the same, the t-value is identi-
cal in both tests, but the degrees of freedom differ (and, 
thus, the p-value differs). The most important difference 
between Student’s t-test and Welch’s t-test, and indeed the 
main reason Welch’s t-test was developed, is when both the 
variances and the sample sizes differ between groups, the 
t-value, degrees of freedom, and p-value all differ between 
Student’s t-test and Welch’s t-test. Note that, in practice, 
samples practically never show exactly the same pattern of 
variance as populations, especially with small sample sizes 
(Baguley, 2012; also see table A2 in the additional file).

Yuen’s t-test, also called “20 percent trimmed means test”, 
is an extension of Welch’s t-test and is allegedly more robust 
in case of non-normal distributions (Wilcox & Keselman, 
2003). Yuen’s t-test consists of removing the lowest and 
highest 20 percent of the data and applying Welch’s t-test on 
the remaining values. The procedure is explained and well-
illustrated in a paper by Erceg-Hurn and Mirosevich (2008). 

Simulations: Error Rates for Student’s t-test 
versus Welch’s t-test
When we are working with a balanced design, the statisti-
cal power (the probability of finding a significant effect, 
when there is a true effect in the population, or 1 minus 
the Type 2 error rate) is very similar for Student’s t-test 

Equal variances Unequal variances

Balanced design

tWelch	 =	tStudent

dfWelch	 =	dfStudent

pWelch	 =	pStudent

tWelch	 =	tStudent

dfWelch	≠	dfStudent

pWelch	≠	pStudent

Unbalanced design

tWelch	 =	tStudent

dfWelch	≠	dfStudent

pWelch	 ≠	pStudent

tWelch	 ≠	tStudent

dfWelch	≠	dfStudent

pWelch	≠	pStudent

Table 1: Comparison of t-value and Degrees of Freedom of Welch’s and Student’s t-test.
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and Welch’s t-test. Even with extremely large SDR (respec-
tively, 0.01, 0.1, 10, and 100) and small sample sizes (10 
subjects per group), the biggest increase in power of Stu-
dent’s t-test compared to Welch’s-t test is approximately 
5 percent when the test is applied on two normal skewed 
distributions with unequal shapes. In all other cases, the 
difference in power between both tests is smaller (See 
table A1.1 to A1.9 in the additional file). 

Considering the cases where sample sizes are unequal 
and SDR = 1, Student’s-t test is sometimes better than 
Welch’s t-test, and sometimes the reverse is true. The dif-
ference is small, except in three scenarios (See table A5.2, 
A5.5, and A5.6 in the additional file). However, because 
there is no correct test to perform that assures SDR = 1, 
and because variances are likely not to be equal in cer-
tain research areas, our recommendation is to always use 
Welch’s t-test instead of Student’s t-test.

To illustrate the differences in Type 1 error rates between 
Student’s t-test and Welch’s t-test, we simulated 1,000,000 
studies under the null hypothesis (no difference between 

the means in each group) under four scenarios. We chose a 
small sample ratio (n1 = 40 vs. n2 = 60) to show that when 
the equal variances assumption was not met and SDR = 
2, biased error rates are observed in Student’s t-test. We 
compared Scenario 1, where the variance is the same in 
each group (SDR = 1; homoscedasticity assumption met) 
and sample sizes are unequal (See v 2a), with Scenario 
2, where the variance differs between groups (SDR = 2) 
but sample sizes are equal (n1 = n2 = 50; see Figure 2b). 
Furthermore, we simulated Scenario 3, where both sam-
ple sizes and variances were unequal between groups and 
the larger variance is associated with the larger sample size 
(SDR = 2; see Figure 2c), and a similar Scenario 4, where 
the larger variance is associated with the smaller sample 
size (SDR = 0.5; see Figure 2d). P-value distributions for 
both Student’s and Welch’s t-tests were then plotted. When 
there is no true effect, p-values are distributed uniformly.

