
RESEARCH ARTICLE

CORRESPONDING AUTHOR:

Dr. Neomi Singer

Sagol Brain Institute and 
Department of Neurology, Tel 
Aviv Sourasky Medical Center, 
6 Weizman St., Tel Aviv, 64239, 
Israel

singer.neomi@gmail.com

KEYWORDS:
music; emotion; temporal-
regularity; predictive-coding; 
arousal and valence

TO CITE THIS ARTICLE:
Singer, N., Jacoby, N., Hendler, 
T., & Granot, R. (2023). 
Feeling the Beat: Temporal 
Predictability is Associated 
with Ongoing Changes in 
Music-Induced Pleasantness. 
Journal of Cognition, 6(1): 34, 
pp. 1–19. DOI: https://doi.
org/10.5334/joc.286

Feeling the Beat: Temporal 
Predictability is Associated 
with Ongoing Changes 
in Music-Induced 
Pleasantness

NEOMI SINGER 

NORI JACOBY 

TALMA HENDLER 

RONI GRANOT 

ABSTRACT
Music is a complex phenomenon that elicits a range of emotional responses, 
influenced by numerous variables, such as rhythm, melody and harmony. One 
interesting aspect of music is listeners’ ability to predict its continuation as it unfolds – 
an inherent attribute hypothesized to contribute to our emotional response to music. 
In this study, we investigated this link by examining the relationship between temporal 
predictability – the ability to predict the timing of the next event – and the ongoing 
changes in music-induced pleasantness. Temporal predictability was operationalized 
as the degree to which taps of 20 musically trained participants, who tapped to the 
beat along three naturalistic and highly contrastive musical pieces, were aligned. We 
then examined the degree to which this measure could explain the ongoing emotional 
experience, as reflected in continuous measures of arousal and valence, in a separate 
group of 40 participants that listened to these pieces. Our findings reveal a positive 
correlation between fluctuations in reported valence and temporal predictability, even 
when controlling for a set of other musical features, in four out of five musical sections. 
The only exception being a lyrical slow section. These findings were further supported 
by a large online database of annotated musical emotions (n = 1780 songs), where 
a consistent and robust correlation between valence ratings and an automatically 
extracted feature of pulse clarity was demonstrated. Overall, our findings shed light 
on the significance of temporal predictability as a contributing factor to the hedonic 
experience of music, especially within the tempo range of salient beat perception.
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mailto:singer.neomi@gmail.com
https://doi.org/10.5334/joc.286
https://doi.org/10.5334/joc.286
https://orcid.org/0000-0002-9300-1605
https://orcid.org/0000-0003-2868-0100
https://orcid.org/0000-0002-4182-4335
https://orcid.org/0000-0002-0711-8322


2Singer et al.  
Journal of Cognition  
DOI: 10.5334/joc.286

INTRODUCTION
Emotions are a complex evolving composition of states-of-mind. In other words, an emotional 
experience does not simply switch on or off, rather it constantly emerges and changes in 
reaction to particular triggers in the internal or external environment. Music is a universally 
acknowledged robust emotion-provoking stimulus with a distinct temporal structure, therefore 
well-suited for investigating the unfolding emotional experience and its underpinnings. Indeed, 
previous studies that measured the ongoing emotional responses to music demonstrated that 
the emotions induced by music dynamically vary in time in close correspondence with the 
unfolding of music (Egermann, Pearce, Wiggins, & McAdams, 2013; Fredrickson, 1999; Grewe, 
Nagel, Kopiez, & Altenmüller, 2007; Krumhansl, 1997; Madsen, 1998; Schubert, 2004; Schubert 
& Dunsmuir, 1999; Timmers, Marolt, Camurri, & Volpe, 2006). In a comprehensive review of 
the literature, adjoining and expanding data and various theoretical accounts (e.g., Scherer 
& Zentner, 2001), Juslin and colleagues (2013; 2010) suggested that several complementary 
mechanisms may be involved in our emotional response to music. In this work, they outlined 
eight possible psychological mechanisms through which music may induce emotion (acronymed 
the BRECVEMA model). Among these proposed mechanisms, those of musical expectancy and 
rhythmic entrainment, directly relate to the dynamicity of music and highlight the importance 
of the momentarily divergence from- or generation of- expected patterns in music. 

The ability to predict sensory information in time is fundamental for successful and adaptive 
interaction with the environment. Recent theoretical frameworks suggest that such predictive 
capacity constitutes a fundamental functional principle of the ‘proactive’ brain (Bar, 2009) 
whereby the brain constantly generates predictions about the upcoming input for perception 
(Friston, 2005) and control of action (Friston, FitzGerald, Rigoli, Schwartenbeck, & Pezzulo, 
2017). The importance of predictability to our adaptive perception and behavior implies that 
it has hedonic value on its own. Indeed, evidence suggests that (un)predictability, especially 
in the temporal domain is associated with distinct affective responses. For example, in 
conditioning studies, it is well-established that unpredictable delivery of aversive events results 
in heightened anxiety-like behavior as compared to predictable ones (Grillon, Baas, Lissek, 
Smith, & Milstein, 2004). Remarkably, even neutral stimuli, when delivered in a temporally 
unpredictable fashion, promote anxiety-like behaviors (Herry et al., 2007; Jackson, Nelson, 
& Proudfit, 2015; Parisi, Hajcak, Aneziris, & Nelson, 2017), bias towards negatively valenced 
interpretations for ambiguous situations (Davis, Neta, Kim, Moran, & Whalen, 2016) and elicit 
heightened amygdala activation (Herry et al., 2007; Koppe et al., 2014). Complementarily, 
it has been shown that emotionally neutral stimuli that have a predictive value (infused by 
means of associative learning) are preferred and rated as more pleasant than those with a 
weaker predictive value (Trapp, Shenhav, Bitzer, & Bar, 2015). 

