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ABSTRACT
Previous studies on voluntary task switching using the self-organized task switching 
paradigm suggest that task performance and task selection in multitasking are related. 
When deciding between two tasks, the stimulus associated with a task repetition 
occurred with a stimulus onset asynchrony (SOA) that continuously increased with 
the number of repetitions, while the stimulus associated with a task switch was 
immediately available. Thus, the waiting time for the repetition stimulus increased 
with number of consecutive task repetitions. Two main results were shown: first, switch 
costs and voluntary switch rates correlated negatively – the smaller the switch costs, 
the larger the switch rates. Second, participants switched tasks when switch costs and 
waiting time for the repetition stimulus were similar. In the present study, we varied 
the SOA that increased with number of task repetitions (SOA increment) and also 
varied the size of the switch costs by varying the intertrial interval. We examined which 
combination of SOA increment and switch costs maximizes participants’ attempts to 
balance waiting time and switch costs in self-organized task switching. We found that 
small SOA increments allow for fine-grained adaptation and that participants can best 
balance their switch costs and waiting times in settings with medium switch costs and 
small SOA increments. In addition, correlational analyses indicate relations between 
individual switch costs and individual switch rates across participants.
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In our daily life we often engage in multitasking. Yet, our ability to multitask is rather limited. 
Empirical research has highlighted these limitations, for instance, by demonstrating that 
switching between two or more tasks is associated with performance costs (for reviews 
see e.g. Kiesel, et al., 2010; Koch, et al., 2018; Monsell, 2003; Vandierendonck, et al., 2010). 
While research on switch costs captures a unique aspect of everyday multitasking, it neglects 
important factors other than performance. For example, when multitasking, it is often not 
only critical how to perform multiple tasks in rapid succession, but also relevant to select what 
task to perform in the first place (Arrington & Weaver, 2015; Braun & Arrington, 2018; Kiesel & 
Dignath, 2017; Dignath, et al., 2015; Schuch & Dignath, 2020). Indeed, a rich research tradition 
on decision making provides evidence that people consider different costs and benefits for their 
decisions (i.e., Basten et al., 2010; Kool et al., 2010; Simen et al., 2009) and recent theoretical 
work suggests that such utility-based decisions also take into account performance costs in 
multitasking (Shenhav et al., 2013, Musslick et al., 2015; Shenhav et al., 2016; see also Schuch, 
et al., 2019). Against this background, the present study examined the structure of such cost/
benefit arbitrations in more detail. Going beyond previous research, we asked how different 
determinants of performance during task switching inform task selection.

The link between task performance and task selection in voluntary task switching was proposed 
by Arrington and Logan (2004; 2005). In some studies participants could freely choose between 
a magnitude or parity judgement task, and were instructed to perform each task on about half 
of the trials as well as in a random order (Arrington & Logan, 2004; 2005); we refer to this as 
the randomness instruction in the following. Regarding task performance, the voluntary task 
switching (VTS) resulted in switch costs (differences in response times, RTs, and error rates 
between repetition trials and switch trials) suggesting that cognitive processes associated with 
task switching are time-consuming (Arrington, et al., 2014). Moreover, task selection behavior 
was biased in favor of a higher repetition rate. Participants repeated tasks more often than 
expected by chance (about 35% switch rate) violating the instruction to select tasks randomly 
(e.g., Arrington & Logan, 2005; Yeung, 2010).

Importantly, in voluntary task switching experimental factors determining the size of switch 
costs also influenced the proportion of task switches, or put differently, the repetition bias 
(Arrington & Logan, 2004; 2005). More specifically, both the tendency to repeat the task and 
the switch costs decreased with a longer duration of the intertrial interval (ITI). The reduction 
of switch costs as a consequence of prolonged ITI could be explained by actively controlled 
preparation for the next task, which can be partly finished before the new stimulus is displayed 
(Arrington & Logan, 2004; Arrington 2008; Liefooghe et al., 2009). Alternatively, Mayer and 
Bell (2006; see also Vandierendonck et al., 2010, for an overview) explained the ITI effect by 
assuming that passive activation of the task set decayed over time after the response was 
executed. However, the less time-costly task switching is, e.g. after long ITIs, the more often 
task switches are chosen, that is the repetition bias decreases.

Further observations showed that task selection can be influenced by varying the occurrence 
of stimuli. For example, stimulus repetition was negatively correlated with the number of 
voluntary task switches (Arrington, & Logan, 2005, Exp. 4 and 5; Mayr, & Bell, 2006). Moreover, 
Arrington (2008; see also Arrington & Weaver, 2015) showed that the voluntary task choice 
was influenced by stimulus availability. In two experiments participants had to decide between 
a letter (vowel/consonant) and a number (odd/even) judgment task. Stimulus availability 
was manipulated by presenting the two stimuli in each trial with a variable SOA (0, 50, 100, 
150 ms). Additionally, Experiment 2 included the manipulation of ITI (400 and 2000 ms). The 
task associated with the first stimulus was selected more frequently in accordance with the 
increasing SOA, which supports the impact of stimulus availability on voluntary task choice. 
However, Experiment 2 showed that when the ITI was larger, the effect of SOA was weaker, 
providing further evidence that the ITI duration affects task selection and also interacts with 
the availability of the target stimulus (Arrington, 2008).

Assuming a link between task selection and performance costs, Reissland and Manzey, (2016; 
see also Brüning, & Manzey, 2018) proposed that the repetition bias might indicate strategic 
adaptation of our cognitive systems. Possibly people try to avoid the effort associated with 
switching tasks and thus prefer to repeat the task when they are free to choose which task 
to perform (Kiesel & Dignath, 2017; Mittelstädt, et al., 2018a). In line with this assumption, 
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Figure 1 Exemplary 
Illustration of Accumulation 
of SOA increments Used in 
Specific Session (S1, S2, S3) to 
switch SOA.

Note: n = first trial in block. 
After the response to the 
number task, the waiting 
time for the number in 
the first repetition trial 
(n + 1) is equivalent to the 
SOA increment. In subsequent 
trials waiting time prolongs 
according to the specific SOA 
increment. The observed 
waiting time in the switch 
trial (n + 3) is recorded as the 
switch SOA. In the trial after 
the task switch (n + 4) the 
waiting time starts anew.

in studies without the randomness instruction, in which participants were instructed to 
freely choose the task in each trial, the switch rate was low (Kessler et al., 2009; Arrington & 
Reiman, 2015).

Support for the idea of strategic task selection is also provided by studies of voluntary task 
switching with reward. That is, when voluntary task switches (Braun & Arrington, 2018; Braem, 
2017; Fröber & Dreisbach, 2017) are associated with reward, participants decided to switch 
tasks more often. Similarly, when participants are signaled that the reward for successful 
performance will increase in the next trial (i.e., increased reward prospect), voluntary switching 
rates increased (Fröber & Dreisbach, 2016; Fröber, et al., 2018, Jurczyk, et al., 2019) even if 
the switch-related task was more difficult than the previously performed task (Jurczyk, et 
al., 2019). Interestingly, it has been shown that the voluntary switching rate decreases if the 
reward prospects remain high. These results are in line with studies which examined the impact 
of cost-benefit balancing on decision making (Basten et al., 2010).

