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ABSTRACT
In open spina bifida we studied the use of MRI for the assessment of the posterior 
fossa and prevalence of supratentorial anomalies before and after in utero repair. New 
postprocessing techniques were applied to evaluate fetal brain development in this 
population compared to controls. In fetuses with congenital diaphragmatic hernia, 
we evaluated the brain development in comparison to controls. Diffusion weighted 
imaging was applied to study difference between fetuses with proven first trimester 
cytomegalovirus infection and controls. Finally, we investigated the value of third 
trimester fetal brain MRI after treatment for complicated monochorionic diamniotic 
pregnancies.
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INTRODUCTION

Fetal magnetic resonance imaging (MRI) has become 
an important adjunct to prenatal ultrasound in the 
assessment of fetal abnormalities of the central nervous 
system. It has become clear that both modalities are 
complementary, allowing better understanding of the 
disease process, classification of abnormalities, and 
determination of prognosis and management options [1, 
2, 3]. Over the last decades, several in utero treatment 
options have been proven beneficial and effective, 
including laser coagulation in monochorionic pregnancies 
complicated by twin-to-twin transfusion syndrome (TTTS), 
in utero closure of spina bifida aperta and, most recently 
fetoscopic endoluminal tracheal occlusion in congenital 
diaphragmatic hernia (CDH). Furthermore, there have 
been some recent developments in the prenatal therapy 
of cytomegalovirus (CMV) infection. The role of imaging 
of the fetal brain in this population has been recognised 
widely with an important role for fetal MR [4, 5, 6].

FETAL BRAIN MRI IN SPINA BIFIDA 
APERTA

Because of the efficacy of fetal surgery for spina bifida 
aperta, accurate prenatal imaging of fetuses with spina 

bifida aperta has become crucial to select eligible fetuses 
[7]. We investigated the use of fetal MRI in patients being 
assessed for fetal surgery for spina bifida.

First, we demonstrated that the majority of 
measurements that are used on postnatal MR images 
cannot be reliably made around the time of fetal surgery. 
These measurements include brain stem measurements, 
and foramen magnum diameter, tentorial length and 
cisterna magna width. Conversely, assessment of the 
posterior fossa dimensions and the level of cerebellar 
herniation were shown reproducible [8]. The latter 
has been used as a secondary outcome measure in 
the landmark study on fetal surgery for spina bifida, in 
other words the Management of Myelomeningocele 
Study, before and after fetal surgery [9]. Recently the 
interpeduncular angle (IPA) was proven significantly 
lower in fetuses with open spinal dysraphism, similar to 
observations in adults with intracranial hypotension [10]. 
The authors suggest that a reduced IPA is an early sign of 
CSF-leakage, causing intracranial hypotension, and later 
followed by frank cerebellar descent.

In the same study we demonstrated that already 
within seven days, in the majority of fetuses, there is 
reappearance of fluid cisterns in the posterior fossa8, 
Figure 1]. Earlier studies, such as the one from Sutton 
[11]), also reported such changes between three and 
six weeks after the surgery in all fetuses where this 

Figure 1 Boxplot demonstrating the minimum, first quartile, median, third quartile and maximum of the observed over expected ratio 
(O/E) in preoperative open spinal dysraphism (OSD) fetuses and postoperative OSD fetuses at one week for the posterior fossa area 
(PF area) (a), ventricular width (VW) (b), transverse diameter of the posterior fossa (TDPF) (c), transverse cerebellar diameter (TCD) (d), 
cerebellar herniation level (CHL) (e) and clivus- supraocciput angle (CSA) (f).
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was measured. The re-accumulation of intracranial 
CSF can be an interesting proxy of the efficacy of spinal 
closure [12].

A follow-up MRI later in pregnancy was shown to 
predict the need for postnatal hydrocephalus treatment 
[13]. Another reason to perform a postoperative MRI, 
such as six weeks following surgery, is that the fetal brain 
can be better documented. For instance, periventricular 
nodular heterotopia will be more frequently picked up 
[14, 15]. The question is obviously how that information 
would be used in the further clinical management of the 
pregnancy, given the advanced gestational age.