As music generates clear expectations, especially in the temporal domain via its rhythmic 
properties (Vuust & Kringelbach, 2010), it is plausible to assume that variations in such 
predictability while listening affect the manner by which it is experienced. Indeed, musical 
expectations and their violation have been long conceptualized to be associated with music-
induced emotions, in particular their hedonic aspect  (Berlyne, 1971; Huron, 2008; Juslin, 2013; 
Koelsch, Vuust, & Friston, 2019; Meyer, 2008; Salimpoor, Zald, Zatorre, Dagher, & McIntosh, 
2015; Vuust & Witek, 2014). Evidence from recent years supports these theoretical proposals, 
by revealing that music-induced emotions are elicited during moments of unpredicted events 
of ‘musical surprises’ (Brattico, Jacobsen, De Baene, Glerean, & Tervaniemi, 2010; Egermann et 
al., 2013; Shany et al., 2019; Steinbeis, Koelsch, & Sloboda, 2006), and vary with the levels of 
harmonic, melodic, or rhythmic complexity of the music (Bonin, Trainor, Belyk, & Andrews, 2016; 
Cheung et al., 2019; Sauvé, Sayed, Dean, & Pearce, 2018). Evidence further suggests that such a 
relationship between the complexity of music and the liking or preference of music may follow 
an inverted U-shape function, with a “sweet spot” at medium levels of complexity (Bianco, 
Gold, Johnson, & Penhune, 2019; Chmiel & Schubert, 2017; Gold, Pearce, Mas-Herrero, Dagher, 
& Zatorre, 2019; Heyduk, 1975; Matthews, Witek, Heggli, Penhune, & Vuust, 2019; Stupacher, 
Wrede, & Vuust, 2022; Witek, Clarke, Wallentin, Kringelbach, & Vuust, 2014), as anticipated 
from optimal complexity models of preference (Berlyne, 1971; Walker, 1972). 

With a particular focus on the temporal domain, previous studies that alluded to the role of 
temporal expectancy in music-induced emotions showed that they vary with musical attributes 
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related to temporal prediction violation, as syncopation (Matthews et al., 2019; Stupacher et 
al., 2022; Witek et al., 2014), or to temporal regularity, as extracted from the acoustic signal; 
i.e., pulse clarity (Eerola, 2011; Trost, Frühholz, Cochrane, Cojan, & Vuilleumier, 2015). Another 
line of investigation alluded to such a link by showing that the affective responses to music, 
on the scales of valence and arousal, vary as a function of the computationally modeled 
temporal “unexpectedness” of each note (Sauvé et al., 2018). Yet, while these findings support 
the notion that temporal regularities play a role in music-induced emotions, it remains to be 
directly examined if this aspect relates to one’s ability to predict the next event using an index 
that represents the cognitive percept of active inference. Additionally, though the temporal 
dimension is inherent to the definition of music and to the emotional experience it triggers, 
only a limited number of studies have incorporated the issue of dynamism by modeling the 
moment to moment contribution of musical attributes to the emotional experience using 
temporally continuous measurements (Egermann et al., 2013; Fredrickson, 1999; Grewe et al., 
2007; Krumhansl, 1997; Madsen, 1998; Sauvé et al., 2018; Schubert, 2004; Schubert & Dunsmuir, 
1999; Timmers et al., 2006). The use of dynamic measurements is especially important when 
considering the role of essentially temporal phenomena, as temporal predictability, in eliciting 
emotional experiences. 

In the current study, we address these issues by assessing the contribution of temporal 
predictability to music-induced emotions as they unfold during listening to naturalistic music. 
We used a rich behavioral dataset that was part of a previous fMRI study exploring various 
aspects of the ongoing affective response to music (Singer et al., 2016). This dataset contained 
the continuous affective responses to three naturalistic musical pieces. Responses included 
subjective ratings on the scales of valence and arousal. To index the aspect of temporal 
predictability in music – a high-level cognitive percept that cannot be accurately indexed in 
by automatic music-information-retrieval approaches – we used experts-based annotation 
approach. This approach is based on the beat-tapping patterns of a different group of 20 
musically trained participants. Temporal predictability was operationally defined as the extent 
of tapping coherence across the different tappers, under the assumption that the more 
predictable the next beat, the more participants will synchronize their tap to it (within a narrow 
range of 100 ms). To gain a wider understanding into the importance of temporal predictability 
in explaining the affective experience, we analyzed the data while taking into account additional 
musical dimensions known to contribute to the ongoing experience, such as pitch, tempo and 
loudness. Finally, in order to generalize to a wider set of musical materials, we examined a large 
dataset of dynamic annotation of musical emotions (valence and arousal; Supplementary file) 
(Aljanaki et al., 2017) and assessed the link between the subjective reports and pulse clarity – 
an automatically extracted index that serves as a proxy of predictability. This measure relies 
on the analysis of regularities in the sound itself, rather than on the tapping-based percept. We 
hypothesized that there will be a high correspondence between temporal predictability and 
music-induced emotions, particularly with their hedonic aspect (i.e., pleasantness), even when 
accounting for additional musical features. Based on growing body of evidence that points to 
an inverted u-shape between relationship music-induced pleasure and melodic (Gold, Pearce, 
et al., 2019), harmonic (Matthews et al., 2019) or rhythmic (Stupacher et al., 2022; Witek et al., 
2014) complexity, we further expected the relation between music-induced pleasantness and 
temporal predictability to follow an inverted u-shape function across this large set of songs.