Since Arrington and Logan (2005) have concluded that voluntary task switching can involve both 
strategic and stimulus-driven control processes, the voluntary task switching paradigm seems 
to be a suitable tool to study the interaction between different sources of cognitive control 
as well as the interdependence of task performance and task selection. Yet, the randomness 
instruction remains a critical point, because following this instruction requires additional 
control processes to generate random task sequences (Baddeley, 1966). As a consequence, 
the observed voluntary switch costs may also reflect further costs related to additional control 
processes involved in the generation of these random task sequences.

Additionally, the observed repetition bias can be considered as a violation of the randomness 
instruction. Thus, the repetition (or switch) rate in the original voluntary task switching 
paradigm is only an indirect indicator of the voluntary task selection. In the present study we 
are especially interested in the interplay of task performance and task selection as well as in 
the factors determining the decision to switch the task. The novel variant of the voluntary 
task switching paradigm allows us to investigate the different factors influencing performance 
costs and task selection in multitasking without the randomness instruction. In this study, 
our specific aim was to explore which parameters of this novel task switching variant enable 
participant to most effectively select tasks based on their performance costs.

SELF-ORGANIZED TASK SWITCHING
In the self-organized task switching paradigm (Mittelstädt et al., 2018b; 2019) participants 
were instructed to optimize their overall task performance, i.e. to execute each experimental 
block as quickly and accurately as possible. To induce task switches, stimulus presentation was 
delayed for the task repetition stimulus relative to the task switch stimulus. More specifically, 
two stimuli (a letter and a digit) related to two different tasks (vowel/consonant or odd/even) 
were presented in each trial. After performing one of the two tasks, the stimulus associated with 
the task repetition was displayed in the next trial with a delay (SOA). In contrast, the switch-
related alternative stimulus was immediately available. Importantly, this delay increased with 
each consecutive task repetition by a fixed SOA increment until one decided to switch tasks. We 
refer to the delay between the switch and repetition stimulus as waiting time. In addition, in 
the trial in which the participant switched to the other task we refer to the waiting time of this 
trial as the switch SOA. This time indicates the waiting time for the repetition stimulus at which 
the participant decided to switch (see Figure 1).
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Similar to the study by Arrington and Logan (2004, 2005) participants performed both tasks 
equally often, but without being explicitly asked to do so. Rather, the number of trials per task 
in each block was externally determined so that both tasks were completed the same number 
of times. This means that once a participant had finished the trials for one task in a block, 
only the stimulus for the remaining task was presented in the remaining trials of this block. 
Importantly, the data analyses did not consider these trials because participants were not able 
to select tasks.

In this setting, with each consecutive task repetition participants have to consider increased 
waiting times for the repetition stimulus, while a task switch is always compensated with 
the reset of the waiting time. Consequently, task selection in favor of switching is potentially 
facilitated by the fact that the immediate onset of the switch-related stimulus can trigger 
the corresponding task set and at the same time the activation of the repetition-related task 
set decreases while waiting for its stimulus. Thus, the likelihood of switching tasks should be 
increased because the switch-associated task set passes the task activation-selection threshold 
first and thus wins against the repetition task set. In line with these predictions, results showed 
that two factors impacted on switch rates. For larger SOA increments (for which the waiting 
times for the repetition stimuli increased faster with consecutive task repetitions), switch rates 
increased. Also, for longer ITIs (for which task switch costs are reduced), switch rates increased. 
Moreover, participants avoided waiting too long for the repetition stimulus and switched tasks 
especially when the difference between switch SOA and switch costs was small. In sum, the 
results from Mittelstädt et al. (2018b; 2019) revealed further evidence for the link between task 
performance and task selection and support a trade-off between different types of costs during 
voluntary task selection.

Importantly, the self-organized task switching paradigm allows researchers to measure 
both task performance (i.e. switch costs) and task selection behavior (i.e. switch SOA) on a 
common time scale. As Mittelstädt et al. (2018b, 2019) previously showed, in conditions with 
short ITIs, participants were quite good at adapting their switch SOA according to their switch 
costs. However, although the difference was not significant, the switch SOA was about 100 ms 
longer than the switch costs and there was quite some inter-individual variance. Interestingly, 
Reissland and Manzey (2016; see also Brüning, & Manzey, 2018) also provided evidence for 
inter-individual differences in dealing with multitasking situations. More recently, Brüning et 
al. (2020) demonstrated that individual differences in task processing mode correspond to 
individual differences in response organization.

The present study aimed to extend the existing findings and investigate exactly how the 
interplay of switch costs and SOA increment influences the decision to switch tasks. Specifically, 
we manipulated switch costs by varying the ITI in three steps and the SOA increment also in 
three steps and expected to identify the conditions under which participants are able to match 
their switch costs and switch SOA most precisely, i.e. to trade-off most efficiently between 
switch costs and waiting times for the repetition stimulus. In addition, we aimed to gain further 
insight into whether an individuals’ ability to balance their time costs is related to their task 
selection behavior.

THE PRESENT EXPERIMENT
In the present research we investigated how the relative scaling of SOA increment and switch 
costs impacts on the cost-benefit arbitration that guides task selection. In the self-organized 
task switching paradigm, the ratio of SOA increment and switch costs must be crucial for 
participants to trade-off waiting time and switch cost for methodological reasons. If the SOA 
increment is large (e.g. 60 ms) while switch costs are small (e.g. 100 ms), no fine-tuning of 
waiting time and switch cost is possible because in this example participants can only switch 
at either 60 or 120 ms waiting time. Yet, if the SOA increment is small (e.g. 20 ms) while switch 
costs are large (e.g. 300 ms), participants would have to switch to the alternative task after 
a waiting time of 300 ms. This waiting time would only be reached after 15 repetition trials 
because of the small SOA increment. In this example it might be that participants would hardly 
switch at all because the setting promotes frequent task repetitions.

To manipulate waiting time, three different SOA increments were used (20 ms, 40 ms, 60 ms; 
see Figure 1). To manipulate switch costs, three different ITIs were used (0 ms, 250 ms, and 
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700 ms) that have been shown to modulate the size of switch costs effectively and resulted 
in large (ca. 300 ms), medium (ca. 200 ms) or small (ca. 100 ms) switch costs (Arrington, 
2008; Mittelstädt et al., 2019). This full factorial design allowed us to determine which ITI/SOA 
increment combination allows an optimal tradeoff.

METHOD
EXPERIMENTAL DESIGN

The present study was conducted using a within-subject design. Each participant was tested in 
three sessions that differed in the use of one of the three SOA increments. Within a session we 
implemented three different ITIs which varied blockwise. Both the order of the sessions and the 
order of the blocks was counterbalanced across participants. Our manipulation resulted in nine 
varying ITI/SOA increment combinations: 0/+20, 0/+40, 0/+60, 250/+20, 250/+40, 250/+60, 
700/+20, 700/+40, 700/+60.

PARTICIPANTS

118 students from the University of Freiburg or residents of Freiburg (35 males; 15 left-handed; 
Mage = 24.3 [SD = 5.2]) participated in the experiment and received either course credit or 
financial remuneration. All participants had normal or corrected to normal vision and were 
treated according to the ethical standards of the American Psychological Association. The 
sample size was based on a-priori power analyses (α = 05, 1–β = .95) with G*Power 3.1 (Faul, 
Erdfelder, Buchner, & Lang, 2009); these indicated that 107 participants would be needed to 
detect differences of .5 between two z-transformed Pearson r’s. For reasons of counterbalancing 
and with respect to the possibility that participants could be excluded due to a lack of task 
switch, we increased the number of participants to N = 118.