As long as the variances are equal between groups 
or sample sizes are equal, the distribution of Student’s 
p-values is uniform, as expected (see Figures 2a and 2b), 

Figure 2: P-value distributions for Student’s and Welch’s t-test under the null as a function of SDR, and sample size.
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which implies that the probability of rejecting a true null 
hypothesis equals the alpha level for any value of alpha. 
On the other hand, when the larger variance is associated 
with the larger sample size, the frequency of p-values less 
than 5 percent decreases to 0.028 (see Figure 2c), and 
when the larger variance is associated with the smaller 
sample size, the frequency of p-values less than 5 percent 
increases to 0.083 (see Figure 2d). Welch’s t-test has a 
more stable Type 1 error rate (see Keselman et al., 1998; 
Keselman, Othman, Wilcox, & Fradette, 2004; Moser & 
Stevens, 1992; Zimmerman, 2004) Additional simulations, 
presented in the additional file, show that these scenarios 
are similar for several shapes of distributions (see tables 
A3.1 to A3.9 and table A4 in the additional file). 

Moreover, as discussed previously, with very small SDRs, 
Welch’s t-test still has a better control of Type 1 error rates 
than Student’s t-test, even if neither of them give critical 
values (i.e., values under 0.025 or above 0.075, according 
to the definition of Bradley, 1975). With SDR = 1.1, when 
the larger variance is associated with the larger sample 
size, the frequency of Student’s p-value being less than 5 
percent decreases to 0.046, and when the larger variance 
is associated with the smaller sample size, the frequency 
of Student’s p-value being less than 5 percent increases to 

0.054. On the other side, the frequency of Welch’s p-values 
being below 0.05 is exactly 5 percent in both cases. 

Yuen’s t-test is not a good unconditional alternative because 
we observe an unacceptable departure from the nominal 
alpha risk of 5 percent for several shapes of distributions (see 
tables A3.1, A3.4, A3.7, A3.8, and A3.9 in the additional file), 
particularly when we are studying asymmetric distributions 
of unequal shapes (see tables A3.8 and A3.9 in the additional 
file). Moreover, even when Yuen’s Type 1 error does not show 
a critical departure from the nominal alpha risk (i.e., values 
above 0.075), Welch’s t-test more accurately controls the 
Type 1 error rate (see tables A3.2, A3.3, A3.5, and A3.6 in the 
additional file). The Type 1 error rate of Welch’s t-test remains 
closer to the nominal size (i.e., 5%) in all the previously dis-
cussed cases and also performs better with very extreme SDRs 
and unbalanced designs, as long as there are at least 10 sub-
jects per groups (See table A4 in the additional file). 

In Figure 3, p-values from Welch’s t-test and Student’s t-test 
tests, shown separately in Figure 2 (through histograms), are 
now plotted against each other. Figure 3a shows Student’s 
p-values plotted against Welch’s p-values of Scenario 1, where 
the variance is the same in each group (SDR = 1) and sam-
ple sizes are unequal. Figure 3b displays Student’s p-values 
plotted against Welch’s p-values of Scenario 2, where the 

Figure 3: P-values from Student’s t-test against p-values from Welch’s t-test under the null.



Delacre et al: Welch’s t-test as Default 99

variance differs between groups (SDR = 2) but sample sizes 
are equal (n1 = n2 = 50). Figure 3c shows Student’s p-values 
plotted against Welch’s p-values of Scenario 3, where both 
sample sizes and variances are unequal between groups and 
the larger variance is associated with the larger sample size 
(SDR = 2). And, finally, figure 3d plots Student’s p-values 
against Welch’s p-values of Scenario 4, where the greater vari-
ance is associated with the smaller sample size (SDR = 0.5).

Dots are marked on the black diagonal line when both 
tests return the same p-value. The top left quadrant contains 
all p-values less than 0.05 according to a Student’s t-test, but 
greater than 0.05 according to Welch’s t-test. The bottom 
right quadrant reports all p-values less than 0.05 accord-
ing to Welch’s t-test, but greater than 0.05 according to 
Student’s t-test. The larger the standard deviations ratio and 
the greater the sample sizes ratio, the larger the difference 
between p-values from Welch’s t-test and Student’s t-test.