METHODS
PARTICIPANTS

Forty healthy participants (22 females) between the ages of 19 and 33 (M = 25.5 ± 3.6 years) 
participated in the experiment, which included listening to three musical pieces, termed 
hereafter Ligeti, Glass and Mussorgsky (see details below). This sample size falls well within 
the norm of fMRI and psychophysiological studies that focused on the responses to fairly long 
naturalistic stimuli such as films (Raz et al., 2012), stories (Yeshurun et al., 2017) and music 
(e.g., Alluri et al., 2017; Coutinho & Cangelosi, 2011). The participants had no known history of 
neurological or psychiatric disorder and had a wide range of musical training, from none to 22 
years of experience (Mexperience = 5.39 ± 5.77 years). All participants provided written informed 
consent according to the Tel Aviv Sourasky Medical Center institutional review board (IRB) 
committee guidelines prior to the experiment. 
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GENERAL PROCEDURE AND DATA ACQUISITION

In the current investigation we used behavioral data that was collected as part of a large 
scale fMRI experiment exploring the neural underpinnings of the ongoing musical emotional 
experience and is described in detail elsewhere (Shany et al., 2019; Singer et al., 2016). The 
experiment was  approved  by the Tel Aviv Sourasky Medical Center institutional review board 
(IRB). The data presented here addresses a particular question related to the role of temporal 
predictability and is independent from our previous publications. Briefly, following the fMRI 
scan, the participants were requested to listen to the three musical pieces and to provide 
continuous online reports of their felt emotional experience on a two dimensional scale of 
valence and arousal using the EMuJoy software (Nagel, Kopiez, Grewe, & Altenmuller, 2007). 
During the rating session, participants were seated in a quiet room and presented with the 
musical pieces through Sennheiser HD 202 headphones (18–18000 Hz, sound level adjusted 
by the listener). Each music presentation was preceded and followed by a 30 seconds (S) 
epoch of silence. At the end of each rating session, the participants were further requested to 
fill out a detailed questionnaire about their listening experience: the 45 items of the Geneva 
Emotional Musical Scale, translated into Hebrew (GEMS-45; Zentner, Grandjean, & Scherer, 
2008). Participants were additionally requested to rate how well they knew the piece and how 
much they liked it. Ratings were obtained with 5-point Likert scales ranging from 1 (“not at all”) 
to 5 (“very much”). 

MUSICAL STIMULI

The musical stimuli consisted of three recorded piano pieces: (1) Ricercatas no. 1 & 2 from 
Musica Ricercata by György Ligeti (2:57 min and 4:53 min, respectively), (2) The Hours by Phillip 
Glass (piano arrangement: 7:03 min). Pieces 1 and 2 were recorded in-house using a Yamaha 
Disklavier upright piano and performed by Rotem Luz. (3) Night on Bald Mountain by Modest 
Mussorgsky [Piano version: 10:57 min, performance by Boris Berezovsky, Teldec (Warner 
Classics), 1996]. Description of the pieces appears in Shany et al. (2019). Since the study 
focused on a limited number of pieces, these were chosen so as to represent many important 
contrasts found in musical pieces: tonal (Glass, Mussorgsky) vs. atonal (Ligeti); melody vs. 
harmony; regularity vs. irregularity in a host of temporal aspects (beat, meter, accentuation, 
grouping, tempo); rich vs. poor pitch content; and various textures. These are all presented 
within a generally clear structure of phrases and sections with literal or varied repetitions of 
melodic, harmonic and rhythmic patterns and phrases. These pieces were shown in a pre-test 
(n = 17) to elicit qualitatively different affective experiences in terms of their valence, which 
was relatively positive in Glass (M = .25 ± .31), moderate in Mussorgksy (M = .02 ± .29) and 
negative in Ligeti (M = –.43 ± .30). To account for each musical context separately, we treated 
both of Ligeti’s Ricercatas as separate pieces and distinguished between two qualitatively 
different sub-sections of Mussorgsky’s piece: part A (0:00–7:32) and B (7:33–10:57). To note, 
although the musical pieces were used as soundtracks for famous film features [“eyes wide 
shut” (Kubrick, 1999) for Ligeti, “the hours” for Glass (Daldry, 2002), “Fantasia” for Mussorgsky 
(Disney, 1940)], their familiarity within our participants’ pool was low (median ratings of 
familiarity <= 2, corresponding to the labeling of “to a little extent”) and did not differ across 
the pieces (Kruskal Wallis test (H2, N = 106) = 2.3, p = .32, Ligeti: median = 2, n = 37; Glass: 
median = 1, n = 36, Mussorgsky: median = 2, n = 33).

DATA PREPROCESSING AND ANALYSIS

Behavioral Indices

The individual ratings of valence and arousal, as indicated by the participant’s position on a 
two-dimensional affect space of valence and arousal, ranging from –1 to 1, were interpolated 
to obtain an evenly spaced time course at the resolution of 1 Hz. In some instances, ratings 
were not gathered due to technical difficulties (Ligeti, N = 1; Glass, N = 2; Mussorgsky, N = 
3). Participants that presented a markedly distinct rating pattern on either valence or arousal 
scales were considered as outliers and removed from further analysis. The similarity of ratings 
across participants was assessed per musical piece by estimating the correlation between each 
participant’s rating and the average ratings of the rest of the participants (i.e., inter-subject 
correlation). Participants’ ratings whose correlation with the average rating was 2 standard 
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deviations lower than the group average were considered markedly distinct and removed 
from further analysis (Ligeti: N = 2; Glass: N = 2; Mussorgsky: N = 3). Following this elimination 
procedure, analyses included data from 37 participants for Ligeti (M = 25.85 ± 3.47 years, 20 
females), 36 participants for Glass (M = 25.87 ± 3.55 years, 20 females) and 34 participants for 
Mussorgsky (M = 25.44 ± 3.6 years, 17 females). 