APPARATUS AND STIMULI

The experiment was run with E-Prime software on a Fujitsu Eprimo P920 computer with a 24 
inch monitor. Participants were placed in front of a computer screen at a viewing distance of 
approximately 60 cm. They responded with the index and middle fingers using the “y”, “x”, “,” 
and “.” keys on a QWERTZ keyboard, which was positioned centrally on the table. The fingers 
of each hand were mapped to one task and the specific S-R mappings were counterbalanced 
across participants.

The stimuli of the two tasks were presented one above the other within a white fixation 
rectangle (11 mm × 19 mm) in the center of the black screen. Target stimuli were white colored 
numbers 2–9 for the number task (odd/even) and capital letters A, E, G, I, K, M, R, and U for the 
letter task (consonant/vowel), measuring approximately 5 × 7 mm. Neither the same numbers 
nor the same letters appeared in successive trials. The position of the stimuli remained the 
same in the block, but changed over the blocks. In the first block, the number stimulus was 
presented at the top and the letter stimulus at the bottom for the half of participants. The other 
half of participants began with the block in which the stimuli-location mapping was reversed. 
There were also training blocks with instructed task, and in these a white arrow was presented 
outside the rectangle at the corresponding position (e.g. top/bottom) to indicate the task that 
should be performed in the current trial.

PROCEDURE

The procedure of all sessions was the same except for the SOA increment used, which varied 
between 20, 40, and 60 ms across the sessions. The order of these sessions was counterbalanced 
across participants. In each session, we applied 15 blocks (3 training blocks, 12 test blocks) with 
three variable ITIs (0 ms, 250 ms, 700 ms; see Figure 2). The ITIs were constant within a block, 
but varied across the blocks. Therefore, in each session participants were first trained in three 
blocks of 60 trials per block (30 number tasks and 30 letter tasks, 180 trials in total) in three 
different ITI conditions, performing the letter and the number tasks in an alternating-runs 
procedure (forced-choice blocks; see Rogers & Monsell, 1995). In addition, the implementation 
of forced-choice blocks ensured that the participants were aware of the possibility to switch 
tasks during the block. Subsequently, in twelve test blocks of 90 trials (45 number tasks and 45 
letter tasks, 1080 trials in total) participants decided by themselves which task to complete in 
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each trial (free-choice blocks). In each block, one of the ITIs was used, so there were four free-
choice blocks with the same ITI in each session. The order of the blocks was counterbalanced 
between the participants and arranged so that the ITI never repeated in two successive blocks.

As shown in Figure 2, at the beginning of each trial, a black display with a gray fixation rectangle 
appeared for the duration of the current ITI. Then the color of the rectangle changed to white, 
and the stimuli were presented inside of the rectangle. In the first trial of a block, the two 
stimuli were displayed at the same time. In the following trials, only the task-switch stimulus 
appeared directly at the beginning of a trial, whereas the task-repetition stimulus was delayed 
by the amount of the current accumulated SOA increment. In other words, each task repetition 
was accompanied by the waiting time for the repetition stimulus. Importantly, the waiting time 
increased depending on the number of repetitions. The collected RTs were the time duration 
from onset of the stimulus that appeared first until participant pressed the response key. 
Hence, to get the true RTs for repetition trials, we subtracted the current SOA from the total 
time. For the switch trials RTs this calculation was not necessary, because the stimulus for the 
switch task was presented without the delay and the collected RTs were the true switch RTs. 
After the fixed total number of the same task type was completed within a block, a placeholder 
(i.e., “#”-sign) occurred at the corresponding position in the rectangle and participants had to 
perform the other task for the remainder of the trials in the block. In the forced-choice blocks 
both tasks/stimuli always appeared simultaneously. At the same time, the white arrow was 
displayed beside the rectangle at the corresponding position to indicate which task had to be 
performed in the current trial. The participants were instructed to complete the tasks as quickly 
as possible and in free-choice blocks, participants were additionally instructed that they could 
decide themselves which task to perform in each trial with the goal to be as fast as possible 
and to avoid errors. Similar to the study from Mittelstädt et al. (2019), participants received the 
following instructions in German:

“You have to perform 90 tasks in one block (= 90 trials). You can decide which task to 
perform in a trial, as long as both tasks are available. Select the tasks to be as fast as 
possible without committing errors. Reaction time measurement in each trial starts 
with the presentation of the first task (or of the “#”–sign) and the change of the 
rectangle color to white.”

In case of error, a short version of the instructions with the task and response-key mappings 
was presented for 2500 ms. After each block, participants received performance feedback (i.e., 
mean collected response time and number of errors) and could take self-paced breaks.

DATA ANALYSIS OVERVIEW

To identify the optimal ITI/SOA increment combination we choose the following data analysis 
procedure. First, we examined aggregate measures of task performance and task selection 
for each ITI/SOA increment combination. As an indicator of task performance, we calculated 
means of the median switch cost for each ITI/SOA increment combination (see Mittelstädt, 

Figure 2 Typical Trial Structure 
in the Free-Choice Blocks.

Note: Waiting time for 
repetition stimulus is 
equivalent to the number of 
task repetitions × specific SOA 
increment (20 ms, 40 ms or 
60 ms). SOA increments varied 
between the sessions, ITI 
duration varied blockwise.
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et al., 2019, for the rationale of why medians instead of means over individual data points were 
assessed). As an indicator of task selection we used two measures, (i) mean switch rate and 
(ii) mean of the median switch SOA (median SOA at which participant decided to switch) for 
each condition. Second, we calculated correlations between switch costs and switch rates and 
between switch costs and switch SOAs separately for each ITI/SOA combination to examine 
individual differences in each condition.

Third, to identify which ITI/SOA increment combination allows for an optimal tradeoff of costs, 
we examined the relationship between task performance and task selection on both the 
averaged and individual levels. Since both switch costs (task performance) and switch SOA 
(task selection), refer to the same scale (i.e., time measured in milliseconds), we calculated 
the individual difference score (Diff Score = median switch SOA – median RT switch cost) for 
each participant in each ITI/SOA increment combination. To examine whether the difference 
between switch costs and switch SOA was significant, we carried out the t-tests against zero 
for the averaged Diff Scores of each condition. The condition with the smallest and non-signi
ficant averaged difference should allow the most efficient trade-off between switch costs and 
switch SOA. Using the open source statistical program JASP Version 0.11.1 (JASP Team, 2019), 
we also computed the Bayes factor BF01 (default Cauchy prior width = .707), which quantifies 
the evidence for the absence of the difference (null hypothesis) against the alternative 
hypothesis. To compare the trade-off points of the different conditions, we ran a 3 × 3 repeated 
measurements ANOVA with the factors ITI and SOA increment, and the dependent variable 
Diff Score. As a second indicator of the trade-off ability, we considered the relation of the 
switch costs and switch rate on the individual level. We reasoned that if participants could 
more efficiently balance switch costs and switch SOA in a condition, the correlation between 
switch costs and switch rates in this condition would be stronger than in a condition with a less 
successful trade-off. Therefore, we compared the magnitude of the correlation between switch 
costs and switch rates for each ITI/SOA increment combination.