Second, we described the nature and occurrence 
of supratentorial abnormalities in fetuses with spina 
bifida [16]. Proper assessment is important for 
counselling women about fetal surgery [17]. Besides 
ventriculomegaly, evidence of damage to white matter 
tracts and abnormalities of the corpus callosum [18] 
or indications of abnormal neuronal migration are 
frequently observed in fetuses with open spina bifida 
[14, 15, 19–22]. When using MRI in fetuses meeting the 
criteria for fetal surgery on ultrasound findings, half of 
them were found to have corpus callosum abnormalities 
and/or ventricular wall abnormalities [16]. This number 
is in line with findings in a recent systematic review by 
our group [23]. Whether MRI is essential for this, hence 
adds information to US, has to our knowledge not been 
proven. In our own hands, US also detected a whole 
range of supratentorial abnormalities. At our center, 
US findings inform the MRI, and thus we cannot truly 
measure what would be the theoretical added value of 
one imaging modality above the other.

Third, we used a new 3D SVR algorithm [24] and an 
automated segmentation method [25] to document 
perioperative changes in fetal brain development in 
fetuses with spina bifida as compared to fetuses without 
the conditions [26]. Documenting in utero changes 
following surgery is important, as increasingly fetal 
surgery is being practiced, and it is expected that more 
of these operations will be done when minimally invasive 
methods will be widely implemented [27–29]. The shift 
towards prenatal repair is, at this moment changing the 
‘natural history’ of open spina bifida 8, 16, 30–33].

In our cohort we did not find any difference in 
cerebellar volume with that of controls but demonstrated 
that the cerebellar shape changed importantly after 
fetal surgery, eventually becoming more comparable to 
that of controls [26]. The fact that we found cerebellar 
volumes to be comparable to that of controls, needs 
further investigation. In a prior study, we have found 
that posterior fossa dimensions in spina bifida prior to 26 
weeks were very variable [8]. Others have demonstrated 
that infants who were not operated in utero, but 
postnatally, have different white matter and cerebellar 
volumes. The authors tied this to the mechanical 

compression and ventricular dilatation present prior to 
(postnatal) surgery [34–36]. The widely accepted theory 
of McLone and Knepper explains this as follows. The 
ongoing leakage of CSF at the spinal defect prevents 
ventricular distention and normal development of the 
bony structures of the posterior fossa [37]. In turn, 
the limited growth of the bony posterior fossa limits 
the cerebellar development, leading to cerebellar 
compression [35, 36].

We also evaluated the white matter in our fetal 
surgery population, and, again, no differences in volume 
or shape were found compared to normal controls 
[26]. These fetuses however had a variable degree 
of ventriculomegaly prior to fetal surgery; after the 
operation, the ventricular width continued to increase, 
in concordance with the observations of others [8, 12, 
16, 26]. To us, it remains unclear how the white matter 
volume evolves during the remainder of the pregnancy 
and in postnatal life in this subset of patients.

In the same study, we used spectral matching 
to document cortical folding. We demonstrated an 
increased shape index prior to fetal surgery, and a 
decreased shape index seven days after fetal surgery, 
both compared to the index in normal controls [26]. 
This is, to our knowledge, the first study specifically 
documenting cortical development in fetuses before 
and after fetal surgery. Postnatal studies demonstrated 
that children with open spina bifida (who underwent 
postnatal repair) have a different cortical folding pattern 
in comparison to normal age-matched controls [38, 
39]. Longitudinal analysis of the cerebellar and white 
matter development, both volume and shape, as well 
as cortical folding with spectral matching, will allow 
us to document the impact of prenatal surgery during 
the remainder of the pregnancy and potentially also 
postnatally.

Fourth, we applied the new 3D SVR algorithm [24] to 
create the first spatio-temporal atlas of the fetal brain in 
spina bifida aperta [40, Figures 2a, 2b]. The application of 
our atlas for automated segmentation of fetal brain MRIs 
with open spinal dysraphism did result in a more accurate 
segmentation compared to those based on other 
atlases that used normal fetal brains. This illustrates, as 
suggested by Jakab et al. [41]. the potential of 3D SVR 
techniques with automated segmentation. They may 
eventually provide new outcome predictors for fetuses 
with this condition based on quantitative research.