Annotation of Temporal Predictability

In the current study, we aimed to create a continuous index that captures ongoing fluctuations 
in temporal predictions, which rely on the percept of the musical beat. Beat perception is  a 
high-level cognitive percept that cannot be directly extracted using music information retrieval 
approaches that use automated signal processing based mainly on one or more acoustic 
features (e.g., Lartillot, Eerola, Toiviainen, & Fornari, 2008; McKinney, Moelants, Davies, & 
Klapuri, 2007). Even when applying state-of-the art multi-model approaches, the models’ 
output does not match human performance (except only under certain conditions), and their 
performance is significantly influenced by the musical style (Böck, Krebs, & Widmer, 2014) or 
beat interpretations of the rhythm (Miguel, Sigman, & Fernandez Slezak, 2020). We therefore, 
turned to experts-based annotation to index this percept (Figure 1). Specifically, temporal 
predictability was indexed using an annotation approach that is based on the beat tapping 
patterns of an independent sample of 20 musically trained participants, who regularly played 
an instrument for at least seven years (Mage = 26.15 ± 5.04; 8 females; Myears of playing = 15.2, SD 
= 5.17). This annotation experiment was conducted at the Hebrew University of Jerusalem, 
and received an IRB approval from this institution. After signing an informed consent, each 
participant was first asked to tap to the beat using the “Sonic Visualizer” (screen switched 
off) as an interface (version 1.7.2; Cannam, Landone, & Sandler, 2010). The “Sonic Visualizer” 
application allows for the simultaneous playback of music and recording of perceived beats 
using taps. Participants tapped along with the music using the “;” key on the keyboard, with each 
key press indicating the timing of a perceived beat. The Sonic Visualizer application recorded 
the timing of the taps in relation to the music. To minimize any bias from visual cues, the visual 
display (i.e., the monitor) was turned off once the tapping began, ensuring that participants 
relied solely on their auditory perception to tap along with the beat.

Tapping events with an inter-tap-interval shorter than 100 ms or longer than 3000 ms were 
considered implausible and removed from analysis. This procedure yielded a continuous, human-
based “beat tracking” of each piece (Figure 1b). As we adopted a group-centered approach 
for the annotation, we first selected the datasets that presented fairly similar and consistent 
tapping patterns via a clustering approach. This was achieved by estimating the similarity 
(i.e., Pearson correlation) between the time series of inter-tapping-intervals (the time interval 
between successive taps in each second). Then, we applied a clustering algorithm (cluster.m 
function running on Matlab) to partition this similarity matrix into two clusters (high and low 

Figure 1 Indexing of temporal 
predictability using tapping 
data. Example for the indexing 
approach is given for a 30 s 
long section from Ligeti’s 
2nd Ricercata. a. The actual 
physical stimulus is graphically 
presented by indicating the 
MIDI notes played in each 
second. b. Tapping pattern 
of twenty musically-trained 
participants who were 
requested to tap along 
the beat. These data were 
used to calculate c. Inter-
Subject-Tapping-Coherence: 
temporal predictability was 
operationally defined as the 
extent of synchronization 
of taps across the different 
experts, under the assumption 
that the better predicted 
the next beat the more 
participants will tap to it 
(within a narrow range of 100 
ms). This index was assessed 
per second as the maximal 
number of synchronized taps 
across participants within that 
second.
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similarity). Finally, we selected the group that presented the higher within cluster consistency 
(Glass: N = 11, Ligeti: Ricercata 1: N = 18; Ricercata 2: N =19, Mussorgsky: part A: N = 19; part B: N 
= 18). The goal of this step was to both remove outliers and to prevent potential confounds that 
could arise from different perceptions of the meter or tactus at various metric levels (Martens, 
2011). For example, Supplementary Figure S2 illustrates two groups with distinct patterns of 
beat-tapping along the Glass piece, which transitions from triple to duple meter. Importantly, 
post-hoc analysis using the entire dataset confirmed that this methodological decision did not 
significantly alter the reported results (see details in Supplementary Table S3). The resulting 
consistent subset of tapping data were then used for extracting an index reflecting temporal 
predictability as the Inter-subject-tapping-coherence (Figure 1c). Specifically, temporal 
predictability was operationally defined as the extent of synchronization of taps across the 
different tappers, under the assumption that the more predictable the next beat is, more 
tappers will tap to it within a narrow range of 100 ms. To extract this index, we counted how 
many tappers tapped within bins of 100 ms (with an overlap of 50 ms). Point estimates (per 
second) of the Inter-subject tapping coherence were obtained per second as follows:

∆=max( )
btISTC S

For each 100 ms long time bin ∆b within a given time point t, we counted the number of 
subjects S that tapped within this narrow bin. Then, for each time point t, the maximal value of 
S out of time windows w 1

 bw
∆∫  was selected as representing ISTCt – the inter-subject-tapping-

coherence in a given second. 