Finally, in order to investigate more directly how an individuals’ trade-off ability is related to 
their task selection behavior, we performed a correlation analysis between switch rate and 
the absolute value of the difference score.1 Note, with this analysis we aimed to examine 
whether participants who can better balance switch SOA and switch costs, indicated by a small 
individual difference score, also switched tasks more often than the participants with lower 
trade-off ability.

RESULTS
DATA PREPARATION

Since the forced-choice blocks were part of the task training and our focus of interest was 
to investigate the relationship between voluntary task selection and task performance, we 
analyzed the participant’s RTs only in the free choice blocks. Similar to Mittelstädt et al. (2018) 
we checked whether the switch rate in the first free-choice block was significantly smaller than 
in subsequent blocks. As shown in Table A.1 in the Appendix, this was not dramatically the case; 
therefore, we did not exclude any free-choice blocks from the analyses.

As in previous self-organized task-switching studies (Mittelstädt et al., 2018; 2019) we excluded 
the following trials from the analysis: the first trial of each block, error trials (5.00 %) and trials 
following an error, trials in which participants pressed the key before stimulus onset (.40%), any 
trials without the possibility to choose between the two tasks (i.e., any trials when a placeholder 
was presented for one task, 14.00 %), and trials with RTs less than 200 ms (.10 %) or greater 
than 3000 ms (.02 %).

PARTICIPANT EXCLUSION PROCEDURE

First, we excluded one participant with an error rate of 30.00 %. In the next step, we examined 
whether participants showed extreme task choice behavior. We identified 7 participants who 
only switched (99.96 % task switches) as well as 8 participants who only repeated the tasks 
(100.00 % task repetitions) in all nine conditions and removed their data from the analysis. 

1	 We thank an anonymous reviewer for suggesting that we examine the relationship between individual 
ability to balance the time costs and individual task selection behavior.
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Then, we ensured that after the data preparation each participant had a substantial number of 
repetition and switch trials in each condition. We applied the cut-off of a minimum of 10 trials 
to get a meaningful estimation of individual switch costs. If the minimum number had not 
been fulfilled, the respective participants were excluded from the analysis only in the particular 
condition (see row “N” in Table 1 for the remaining sample size in each condition).

TASK PERFORMANCE

First, we examined whether the size of switch costs varied according to the duration of the ITI. 
Similar to Mittelstädt et al. (2019), we calculated the median switch costs (median RT switch 
– median RT repetition) for each participant in each ITI/SOA increment combination. Table 1 
provides an overview of the average switch cost for each condition. As expected, participants 
had the highest switch costs in blocks with shortest ITI of 0 ms and lowest switch costs in 
blocks with longest ITI of 700 ms. Importantly, within a given ITI, the switch costs did not seem 
to differ substantially between the different SOA increments.

TASK CHOICE BEHAVIOR

Next, we analyzed participants’ task choice behavior in each condition. In detail, we examined 
how often participants decided to switch to the alternative task in each condition (i.e. the switch 
rate for each condition) and at which switch SOA they decided to switch. Thus, we calculated 
each participant’s individual switch rate and individual median switch SOA per condition. Note, 
according to the SOA increments used in this experiment, the corresponding median switch 
SOA varied in discrete steps (Mittelstädt et al., 2019). Therefore, similar to Mittelstädt et al. 
(2019) we used interpolated median switch SOA for each participant in each condition to get 
more fine-grained estimates.

As shown in Table 1 the average switch rate was the lowest in the ITI 0/SOA +20 condition (25 % 
switches) and highest in the ITI 700/SOA +60 condition (49% switches). Moreover, we observed 
that increases in ITI and SOA increments led to higher switch rates. A two-way repeated measures 
ANOVA was performed to evaluate the effects of ITI and SOA increment on participants’ switch 
rates. There were statistically significant main effects of ITI and SOA increment, F(2,130) = 
88.41, p < .001, ηp

2 = .58, and F(2,130) = 18.73, p < .001, ηp
2 = .22, respectively. The two-way 

interaction failed to reach significance, F(4,260) = .72, p = .578, ηp
2 = .01.

The average switch SOA varied across different conditions from 63 ms with ITI 700/SOA +20 to 
235 ms with ITI 0/SOA +60 (see Table 1).

INDIVIDUAL DIFFERENCES IN THE RELATIONSHIP BETWEEN TASK 
PERFORMANCE AND TASK CHOICE BEHAVIOR

Pearson’s correlation coefficients were computed across participants for each ITI/SOA 
increment combination to assess the relationship between switch costs and switch rates and 
the relationship between switch costs and switch SOA. As shown in Figure 3 there were strong 
negative correlations between switch costs and switch rates, with the strongest correlation 
being observed in the ITI 250/SOA +60 combination, r = –.68 (Figure 3A). Switch SOA and 
switch costs correlated positively across all ITI/SOA increment combinations; the correlation 
coefficients varied between r = .18 and r = .63 (Figure 3B).

ITI 0 MS ITI 250 MS ITI 700 MS

SOA +20  
MS

SOA +40  
MS

SOA +60 
MS

SOA +20 
MS

SOA +40 
MS

SOA +60 
MS

SOA +20 
MS

SOA +40 
MS

SOA +60 
MS

Switch costs (ms) 154 (137) 141 (111) 158 (104) 78 (90) 75 (90) 68 (82) 38 (67) 38 (60) 55 (112)

Switch rate (%) 25 (22) 30 (23) 31 (19) 30 (22) 38 (22) 44 (24) 38 (23) 43 (23) 49 (23)

Switch SOA (ms) 114 (85) 182 (135) 235 (147) 88 (75) 126 (106) 163 (120) 63 (46) 108 (85) 141 (113)

N 82 91 93 83 87 93 86 89 90

Table 1 Mean Median Switch 
Costs, Switch Rates, Mean 
Median Switch SOA, Separately 
for Each ITI/SOA increment 
Combination.

Note: Switch costs = task 
switch RT – task repetition RT, 
Standard errors of the means 
in parentheses. N = remaining 
sample size in each condition 
after participants exclusion 
procedure.

https://doi.org/10.5334/joc.137


9Monno et al.  
Journal of Cognition  
DOI: 10.5334/joc.137

With one exception apparently resulting from an aberrant data point, all correlation coefficients 
were significant, p < .001.2

TRADE-OFF BETWEEN SWITCH COSTS AND SWITCH SOA

As is evident in Table 2, the smallest mean Diff Score was observed in ITI 250/SOA +20 condition 
indicating the smallest difference between switch costs and switch SOA. A t-test against “0” 
showed that the difference between switch costs and switch SOA was not significant for the ITI 

2	 As shown in Figure 3 the correlation between switch costs and switch SOA in the ITI 700/SOA +60 
combination was not significant, r = .18, p = .097. However, after the excluding the participant with extreme 
switch costs (975 ms) from the analysis, the correlation between switch costs and switch SOA reached 
significance, r = .45, p < .001, and the correlation between switch costs and switch rate became stronger, 
r = –.56, p < .001.

Figure 3 Relationship between 
Task Performance and Task 
Selection in each ITI/SOA 
increment Combination.