FETAL BRAIN MRI IN CONGENITAL 
DIAPHRAGMATIC HERNIA

CDH is another congenital malformation for which 
fetal surgery has been shown to be beneficial in given 
circumstances [42–44]. Imaging studies in infants with 
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Figure 2 Overview of our Spatio-temporal atlas in fetuses with open spina bifida before (a) and after (b) in utero spina bifida repair. These 
include the overview of the eight fetal brain segmentation regions. Yellow: extra-axial cerebrospinal fluid, turquoise: cortex, red: white 
matter, purple: deep grey matter, grey: brainstem, green: intra-axial cerebrospinal fluid, light blue: cerebellum, dark blue: corpus callosum.
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CDH have demonstrated several abnormalities, including 
increased extra-axial space, delayed sulcation and white 
matter injury, but the exact mechanisms remain unclear, 
and studies reporting on the neurodevelopmental 
outcome in isolated CDH are limited [45–47]. Fetuses with 
CDH have variable degrees of hemodynamic dysfunction. 
We have previously reported a decline of more than 20% 
in the middle cerebral artery peak systolic velocity, hence 
in brain perfusion in fetuses with CDH [48]. There may 
be similarities to the circulatory disturbances in fetuses 
with congenital heart defects where there are recognized 
alterations in antenatal brain development. In left-sided 
CDH, herniation of abdominal structures may result in 
mild to moderate cardiac hypoplasia, which in turn may 
compromise cardiac output [49]. Cardiac compression 
in CDH fetuses may also compromise venous return [49, 
50]. This may, in turn, cause venous congestion and lead 
to decreased CSF resorption [51], and an overall increase 
of intracranial fluid.

We reported on a significant delay in brain 
development in fetuses with isolated CDH at 28 weeks 
of gestation and to a lesser extent at 33 weeks of 
gestation. This is in line with earlier observations by 
ultrasound and the first MRI data demonstrating an 
altered brain development in utero in CDH fetuses. 
Others have not found such differences [50], and 
those looking only at postnatal data hypothesized that 
postnatal events may eventually cause altered brain 
development [50, 52–56].

FETAL BRAIN MRI IN CONGENITAL 
CYTOMEGALOVIRUS INFECTION

In fetuses infected with CMV in the first trimester, 
there is an increased risk of sensorineural hearing loss 
and impaired cognitive development [1, 2, 57–61]. 
Neurosonography (NSG) is the most important modality 
in the follow-up of fetuses with confirmed first-trimester 
CMV-infection [59]. We found an added value of 
fetal MRI in the third trimester in fetuses with proven 
first-trimester CMV infection [3]. Moreover, there is a 
correlation between grading of abnormalities found at 
NSG [62] and those found at MRI [5]. The importance of 
white matter abnormalities for the outcome is reflected 
in a new brain MRI score for postnatal evaluation [63]. 
The only prenatal grading system for brain abnormalities 
on fetal MRI [5] also includes abnormal white matter 
hyperintensities. Yet, white matter hyperintensity 
remains a controversial finding on fetal MRI, especially 
in cCMV [64, 65]. It is probably the most known false-
positive finding in CMV because of its subjectivity [5, 
66]. Recently, Roee et al. [67] have demonstrated MRI 
detects more subtle findings in CMV-infected fetuses. 
But more importantly, they found 66% false positive 

findings in fetuses with an unknown infective status 
undergoing imaging, the majority being detected on 
MRI only, emphasizing the importance of amniocentesis 
in this population [67]. In our study, we evaluated the 
routine application of diffusion weighted imaging (DWI) 
in fetuses with proven first-trimester cCMV to evaluate 
the white matter. Despite a failure rate of >10%, DWI 
should be implemented in routine fetal MRI for CMV as 
we found a significant higher ADC value in the brain of 
cCMV-infected fetuses compared to controls, and our 
findings suggested a correlation with the severity of 
abnormalities found on anatomical sequences [3] The 
higher ADC is in line with a postnatal study comparing 
cCMV with periventricular leukomalacia (PVL) in children 
[68].