Annotation of Additional Musical Features

To gain a more accurate picture of the specific role of temporal predictability, we extracted 
additional musical features that are known to have a role in providing emotional cues in music 
(Coutinho & Cangelosi, 2011; Eerola, 2011; Eerola, Lartillot, & Toiviainen, 2009; Gabrielsson & 
Lindström, 2010; Schubert, 2004). The rationale for this step was two-fold: (1) to characterize 
the novel annotation by comparing it to other previously reported similar features (Lartillot, 
Eerola, et al., 2008) (2) to partial out the role of other musical features known to affect music-
induced emotions by applying regression analyses. Specifically, we extracted from the sound 
files several low-level and high-level features that capture the fluctuations in loudness, 
timbre, pitch height and several temporal features. For example, loudness was assessed 
by extracting dynamic loudness using PsySound3 toolbox (Cabrera, Ferguson, & Schubert, 
2007). Pitch height was estimated using two automatically extracted measures: height of 
the autocorrelation peak using Psysound3, and chromagram, using MIR toolbox (Lartillot, 
Toiviainen, & Eerola, 2008).  Timbre/Spectral content was characterized by extracting spectral 
centroid and brightness using the MIR toolbox. These measures describe the prevalence among 
all or high-frequencies in the sound, respectively, for centroid and brightness. Roughness 
was additionally extracted using MIR toolbox as a proxy for momentary levels of sensory 
dissonance. Additional features, namely pulse clarity, event density, spectral flux, attack time, 
attack slope, spectral irregularity and tonal centers were extracted with MIR toolbox. These 
measures were complemented with two additional experts-based annotations: (1) Tempo – 
was extracted per second as the frequency of tapping, which was calculated as the one over 
median of inter-tap interval across tappers in that particular second. This index was multiplied 
by 60 to obtain a continuous assessment of beats per minute; (2) Musical surprises: an index 
that was used in our previous work to describe moments of expectancy violation in the music 
(Shany et al., 2019). This feature was indexed based on a second annotation session, which 
followed the tapping session, during which the experts heard each piece again and marked 
any musical event that sounded surprising to them. Surprises were assessed per second as the 
number of participants that pointed to a surprise in that particular second (for the full list of 
extracted features, see Supplementary Table S1).

STATISTICAL ANALYSES

Statistical analyses were performed with the SPSS 20 software statistical package, the statistical 
toolbox running on Matlab (2020b) and with custom code written with R (version 4.21) and 
running on RStudio (version 2022.07.2).  
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The association between the time series representing the musical features and the music-induced 
responses was assessed using a two-level random-effects non-parametric analysis approach.  
Specifically, first-level correlation or linear regression analysis was initially applied at the single 
subject level to assess the association between each individual response pattern (e.g., valence or 
arousal rating) and the annotated musical attribute (e.g., inter-subject-tapping-coherence). Then, 
the statistical significance of the resulting group correlation or regression coefficients was estimated 
using permutation testing based on phase-randomization (Honey, Thompson, Lerner, & Hasson, 
2012). The inference using this approach is done by assessing the percentile location of the mean 
of correlation or regression coefficients (across the group) in relation to a null distribution of the 
mean correlation or regression coefficients. The null distribution of the mean coefficients was 
reconstructed by repeating 10,000 times by applying the same correlation or regression analysis, 
with the important exception that the phase of the time series representing the music-induced 
responses was first scrambled. This approach allows assessing the statistical likelihood of each 
observed correlation under the presence of autocorrelation as it leaves the power spectrum of 
the shuffled time series intact (Honey et al., 2012). To account for the possible delay between the 
musical features and the participants’ affective reaction (Bachorik et al., 2009; Schubert, 2013), a 
time delay of between 0 and 4 s between the time-series was applied. We used a two-level data-
driven approach to select the exact timing of this delay. First, the regression analyses were performed 
by applying delays of 1-s increments between 0 and 4 s to the time-courses. The selected time lag, 
which was then used in all datasets for assessing the relationship between the ratings and musical 
features, was determined at the group level as the median of the optimal subject-specific time lags, 
which yielded the maximal regression coefficient in its absolute value.

In cases where first-level analysis was required (e.g., for assessing the correlation between different 
musical features), the statistical inference was done using the same phase-randomization-based 
approach (Honey et al., 2012). Here, the inference was done by assessing the percentile location 
of the obtained correlation coefficient in relation to a null distribution of correlation coefficients. 
To allow for stabilization of ratings – avoiding lower reliability at the beginning and end of 
continuous rating data (Bachorik et al., 2009; Schubert, 2013) – the first and last 30s of the rating 
time courses were removed from all analyses that include these data types.

Factor Analysis

To avoid redundancy and in order to identify distinct groups of musical features sharing 
common variance, we applied exploratory factor analysis using principle component analysis. 
Principal component analysis and orthogonal varimax rotation was conducted on 15 musical 
features capturing different perceptual attributes (loudness, timbre, pitch, tempo, etc., for a full 
list of features, see Supplementary Table S1) following Eerola (2011). This analysis was applied 
to z-scores of the different musical annotations, and across the three pieces, using IBM SPSS 
20 software (IBM SPSS Statistics, IBM Corporation, Armonk, NY). The first nine resulting principal 
components were selected as they accounted for 90% of the variance in all pieces and used 
in further analyses. Factor profiles were determined based on the highest component loadings 
in the varimax rotated matrix above 0.6, and are presented in Supplementary Table S2. The 
factor scores were then calculated per component using regression (as implemented in SPSS) 
and were used to examine if the relationship between music-induced emotions and temporal 
predictability is evident when accounting for additional factors.

BENCHMARK DATASET OF DYNAMIC ANNOTATION OF MUSICAL EMOTIONS:

To support the observed findings and generalize them into a larger and more diverse musical 
sample using a different metric, we used the MediaEval Database for Emotional Analysis in 
Music (DEAM) – a large dataset containing dynamic annotations of valence and arousal for 
1802 songs (Aljanaki et al., 2017). The database contains 1802 excerpts and full songs and 
their corresponding annotations of subjectively reported valence and arousal values both 
continuously and over the whole song, each acquired from 10 different participants using the 
Amazon Mechanical Turk (MTurk). Technical difficulties limited the analysis to 1780 out of 1802 
songs. Each of the sound files were analyzed to extract pulse clarity using the MIR toolbox 
(Lartillot, Toiviainen, et al., 2008) running on Matlab. Pulse clarity is an automatically extracted 
measure that assesses “the ease of tapping to the beat” (Lartillot, Eerola, et al., 2008) – and was 
found to be correlated with the predictability index in our study (for details, see results section). 
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Then, we assessed the association between the annotated pulse clarity and the affective 
annotation of each song; the average valence or arousal ratings per song. This association 
was assessed for the average continuous ratings per song (average value across the entire 
piece) using linear regression (lm function running on R). Given that the valence and arousal 
annotations are derived from the average ratings of ten different raters, we first assessed the 
inter-rater reliability of each song using the inter-group agreement index rWG, which was 
calculated using the rwg function from the multilevel package running on R. Songs with an 
rWG index lower than 0.7 were removed from the analyses (James, Demaree, & Wolf, 1984). 
The decision to use pulse clarity as an index of rhythmic complexity, instead of inter-subject 
tapping-coherence, was based on practical reasons, as collecting tapping data from experts for 
this large dataset of over a thousand songs was not feasible. Pulse clarity is an automatically 
extracted feature that is a proxy for how easily the beat is perceived, and it has been used in 
previous studies to index rhythmic complexity (Fujii & Schlaug, 2013; Stupacher et al., 2022). 
Correspondingly, we found a correlation between pulse clarity and tapping-coherence in the 
three pieces used in our study, as detailed in the Results section below.

RESULTS
CHARACTERIZATION OF THE TAPPING-BASED ANNOTATIONS OF TEMPORAL 
PREDICTABILITY 

As the focus of this study is to assess how temporal predictability in music is associated 
with music-induced emotions, we introduced a novel tapping based index: inter-subject-
tapping-coherence (see methods for details). This index was depicted per second to provide a 
continuous index of predictability as the music unfolds (Figure 2). We compared this index to 
a set of automatically extracted features from the sound files that were designed to capture 
rhythm-related information: (1) pulse clarity (2) tempo (3) event density – all extracted with 
the MIR toolbox using a frame-based approach, with an analysis frame of 2 s and an overlap of 
50% (Eerola, 2011) and shifted by 1 s. To identify robust associations, we only highlighted the 
features that were consistently and significantly correlated in all three pieces. As expected, the 
inter-subject tapping-coherence correlated with the index for pulse clarity in all pieces: (Ligeti, 
r = .69, p < .001; Glass r = .21, p = .04; Mussorgsky, r = .52, p < .001). To further characterize the 
tapping data, we extracted an index of tempo, calculated as the one over the median of the 
inter-tap interval per second and multiplied by 60 to obtain a continuous assessment of beats 
per minute. This measure nicely correlated with the automatically extracted MIR measures 
of event density (Ligeti, r = .36, p < .005; Glass r = .52, p < .0001; Mussorgsky: r = .29, p < .005) 
and an index of tempo extracted based on the automatic detection of onsets from the sound 
file and the subsequent calculation of one over the inter-onset interval (Ligeti: r = .54, p < .001; 
Glass: r = .39, p < .001; Mussorgsky: r = .55, p < .0001). 

Figure 2 Continuous reports 
of music-induced emotions 
and the corresponding 
indices of temporal 
predictability. (a) mean 
intensity of the continuous 
reported music-induced 
experience on the dimensions 
of valence and arousal. Lines 
represent mean values 
of arousal and valence 
and thickness of shading 
represents 1 deviation from 
the mean (SEM). (b) Time 
series of the tapping based 
index denoting temporal 
predictability of Inter-Subject-
Tap-Coherence per piece. 
Dashed lines indicate the 
point of transition between 
the two parts in Ligeti’s and 
Mussorgaky’s pieces.
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ASSOCIATION BETWEEN THE MUSICAL EMOTIONAL EXPERIENCE AND 
TEMPORAL PREDICTABILITY

We next turned to test the hypothesis that temporal predictability in music is associated with 
music-induced emotions as music unfolds by assessing the second-level correlation between 
the continuous reports (Figure 2a) and the inter-subject tapping-coherence (Figure 2b). The 
results of this analysis, which are detailed in Table 1, reveal that the reported valence was 
associated with temporal predictability in four out of the five musical segments examined: Glass’ 
piece, Ligeti’s 1st and 2nd Ricercatas and part A in Mussorgsky’s piece (p < .05, FDR corrected). 
Specifically, there was a significant positive correlation across subjects between the time-series 
of valence and inter-subject tapping-coherence. This indicates that during more temporally 
predictable moments, when inter-tapping coherence was high, participants tended to report 
experiencing higher levels of pleasantness. We further validated this observation by applying 
a paired t-test to compare between the average ratings during moments characterized with 
high vs. low temporal predictability (above the 75th percentile or below the 25th percentile of 
that index, respectively). Indeed, the average valence ratings in Glass’ piece, Ligeti’s 1st and 
2nd Ricercatas and part A in Mussorgsky’s piece were significantly higher during moments of 
high temporal predictability than during moments of low temporal predictability, as indexed 
by inter-subject tapping coherence (p < .05, FDR corrected; see Table 1a).  Arousal ratings, on 
the other hand, were not consistently correlated with inter-subject tapping-coherence across 
pieces, nor were found to differ between moments that are high vs. low in this index of temporal 
predictability across all pieces (Table 1b).