Note: Panel A displays 
scatterplots of individual 
median switch costs against 
individual switch rates. Panel 
B displays scatterplots of 
individual median switch 
costs against the individual 
median SOAs of switch trials. 
Dashed lines represent the 
corresponding regression lines.

ITI 0 MS ITI 250 MS ITI 700 MS

SOA +20 
MS

SOA +40 
MS

SOA +60 
MS

SOA +20 
MS

SOA +40 
MS

SOA –60 
MS

SOA +20 
MS

SOA –40 
MS

SOA +60 
MS

mean Diff Score –39.78 39.84 76.76 10.10 50.20 94.19 24.78 70.30 86.74

t –3.09* 3.53** 6.25** 1.04 n.s. 4.28** 8.57** 3.69** 7.83** 5.64**

(dft) (81) (90) (92) (82) (86) (92) (85) (88) (89)

BF01 1/10 <1/30 <1.100 4.93 <1100 <1/100 <1.30 <1/100 <1/100

Table 2 Differences Between 
Switch Costs and Switch SOA 
(Diff Score) Separately for the 
Specific ITI/SOA increment 
Combinations.

Note: * p ≤ .05, ** p < .001. 
BF01 = the Bayes Factor in 
favor of the “null” Hypothesis, 
quantifies the evidence for the 
absences of the difference.
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250/SOA +20 combination (p = .303). An additional Bayesian t-test revealed moderate evidence 
for the absence of the difference in this condition, BF01 = 4.93 (see Table 2 for all BFs).

A two-way repeated measures ANOVA was performed to evaluate the effects of ITI, and SOA 
increment on the Diff Score. There was a statistically significant two-way interaction between 
ITI and SOA increment, F(4,260) = 10.15, p < .001, ηp

2 = .14, as is shown in Figure 4. Also, the 
main effects for ITI and SOA increment were significant, F(2,130) = 9.08, p < .001, ηp

2 = .12, and 
F(2,112) = 28.75, p < .001, ηp

2 = .31, respectively.

The analysis of the difference between switch costs and switch SOA indicated the ITI 250/
SOA +20 combination as the condition with the best trade-off indicated by the non-significant 
difference. Otherwise, our second indicator for the trade-off ability, that is the relation of the 
switch costs and switch rate on the individual level, revealed the strongest correlation between 
switch costs and switch rate in the ITI 250/SOA +60 combination, r = –.68, p < .001. However, 
the comparison of the correlation coefficients between all conditions, using the Fisher’s z 
transformation, revealed significant differences only between the correlation in the ITI 700/
SOA +60 combination and correlations in the ITI 250/(SOA +20, +40) and ITI 700/SOA +40 
combinations.3 The correlation of switch rate and switch costs in ITI 250/SOA +20 combination 
did not differ statistically significant from the strength of the correlations in other ITI 250/SOA 
+60 increment combinations (see Table A.2 in Appendix).

REALTIONSHIP BETWEEN INDIVIDUAL´S TRADE-OFF ABILITY AND SWITCH 
RATE

To determine the relationship between individual ability to balance costs and switching rates, 
we calculated Pearson product-moment correlation coefficients for each ITI/SOA increment 
combination. As illustrated in Figure 5 Diff Score and switch rate correlated negatively across 
all ITI/SOA increment combinations. The correlation coefficients varied between r = –.28 and 
r = –.62, and all were significant, p ≤ .01.

DISCUSSION
Previous self-organized task switching studies demonstrated that voluntary task selection is 
sensitive to both switch costs and the waiting time until a stimulus is presented in repetition 
trials (Mittelstädt, et al., 2018b, 2019). The observation that participants switched the task if the 

3	 Using the outlier-corrected Pearson’s r in the ITI 700/SOA +60 combination for the comparisons revealed no 
significant differences between the correlation coefficients.

Figure 4 Means of Diff Score 
(median switch SOA – median 
RT switch cost) as a Function 
of ITI, and SOA increment.

Note: Error bars represent a 95 
% confidence interval for the 
mean.
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waiting time for a repetition stimulus corresponded to their switch costs supported the idea of 
strategic task selection that takes into account different costs. We explored this phenomenon 
in more detail in order to evaluate which SOA increment per repetition is best suited for which 
size of switch costs, so that participants can trade-off switch costs and waiting times most 
efficiently. Therefore, different ITIs (0 ms, 250 ms, 700 ms) and SOA increments (20 ms, 40 
ms, 60 ms) were orthogonally manipulated. The present study revealed three main findings. 
First, we identified the ITI 250/SOA +20 combination as the condition that allowed the most 
precise tradeoff of switch costs and waiting time. Second, the correlation analysis showed that 
participants were able to adapt their task selection behavior to their task performance in all 
conditions. Third, greater individual ability to balance the cost efficiently is related to increased 
switch rate. We will address each point in turn.

The most efficient balancing of switch costs and waiting time was indicated by the absence 
of a significant difference between the average switch costs and the average switch SOA in 
the ITI 250/SOA +20 combination, whereas switch costs and switch SOA differed significantly 
for all other ITI/SOA increment combinations. This finding is consistent with the assumption 
that small SOA increments allow participants to match the waiting times more precisely to 
switch costs. Moreover, it seems that in this condition, participants used some kind of “local” 
strategy to balance switch costs and waiting times. When the switch costs match the switch 
SOA, we conjecture that participants trade-off the costs of switching and the cost of waiting 
for the repetition stimulus for the current trial on an equal basis – we therefore call the 
strategy a “local” strategy, because it only considers costs in one trial. In contrast, with the 
ITI 0/SOA +20 combination, we observed that participants switched tasks when the waiting 
time for repetition-related stimuli was slightly less than the switch costs. In other words in 
this condition, participants switched tasks before the waiting time for the repetition-related 
stimulus had increased to the extent of the switch costs. Possibly participants applied here a 
more “global” strategy by adapting their task selection behavior taking into account the fact 
that after each task switch, SOA increments start anew and consequently the subsequent task 
repetitions can be executed faster due to reduced waiting times. In contrast to a local strategy, 
we refer to this strategy as a more global strategy because waiting costs for several repetition 
trials may be taken into account.

It is obvious that the idea of two different efficiency strategies is still speculative. Nevertheless, 
it is an interesting observation that presumably two different strategies were applied under two 
different conditions, the local strategy under the conditions with the possibility to (partially) 
prepare the task switch in advance (i.e. ITI 250 and ITI 700), and the global strategy without 
this possibility (ITI 0). Given the evidence that self-organization of task sequence is cognitively 
demanding (Kiesel & Dignath, 2017), it might be possible that the global strategy is more 
advantageous in settings with larger switch costs. Whether the possibility of preparing the 
task switch influences the choice of the trade-off strategy remains an open question for 
future research.

Figure 5 Relationship between 
individual trade-off ability 
(absolute value of Diff Score) 
and switch rate.

https://doi.org/10.5334/joc.137
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Irrespective of the underlying strategical processes, the balancing of costs requires some 
kind of subjective awareness of switch costs and SOA changes. Bratzke and Bryce (2019) 
showed that participants were quite good at accurately introspecting about their switch costs. 
Moreover, using two different paradigms with externally controlled task switching, e.g. without 
the possibility of voluntary task selection, Bratzke and Bryce (2018) showed that participants 
were aware not only of their switch costs, but even of the decrease of the switch costs with 
increasing preparation time (ITI). Therefore it would be interesting to directly compare the 
introspection of switch costs and switch SOA in the voluntary task switching paradigm with the 
balancing of the respective costs.