FETAL BRAIN MRI IN FETUSES 
TREATED FOR TWIN-TO-TWIN 
TRANSFUSION SYNDROME

In twin pregnancies, there is an increased risk of abnormal 
postnatal neurological development in fetuses surviving 
TTTS [69–71]. Others showed a benefit of fetal brain MRI 
for the detection of brain abnormalities in TTTS [72, 73]. 
The ISUOG practice guidelines on the role of ultrasound 
in twin pregnancy do not encourage fetal brain MRI 
at 30 weeks in survivors after laser ablation TTTS [74]. 
Nonetheless, we offer our patients a routine fetal brain 
MRI in the third trimester. In our retrospective study, 
compared to ultrasound, we found that MRI detected an 
additional brain lesion in 6% (4/69) [75]. Although the 
number of abnormalities in our study, as in other studies, 
was rather small, their consequences however were very 
important. Of the four pregnancies, the only one that 
was continued showed cerebral palsy of the affected 
twin postnatally. The abnormalities only detected on MRI 
were disorders of cortical development (Table 1), known 
to be often missed on US and detected more easily 
on MRI (Table 1) [17, 73, 76]. Migrational disorders are 
difficult to diagnose [20, 76]. Furthermore, they are more 
difficult to diagnose on neurosonography, increasing the 
value of the MRI in these cases [77], (Figure 3). Righini 
et al. [76] presented their experience in the detection of 
abnormalities of cortical malformation prior to 24 weeks 
and described different cortical patterns [76]. Glenn et 
al. [20] showed that the accuracy of MRI is highest when 
the abnormality is seen in at least two planes [17]. In 
addition, we often perform a repeat MRI after 10–14 
days for confirmation in these cases. This practice of 
course is not always feasible if the legislation regarding 
continuation of the pregnancy is more limited compared 
to our country [76]. Our results suggest routine third 
trimester MRI in survivors of TTTS after laser ablation 
seems justified.
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CONCLUSION

Although we have demonstrated the added value of fetal 
brain MRI in several fetal conditions, it remains a challenging 
technique that needs to be performed upon proven 
indications and in centers with the necessary expertise 

in fetal imaging [78]. Not only will this allow maximized 
exposure in these specialized centers, this will also permit 
to interpret the findings on fetal imaging (neurosonography 
and fetal MRI) in a multidisciplinary setting (including fetal 
specialist, radiologist, pediatric neurologist, geneticist, 
pathologist) as recommended [78–81].

INTERVENTION
(WEEKS)

SINGLE IUFD 
CO-TWIN

DIAGNOSIS GA MRI
(WEEKS)

MAIN LESION OUTCOME AFFECTED 
TWIN

Case 1 26.3 No MRI 29.5; 
31.5

Parietotemporal white 
matter heterogeneity with 
foci of bleeding; evolution 
to atrophy on follow-up

Spontaneous in utero 
demise of donor at 34.5 
weeks

Case 2 20.2 No MRI 30.1 Focal polymicrogyria 
frontal right

Birth at 34 weeks, 
cerebral palsy at 5 years

Case 3 16.4 No MRI 28.2; 
31.1

Bilateral focal 
polymicrogyria

Cord occlusion

Case 4 24.1 Cord occlusion for 
recurrent TTTS

MRI 27.4 Focal polymicrogyria Termination of pregnancy

Case 5 19.5 Spontaneous 
demise day 5 
post laser

US + MRI 29.5 Bilateral cortical atrophy 
secondary to bleeding

Comfort care after birth at 
30 weeks because of brain 
anomaly and prenatal 
bowel perforation– 
neonatal demise

Case 6 21.2 No US + MRI 29.2 Cortical atrophy Cord occlusion

Table 1 Characteristics of the six fetuses with brain lesions on third-trimester MRI after laser coagulation of the anastomoses.

Legend: GA = gestational age; MRI = magnetic resonance imaging, US = ultrasound; TTTS = twin-to-twin transfusion syndrome; IUFD: 
Intra-uterine fetal death.

Figure 3 T2-weighted MRI images (a–d) and DWI (e) with corresponding ADC map (f) of an ex-donor at a gestation of 28 weeks (w) 
in a monochorionic diamniotic pregnancy complicated by TTTS with laser intervention at 20 w (Case 5 in Table 1). Prior US at 24 w 
(g) and 26 w (h) are also shown. Fetal MRI was performed for further evaluation of suspected subdural bleeding on the right, which 
appeared to remain stable in extension but with decreasing echogenicity (white circle in g and h). In addition, the fetus was also 
monitored closely with US for necrotizing enterocolitis with bowel distension and complicated ascites with peritoneal hyperechoic 
nodules (not shown). MRI at 28 w (a–f) demonstrates symmetrical bilateral cortical atrophy with irregular lining and hypo-intense 
signal on T2 (black arrow in a-d), in keeping with old ischemia. On b-1000 of DWI (e) and ADC (f) no acute ischemia was seen; only 
the same atrophy (black arrow in e and f) was evident.
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