Conclusion
When the assumption of equal variances is not met, Stu-
dent’s t-test yields unreliable results, while Welch’s t-test 
controls Type 1 error rates as expected. The widely recom-
mended two-step approach, where the assumption of equal 
variances is tested using Levene’s test and, based on the 
outcome of this test, a choice of Student’s t-test or Welch’s 
t-test is made, should not be used. Because the statistical 
power for this test is often low, researchers will inappropri-
ately choose Student’s t-test instead of more robust alterna-
tives. Furthermore, as we have argued, it is reasonable to 
assume that variances are unequal in many studies in psy-
chology, either because measured variables are used (e.g., 
age, culture, gender) or because, after random assignment 
to conditions, variance is increased in the experimental con-
dition compared to the control condition due to the experi-
mental manipulation. As it is explained in the additional 
file, Yuen’s t-test is not a better test than Welch’s t-test, since 
it often suffers high departure from the alpha risk of 5 per-
cent. Therefore, we argue that Welch’s t-test should always 
be used instead of Student’s t-test. 

When using Welch’s t-test, a very small loss in statis-
tical power can occur, depending on the shape of the 
distributions. However, the Type 1 error rate is more stable 
when using Welch’s t-test compared to Student’s t-test, and 
Welch’s t-test is less dependent on assumptions that cannot 
be easily tested. Welch’s t-test is available in practically all 
statistical software packages (and already the default in R 
and Minitab) and is easy to use and report. We recommend 
that researchers make clear which test they use by specify-
ing the analysis approach in the result section.  

Convention is a weak justification for the current prac-
tice of using Student’s t-test by default. Psychologists 
should pay more attention to the assumptions underlying 
the tests they perform. The default use of Welch’s t-test is 
a straightforward way to improve statistical practice.

Notes
	 1	 There is a Type 1 error rate inflation in a few cases 

where sample sizes are extremely small and SDR is big 
(e.g., when n1 = n2 = 3 are sampled from uniform dis-
tributions and SDR = 2, the Type 1 error rate = 0.083; 

or when n1 = 3 is sampled from a uniform distribution 
and n2 = 3 is sampled from a double exponential dis-
tribution). However, with extremely small sample sizes 
(N ≤ 5), the estimate of means and standard deviations 
is extremely inaccurate anyway. As we mentioned in 
table A2 (see the additional file), the smaller the sam-
ple size, the further the average standard deviation is 
from the population standard deviation, and the larger 
the dispersion around this average.

	 2	 This is called the Behren-Fisher problem (Hayes & Cai, 
2007).

	 3	 In a simulation that explored Type 1 error rates, we 
varied the size of the first sample from 10 to 40 in 
steps of 10 and the sample sizes ratio and the stand-
ard deviation ratio from 0.5 to 2 in steps of 0.5, result-
ing in 64 simulations designs. Each design was tested 
1,000,000 times. Considering these parameter values, 
we found that the alpha level can be inflated up to 
0.11 or deflated down to 0.02 (see the additional file).  

	 4	 Other variants have been proposed, such as the percent 
trimmed mean (Lim & Loh, 1996).

	 5	 Because sample sizes are equal for each pair of sam-
ples, which sample has the bigger standard deviation 
is not applicable. In this way, SDR = X will return the 
same answer in terms of percent power of Levene’s 
test as SDR = 1/X. For example, SDR = 2 will return the 
same answer as SDR = ½ = 0.5.

	 6	 For example, many statistical users believe that the 
Mann-Whitney non-parametric test can cope with both 
normality and homosedasticity issues (Ruxton, 2006). 
This assumption is false, since the Mann-Whitney test 
remains sensitive to heterosedasticity (Grissom, 2000; 
Nachar, 2008; Neuhäuser & Ruxton, 2009).

	 7	 Like Bryk and Raudenbush (1988), we note that une-
qual variances between groups does not systematically 
mean that population variances are different: stand-
ard deviation ratios are more or less biased estimates 
of population variance (see table A2 in the additional 
file). Differences can be a consequence of bias in meas-
urement, such as response styles (Baumgartner & 
Steenkamp, 2001). However, there is no way to deter-
mine what part of the variability is due to error rather 
than the true population value.

	 8	 Also known as the Satterwaite’s test, the Smith/Welch/
Satterwaite test, the Aspin-Welch test, or the unequal 
variances t-test.
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