Consistent with previous studies (Arrington & Logan, 2004; Arrington, 2008; Liefooghe et al., 
2009; Mittelstädt et al., 2019), lower switch costs in conditions with long ITI were associated 
with the highest switch rates, supporting the assumption that the long ITI is used to prepare 
the task switch. On the other hand, the small difference (24 ms) between switch costs and 
switch SOA in the condition ITI 700/SOA +20 might indicate that although participants had the 
opportunity to prepare the task switch in advance, they decided to switch taking both costs 
into account. In other words, the task selection took place during the ongoing trial, considering 
switch costs and waiting time, and it is rather unlikely that task selection and preparation 
occurred before the trial started during the preceding ITI. Thus, we conjecture that our findings 
are more in line with the assumption of reduced switch costs due to passive decay of the 
repetition-related task set within the long ITI (Vandierendonck et al., 2010). And this passive 
decay facilitated the task switch in the subsequent trial where the actual task selection was 
based on the match between switch costs and switch SOA. On the other hand, it is also likely 
that task selection takes place partly before and partly during the trial. That is, the fact that in 
the ITI 700 conditions participants repeated the one task several times before switching to the 
other task indicates that preparation for the task switch starts during the ITI, but is not finished 
yet, so it continues into the ongoing trial. Of course such an assumption requires further testing, 
yet we conjecture it is likely that besides the strategic task selection, passive processes like the 
decay of the task set activation can also play a role in self-organized task switching.

The second finding—that switching behavior is correlated with switch costs—revealed that 
participants could flexibly adapting their task selection behavior to the factors influencing the 
task performance. More precisely, the correlation analyses between task performance and 
task selection for each ITI/SOA increment combination showed that participants differ in their 
switching behavior and that these differences correspond with their differences in switch costs. 
In detail, participants with higher switch costs switched tasks less frequently, and after longer 
waiting times, e.g. at larger switch SOAs. These observations are partly in line with the recent self-
organized task switching studies. As in the results of Mittelstädt and colleagues (2018, 2019), 
switch costs correlated significantly negatively with switch rate, and we further extended the 
findings by demonstrating that switch costs correlated positively with switch SOA. Interestingly, 
Mittelstädt et al. (2018) already showed a tentative hint of the relationship between switch 
costs and switch SOA by using switch costs from the training blocks where the task switch 
was predetermined by the alternating-runs procedure in the correlation analysis. Furthermore, 
the flexible adaptation of task selection behavior to factors that influence task performance is 
also consistent with studies demonstrating that individuals flexibly adapt their task processing 
mode and response organization in multitasking to environmental requirements (for review see 
Fischer & Plessow, 2015; Lehle & Hübner, 2009) and to different task characteristics (Brüning 
and Manzey, 2018; Brüning, Reissland and Manzey, 2020) to maximize multitasking efficiency.

Yet, the correlational analyses were not helpful for determining which ITI/SOA increment 
combination allows for an optimal tradeoff of costs. Although the correlation coefficients 
were significant in all nine conditions, they were rather similar under all conditions. Thus, this 
measurement was unfortunately not useful for identifying the setting that allows participants 
to balance switch costs and switch SOA most efficiently.

Nonetheless, the positive correlation of switch rate with an individual’s ability to match time 
costs (i.e. switch costs and switch SOA) showed that individuals who are able to balance their 
costs more efficiently switch tasks more often. This finding supports the idea of strategic task 
selection and indicates that apart from specific characteristics of task or environment, the 
individual determinants may also have an impact on task switching performance. Comparably, 
investigations of inter-individual differences in multitasking have shown that individuals differ 
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in the tendency to process tasks serially or simultaneously as well as to organize the task 
responses in a switching, blocking, or grouping manner (Reissland & Manzey, 2016, Brüning, 
& Manzey, 2018). Moreover, Brüning et al. (2020) demonstrated that the individual preference 
for the overlapping (i.e. simultaneous) task processing corresponds with a tendency to switch 
between tasks. Serial processing of the tasks, on the other hand, is related to the preference for 
the response blocking strategy. Importantly, application of the response organization strategy 
which did not correspond to the preferred task processing mode resulted in lower multitasking 
efficiency (Brüning et al., 2020). It seems that using an optimal strategy that meets either 
individual or environmental requirements improves multitasking efficiency. The present study 
did not investigate whether individuals with higher trade-off ability and higher number of 
voluntary task switches also performed task switching more efficiently, and this would be 
potentially fruitful avenue for further research.

Interestingly, the present results suggest that even in conditions with large switch costs the 
small SOA increments are sufficient to induce substantial switching behavior. Superficially, this 
finding seems to be inconsistent with previous research from Mittelstädt et al. (2019, Exp. 1a 
and 1b) in which they observed low switch rates (< 0.20 %) for large switch costs (301 ms and 
224 ms, respectively). However, closer consideration suggests that the apparent contradictory 
results may be due to methodological differences. That is, in the study by Mittelstädt and 
colleagues (2019, Exp. 1a and 1b) participants performed the task in only one condition (ITI 
0/SOA +50), whereas our blockwise ITI manipulation enabled participants to practice task 
switching under different conditions. It is conceivable that once task switching has been 
practiced in ITI 700 settings, it may become easier to switch in ITI 0 conditions leading to higher 
switch rates. This reasoning is in line with recent task-switching studies in which voluntary 
switch rates increased because participants were trained with task switches in forced-choice 
trials that were intermixed with free-choice trials (Fröber & Dreisbach, 2017).

In sum, the present research provided more parametric information about the scaling of a cost-
benefit calculation in the self-organized task switching paradigm and showed how different 
costs fed into a common utility function that guides task selection. This refines previous findings 
specifying which ratio of waiting time and switch costs provides the most sensitive assessment 
of task selection. Thus, the self-organized task switching paradigm is a powerful instrument 
to investigate task selection and decision making in multitasking and can serve as a general 
purpose tool for understanding the relationship between task selection and task performance.

DATA ACCESSIBILITY STATEMENT
Raw data of the reported experiments are available via the Open Science Framework: https://osf.

io/7xqhc/, doi: 10.17605/OSF.IO/7XQHC.

ADDITIONAL FILES
The additional files for this article can be found as follows:

•	 Appendix Table A.1. Mean Switch Rate in each Free-Choice Block. DOI: https://doi.

org/10.5334/joc.137.s1

•	 Appendix Table A.2. Differences Between Z-transformed Correlation Coefficients for all 
ITI/SOA increment Combinations. DOI: https://doi.org/10.5334/joc.137.s2

ETHICS AND CONSENT
All participants were treated according to the ethical standards of the American Psychological 
Association. Furhter ethical approval/consent was not required.