Together, these findings suggest that there is an association between temporal predictability 
and valence across distinct musical contexts, with the exception of the second part of 
Musssorgsky’s piece. One salient characteristic of this part, which may be related to this deviant 
observation, is its very slow tempo. Indeed, inspection of the distribution of the tapping-based 
tempo index, which is depicted per musical section in Supplementary Figure S1, revealed that 

A. VALENCE

MEAN r (SEM) p-VALUE (BOOTSTRAP) COMPARE HIGH VS. LOW

Glass
(n = 36)

.12 (.02) <.001*** t(35) = 4.42;
p < .001***

Ligeti, Ric. 1  
(n = 37)

.23 (.07) <.001*** t(36) = 3.86 
p < .001***

Ligeti, Ric. 2  
(n = 37)

.04 (.02) .05* t(36) = 2.27; 
p = .0294*

Mussorgsky, 
Part 1
(n = 34)

.08 (.01) <.001*** t(33) = 2.97; 
p = .0055*

Mussorgsky, 
Part 2
(n = 34)

–.24 (.04) <.001*** t(33) = -5.53; 
P < .001***

B. AROUSAL

MEAN r (SEM) p-VALUE (BOOTSTRAP) COMPARE HIGH VS. LOW

Glass 
(n=36)

–.02 (.02) .54 t(35) = –1.73; 
p = .09

Ligeti, Ric. 1  
(n=37)

–.06 (.05) .32 t(36) = –1.28; 
p = .21

Ligeti, Ric. 2  
(n=37)

–.05 (.02) .006** t(36) = –2.41;
p = .02*

Mussorgsky, 
Part 1 
(n = 34)

–.02 (.02) .24 t(33) = –.46;
p = .65

Mussorgsky, 
Part 2 
(n = 34)

.35 (.03) <.001*** t(33) = 7.95; 
P < .001***

Table 1 Association between 
temporal predictability and 
behavioral responses to 
music: summary of correlation 
analyses and paired t-tests.

Note: Averages and S.E.M 
of correlation coefficients 
between inter-subject tapping 
coherence and the ongoing 
fluctuations in reported 
a. valence or b. arousal 
per musical excerpt. The 
statistical significance, which 
was estimated using a phase 
randomization bootstrapping 
approach, is further indicated. 
T-values representing the 
result of a paired sample 
t-test for the comparison 
between the average ratings 
during moments of high 
vs. low moments temporal 
predictability are further 
provided.  Effects corrected 
for multiple comparisons are 
highlighted in gray (FDR-
corrected, p < .05).

Abbreviations: Synch. = 
synchronization.
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the entire section falls outside the range for salient beat perception, between 80 and 160 beats 
per minute (Møller, Stupacher, Celma-Miralles, & Vuust, 2021), and is characterized by a slow 
tempo overall (Mbpm = 60.45).

ASSOCIATION BETWEEN TEMPORAL PREDICTABILITY AND REPORTED MUSIC-
INDUCED EXPERIENCE WITHIN THE CONTEXT OF ADDITIONAL MUSICAL 
FEATURES 

We next turned to examine whether temporal predictability still constitutes a significant 
factor that explains the ongoing affective experience when additional musical dimensions 
known to contribute to the ongoing experience, such as pitch, tempo and loudness (Coutinho 
& Cangelosi, 2011) are also taken into account. For that, we used a set of nine orthogonal 
principal components, which included, in addition to the inter-subject-tapping-coherence, 
loudness/timbre, pitch, tempo, attack slope, spectral spread, spectral irregularity, key, and 
musical surprises (see methods and Supplementary Tables S1 and S2 for details about the 
extracted musical factors). We then applied multiple regression analysis in each of the musical 
sections, except for the second part of Mussorgsky’s piece, to examine how these distinct 
musical attributes may account for the continuous self-reports of valence and arousal. The 
results of this analysis are summarized in Table 2. As expected, even when accounting for other 
features, inter-subject-tapping-coherence remained a significant factor in positively predicting 
valence in the examined musical sections. No other factors consistently explained the ongoing 
fluctuation in reported valence across the different pieces (Table 2a). Fluctuations in reported 
arousal, on the other hand, were not explained consistently by the inter-subject-tapping-
coherence, but were robustly and positively explained in the three pieces by the ongoing 
variations in tempo and in loudness/timbre factors (Table 2b). This observation nicely replicates 
previous findings (e.g., Chapin, Jantzen, Kelso, Steinberg, & Large, 2010; Schubert, 2004) and 
thus supports the analysis approach utilized here. 

GENERALIZATION OF FINDINGS USING A LARGE ONLINE DATABASE (DEAM)

Motivated to generalize our finding into a larger and more diverse dataset, we turned to the 
DEAM database (Aljanaki et al., 2017), which includes continuous annotations of valence and 
arousal of about 1800 songs. We tested the prediction that within this diverse pool of musical 
materials, the valence ratings will co-vary across songs with temporal predictability, which was 
indexed here for practical reasons using the automatically extracted index of pulse clarity (see 
methods for details). We first inspected how the valence ratings, averaged across the entire 
piece, vary as a function of pulse clarity levels across the different songs. As expected, there 
was a strong positive linear association between pulse clarity levels and the mean valence 
ratings across the different songs (r =.50; Figure 3a). This finding indicates that more temporally 
regular songs were rated overall as more pleasant. This relationship was significantly higher 
than the one observed between pulse clarity and arousal (r = .37; Figure 3b; Fisher Z test for two 
dependent correlations; Zi = 6.9; p < .001). We further tested if such relationship between mean 
valence and pulse clarity follows the form of a u-shaped curve as anticipated from theories 
of aesthetic appreciation about the relation between the complexity or novelty of a stimulus 
and its hedonic tone (Berlyne, 1971). For that, we applied curvilinear regression analysis to 
predict valence with the first and second polynomial degrees of pulse clarity. Indeed, the 
model explained a statistically significant and substantial proportion of the variance (adj. R2 = 
0.28, F(2, 1773) = 340.66, p < .001). Within this model, the linear (β = 4.82, 95% CI [4.44, 5.20], 
t(1773) = 24.76, p < .001) and quadratic effects of pulse clarity were statistically significant (β = 
–1.61, 95% CI [–1.99, –1.23], t(1773) = –8.27, p < .001; Figure 3a). This model, which combined 
both the linear and quadratic terms, fit the data significantly better than a model that 
contained only linear terms [comparison: χ²(1) = 612.85 p < .001]. These results confirm and 
extend our findings of a consistent and robust relation, over a large variety of songs, between 
music-induced pleasantness and the extent of temporal predictability; captured here using the 
automatically extracted measure of pule clarity. Similar findings, although with a moderate 
proportion of explained variance (adj. R2 = 0.17, F(2, 1773) = 180.12, p < .001), were evident for 
the arousal dimension, with statistically significant linear (β = 4.37, 95% CI [3.87, 4.87], t(1773) 
= 17.15, p < .001) and quadratic effects of pulse clarity (β = –2.07, 95% CI [–2.57, –1.57], t(1773) 
= –8.14, p < .001, comparison with linear fit, χ²(1) = 293.99 p < .001; Figure 3b).
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DISCUSSION
Music, often referred to as ‘the language of emotion,’ is a multifaceted phenomenon that 
elicits complex emotional responses influenced by a plethora of variables as they unfold in 
time.  Among these features, important factors known to influence the emotional response 
are the ongoing processes of anticipation, prediction, error correction, and reward associated 
with these processes. Yet, measuring aspects of behavior that continuously index the predicted 
musical structure in a naturally unfolding musical piece is not trivial. In the current study, 
we focused on this fascinating aspect by examining how music-induced emotions change 
as a function of temporal predictability as the music unfolds. Temporal predictions rely on 
the percept of the musical beat – an internal construct rather than a mere reflection of the 
acoustic events. Moreover, temporal predictions are embedded in auditory-motor integration 
circuits (Cannon & Patel, 2021). We therefore turned to beat-tapping data of musically trained 
listeners as the best source for capturing such fluctuations in temporal predictions as the 
music unfolds. We relied on the notion that across a group of different tappers, moments 
that are more predictable will be associated with more incidents of well-synchronized taps. 
Using this measure, we found that more temporally predictable moments are experienced as 
more pleasant, even when controlling for additional musical features. These observations were 
further  supported and generalized using an automatically extracted feature of pulse clarity, 
applied to a large database that contains annotations of valence and arousal in response 
to music.