COMPETING INTERESTS
The authors have no competing interests to declare.

https://doi.org/10.5334/joc.137
https://osf.io/7xqhc/
https://osf.io/7xqhc/
http://doi.org/10.17605/OSF.IO/7XQHC
https://doi.org/10.5334/joc.137.s1
https://doi.org/10.5334/joc.137.s1
https://doi.org/10.5334/joc.137.s2


14Monno et al.  
Journal of Cognition  
DOI: 10.5334/joc.137

AUTHOR AFFILIATIONS
Irina Monno  orcid.org/0000-0002-2543-7853

University of Freiburg, DE

Markus Spitzer

University of Freiburg, DE

Jeff Miller

University of Otago, NZ

David Dignath  orcid.org/0000-0002-1092-8019

University of Freiburg, DE

Andrea Kiesel

University of Freiburg, DE

REFERENCES
Arrington, C. M. (2008). The effect of stimulus availability on task choice in voluntary task switching. 

Memory & Cognition, 36, 991–997. DOI: https://doi.org/10.3758/MC.36.5.991
Arrington, C. M., & Logan, G. D. (2004). The cost of a voluntary task switch. Psychological Science, 15, 

610–615. DOI: https://doi.org/10.1111/j.0956-7976.2004.00728.x
Arrington, C. M., & Logan, G. D. (2005). Voluntary task switching: Chasing the elusive homunculus. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 683–702. DOI: https://doi.
org/10.1037/0278-7393.31.4.683

Arrington, C. M., & Reiman, K. M. (2015). Task frequency influences stimulus-driven effects on task 

selection during voluntary task switching. Psychonomic Bulletin & Review, 22, 1089–1095. DOI: 

https://doi.org/10.3758/s13423-014-0777-0
Arrington, C. M., Reiman, K. M., & Weaver, S. M. (2014). Voluntary task switching. In J. A. Grange & G. 

Houghton (Eds.), Task switching and cognitive control (pp. 117–136). Oxford University Press. DOI: 

https://doi.org/10.1093/acprof:osobl/9780199921959.003.0006
Arrington, C. M., & Weaver, S. M. (2015). Rethinking volitional control over task choice in multitask 

environments: Use of a stimulus set selection strategy in voluntary task. The Quarterly Journal of 

Experimental Psychology, 68(4), 664–679. DOI: https://doi.org/10.1080/17470218.2014.961935
Baddeley, A. D. (1966). The capacity for generating information by randomisation. Quartely Journal of 

Experimental Psychology, 18, 119–129. DOI: https://doi.org/10.1080/14640746608400019
Basten, U., Biele, G., Heekeren, H. R., & Fiebach, C. J. (2010). How the brain integrates costs and benefits 

during decision making. Proceedings of the National Academy of Sciences of the United States of 

America, 107(50), 21767–21772. DOI: https://doi.org/10.1073/pnas.0908104107
Braem, S. (2017). Conditioning task switching behavior. Cognition, 166, 272–276. DOI: https://doi.

org/10.1016/j.cognition.2017.05.037
Bratzke, D., & Bryce, D. (2019). Introspection is not always blind to the costs of multitasking: The case of 

task switching. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(6), 980–992. 

DOI: https://doi.org/10.1037/xlm0000635
Braun, D. A., & Arrington, C. M. (2018). Assessing the role of reward in task selection using a rewardbased 

voluntary task switching paradigm. Psychological Research, 82, 54–64. DOI: https://doi.org/10.1007/
s00426-017-0919-x

Brüning, J., & Manzey, D. (2018). Flexibility of individual multitasking strategies in task-switching with 

preview: Are preferences for serial versus overlapping task processing dependent on between-task 

conflict? Psychological Research, 82(1), 92–108. DOI: https://doi.org/10.1007/s00426-017-0924-0
Brüning, J., Reissland, J., & Manzey, D. (2020). Individual preferences for task coordination strategies in 

multitasking: exploring the link between preferred modes of processing and strategies of response 

organization. Psychological Research. DOI: https://doi.org/10.1007/s00426-020-01291-7
Dignath, D., Kiesel, A., & Eder, A. B. (2015). Flexible conflict management: Conflict avoidance and conflict 

adjustment in reactive cognitive control. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 41, 975–988. DOI: https://doi.org/10.1037/xlm0000089
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: 

Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160. DOI: 

https://doi.org/10.3758/BRM.41.4.1149
Fischer, R., & Plessow, F. (2015). Efficient multitasking: parallel versus serial processing of multiple tasks. 

Frontiers in Psychology, 6, 1366. DOI: https://doi.org/10.3389/fpsyg.2015.01366
Fröber, K., & Dreisbach, G. (2016). How sequential changes in reward magnitude modulate cognitive 

flexibility: Evidence from voluntary task switching. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 42, 285–295. DOI: https://doi.org/10.1037/xlm0000166

https://doi.org/10.5334/joc.137
https://orcid.org/0000-0002-2543-7853
https://orcid.org/0000-0002-2543-7853
https://orcid.org/0000-0002-1092-8019
https://orcid.org/0000-0002-1092-8019
https://doi.org/10.3758/MC.36.5.991
https://doi.org/10.1111/j.0956-7976.2004.00728.x
https://doi.org/10.1037/0278-7393.31.4.683
https://doi.org/10.1037/0278-7393.31.4.683
https://doi.org/10.3758/s13423-014-0777-0
https://doi.org/10.1093/acprof:osobl/9780199921959.003.0006
https://doi.org/10.1080/17470218.2014.961935
https://doi.org/10.1080/14640746608400019
https://doi.org/10.1073/pnas.0908104107
https://doi.org/10.1016/j.cognition.2017.05.037
https://doi.org/10.1016/j.cognition.2017.05.037
https://doi.org/10.1037/xlm0000635
https://doi.org/10.1007/s00426-017-0919-x
https://doi.org/10.1007/s00426-017-0919-x
https://doi.org/10.1007/s00426-017-0924-0
https://doi.org/10.1007/s00426-020-01291-7
https://doi.org/10.1037/xlm0000089
https://doi.org/10.3758/BRM.41.4.1149
https://doi.org/10.3389/fpsyg.2015.01366
https://doi.org/10.1037/xlm0000166


15Monno et al.  
Journal of Cognition  
DOI: 10.5334/joc.137

Fröber, K., & Dreisbach, G. (2017). Keep flexible—Keep switching! The influence of forced task 

switching on voluntary task switching. Cognition, 162, 48–53. DOI: https://doi.org/10.1016/j.
cognition.2017.01.024

Fröber, K., Raith, L., & Dreisbach, G. (2018). The dynamic balance between cognitive flexibility and 

stability: The influence of local changes in reward expectation and global task context on voluntary 

switch rate. Psychological Research, 82, 65–77. DOI: https://doi.org/10.1007/s00426-017-0922-2
Jurczyk, V., Fröber, K., & Dreisbach, G. (2019). Increasing reward prospect motivates switching to the 

more difficult task. Motivation Science, 5(4), 295–313. DOI: https://doi.org/10.1037/mot0000119
Kessler, Y., Shencar, Y., & Meiran, N. (2009). Choosing to switch: Spontaneous task switching despite 

associated behavioral costs. Acta Psychologica, 131, 120–128. DOI: https://doi.org/10.1016/j.
actpsy.2009.03.005

Kiesel, A., & Dignath, D. (2017). Effort in multitasking: Local and global assessment of effort. Frontiers in 

Psychology, 8, 111. DOI: https://doi.org/10.3389/fpsyg.2017.00111
Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control 

and interference in task switching—A review. Psychological Bulletin, 136, 849–874. DOI: https://doi.
org/10.1037/a0019842

Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human 

multitasking – An integrative review of dual-task and task-switching research. Psychological Bulletin, 

144(6), 557–583. DOI: https://doi.org/10.1037/bul0000144
Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision making and the avoidance of 

cognitive demand. Journal of Experimental Psychology: General, 139(4), 665–682. DOI: https://doi.
org/10.1037/a0020198

Lehle, C., & Hübner, R. (2009). Strategic capacity sharing between two tasks: evidence from tasks 

with the same and with different task sets. Psychological Research, 73, 707–726. DOI: https://doi.
org/10.1007/s00426-008-0162-6

Liefooghe, B., Demanet, J., & Vandierendonck, A. (2009). Is advance reconfiguration in voluntary task 

switching affected by the design employed? Quarterly Journal of Experimental Psychology, 62, 

850–857. DOI: https://doi.org/10.1080/17470210802570994
Mayr, U., & Bell, T. (2006). On how to be unpredictable: Evidence from the voluntary task-switching 

paradigm. Psychological Science, 17, 774–780. DOI: https://doi.org/10.1111/j.1467-
9280.2006.01781.x

Mittelstädt, V., Dignath, D., Schmidt-Ott, M., & Kiesel, A. (2018a). Exploring the repetition bias in 

voluntary task switching. Psychological Research, 82, 78–91. DOI: https://doi.org/10.1007/s00426-
017-0911-5

Mittelstädt, V., Miller, J., & Kiesel, A. (2018b). Trading off switch costs and stimulus availability benefits: 

An investigation of voluntary task-switching behavior in a predictable dynamic multitasking 

environment. Memory & Cognition, 46(5), 699–715. DOI: https://doi.org/10.3758/s13421-018-0802-z
Mittelstädt, V., Miller, J., & Kiesel, A. (2019). Linking task selection to task performance: Internal and 

predictable external processing constraints jointly influence voluntary task switching behavior. 

Journal of Experimental Psychology: Human Perception and Performance, 45(12), 1529–1548. DOI: 

https://doi.org/10.1037/xhp0000690
Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134–140. DOI: https://doi.org/10.1016/

S1364-6613(03)00028-7
Musslick, S., Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2015). A computational model of control 

allocation based on the expected value of control. In The 2nd Multidisciplinary Conference on 

Reinforcement Learning and Decision Making. Edmonton, Can.

Reissland, J., & Manzey, D. (2016). Serial or overlapping processing in multitasking as individual 

preference: Effects of stimulus preview on task switching and concurrent dual-task performance. 

Acta Psychologica, 168, 27–40. DOI: https://doi.org/10.1016/j.actpsy.2016.04.010
Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. 

Journal of Experimental Psychology: General, 124, 207–231. DOI: https://doi.org/10.1037/0096-
3445.124.2.207

Schuch, S., Dignath, D., Steinhauser, M., & Janczyk, M. (2019). Monitoring and control in multitasking. 

Psychonomic Bulletin and Review, 26, 222–240. DOI: https://doi.org/10.3758/s13423-018-1512-z
Schuch, S., & Dignath, D. (2020). Task-Conflict biases Decision Making. Journal of Experimental Psychology: 

General, 149(6), 1148–1155.

Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: an integrative 

theory of anterior cingulate cortex function. Neuron, 79, 217–240. DOI: https://doi.org/10.1016/j.
neuron.2013.07.007

Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2016). Dorsal anterior cingulate cortex and the value of 

control. Nature Neuroscience, 19(10), 1286–1291. DOI: https://doi.org/10.1038/nn.4384

https://doi.org/10.5334/joc.137
https://doi.org/10.1016/j.cognition.2017.01.024
https://doi.org/10.1016/j.cognition.2017.01.024
https://doi.org/10.1007/s00426-017-0922-2
https://doi.org/10.1037/mot0000119
https://doi.org/10.1016/j.actpsy.2009.03.005
https://doi.org/10.1016/j.actpsy.2009.03.005
https://doi.org/10.3389/fpsyg.2017.00111
https://doi.org/10.1037/a0019842
https://doi.org/10.1037/a0019842
https://doi.org/10.1037/bul0000144
https://doi.org/10.1037/a0020198
https://doi.org/10.1037/a0020198
https://doi.org/10.1007/s00426-008-0162-6
https://doi.org/10.1007/s00426-008-0162-6
https://doi.org/10.1080/17470210802570994
https://doi.org/10.1111/j.1467-9280.2006.01781.x
https://doi.org/10.1111/j.1467-9280.2006.01781.x
https://doi.org/10.1007/s00426-017-0911-5
https://doi.org/10.1007/s00426-017-0911-5
https://doi.org/10.3758/s13421-018-0802-z
https://doi.org/10.1037/xhp0000690
https://doi.org/10.1016/S1364-6613(03)00028-7
https://doi.org/10.1016/S1364-6613(03)00028-7
https://doi.org/10.1016/j.actpsy.2016.04.010
https://doi.org/10.1037/0096-3445.124.2.207
https://doi.org/10.1037/0096-3445.124.2.207
https://doi.org/10.3758/s13423-018-1512-z
https://doi.org/10.1016/j.neuron.2013.07.007
https://doi.org/10.1016/j.neuron.2013.07.007
https://doi.org/10.1038/nn.4384


16Monno et al.  
Journal of Cognition  
DOI: 10.5334/joc.137

TO CITE THIS ARTICLE:
Monno, I., Spitzer, M., Miller, J., 
Dignath, D., & Kiesel, A. (2021). 
Scaling of the Parameters 
for Cost Balancing in Self-
Organized Task Switching. 
Journal of Cognition, 4(1): 
8, pp. 1–16. DOI: https://doi.
org/10.5334/joc.137

Submitted: 18 May 2020 
Accepted: 16 October 2020 
Published: 18 January 2021

COPYRIGHT:
© 2021 The Author(s). This 
is an open-access article 
distributed under the terms 
of the Creative Commons 
Attribution 4.0 International 
License (CC-BY 4.0), which 
permits unrestricted use, 
distribution, and reproduction 
in any medium, provided the 
original author and source 
are credited. See http://
creativecommons.org/licenses/
by/4.0/.

Journal of Cognition is a peer-
reviewed open access journal 
published by Ubiquity Press.

Simen, P., Contreras, D., Buck, C., Hu, P., Holmes, P., & Cohen, J. D. (2009). Reward rate optimization in 

two-alternative decision making: empirical tests of theoretical predictions. Journal of experimental 

psychology. Human perception and performance, 35(6), 1865–1897. DOI: https://doi.org/10.1037/
a0016926

Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switching: Interplay of reconfiguration 

and interference control. Psychological Bulletin, 136, 601–626. DOI: https://doi.org/10.1037/a0019791
Yeung, N. (2010). Bottom-up influences on voluntary task switching: The elusive homunculus escapes. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 348–362. DOI: https://doi.
org/10.1037/a0017894

https://doi.org/10.5334/joc.137
https://doi.org/10.5334/joc.137
https://doi.org/10.5334/joc.137
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1037/a0016926
https://doi.org/10.1037/a0016926
https://doi.org/10.1037/a0019791
https://doi.org/10.1037/a0017894
https://doi.org/10.1037/a0017894