Our findings are in accordance with several lines of studies. One line of evidence comes from 
studies that used a large set of automatically extracted musical features to predict subjective 
ratings of music-induced emotions. Among these features, pulse clarity (Lartillot, Eerola, et al., 
2008) – used as a proxy for temporal predictions  – was found to be associated with changes in 
valence and arousal (Trost et al., 2015), or to be the second most effective feature in predicting 
global valence (Eerola, 2011), though in a genre-specific way (most prominent in pop music).  
In the current study, this automatically extracted index of pulse clarity, which partly correlated 
with our index of inter-subject-tapping-coherence, was used to demonstrate that the link 
between temporal predictions and valence may extend to other musical styles within a larger 
data pool of 1780 songs. Another line of evidence comes from studies that focused on the 
phenomenon of groove – the pleasurable urge to move to the beat of music (Janata, Tomic, & 
Haberman, 2012; Witek et al., 2014). In particular, Janata and colleagues (2012) showed that 
the quality of sensory-motor synchronization to a beat positively correlated with the experience 
of being in the groove and therefore enjoyment. Adding to this line of research, Witek and 
colleagues (2014) reported that the sense of groove and feelings of pleasure depended on 
the complexity of syncopation in an inverted u-shaped fashion, with an optimal “sweet spot” 
that balances between complexity and simplicity (Matthews et al., 2019; Stupacher et al., 
2022). Thus, consistent with our findings, these studies suggest that the extent of ability to 
match movements to a perceived musical pulse has hedonic quality. This may provide support 
to the notion that the alignment of one’s bodily rhythms, motor actions or attention, to a 
periodically perceived pulse plays a key role in explaining the emotions induced by listening 
to music  (Juslin, 2013; Juslin et al., 2010; Trost & Vuilleumier, 2013). Our study extends these 

Figure 3 DEAM database 
(Aljanaki et al., 2017) – 
support for the association 
between temporal 
predictability and music-
induced emotions. Overall 
ratings (at the level of the 
entire song): Linear and 
quadratic regressions of 
overall pulse clarity for ratings 
of: a. valence and b. arousal. 
Markers represent the mean 
rating for each of 1780 
songs taken from the DEAM 
database as a function of 
its overall pulse clarity. Lines 
represent the regression fit 
across songs.
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findings by revealing the link between pleasantness, which relates to the concept of valence, 
and beat strength in “non-groovy” musical contexts and is evident not only globally, but also 
locally, on a moment to moment basis as music unfolds. Finally, a third line of evidence comes 
from a study that addressed the question of temporal expectancies in music by showing that 
music-induced emotions can be predicted from descriptors of onset predictability that were 
derived from models that rely on statistical learning (Egermann et al., 2013; Gold, Pearce, et al., 
2019; Sauvé et al., 2018). Specifically, in this study, Sauvé and colleagues used the information 
dynamics of music (IDyOM) model to depict the extent to which each note onset is predictable 
by estimating the probability from the statistics of their occurrence as they evolve in the song 
(short-term) and more globally in music of certain styles. Using this model, they found that 
the onset predictability explained both arousal and valence dimensions of the emotional 
response to music, being higher for more predictable pieces. Yet, the reliance on the analysis 
of pre-selected corpuses of music, mainly western folk songs in MIDI format, limits the use 
of this approach when considering the responses to much more complex musical pieces with 
expressive performance fluctuations in tempo, microtiming, intensity, timbre, articulation, etc.  

Since temporal predictability was operationally defined here as the extent of inter-subject-
tapping-coherence, it is possible that its hedonic value can be further associated to its social value 
as it represents the potential of synchronizing our movements with others through temporal 
prediction, an act that may have hedonic value of its own (Overy & Molnar-Szakacs, 2009). 
Along that line, evolutionary psychologists have long assigned an important role to rhythmic 
engagement and music as a means for social bonding, cohesion and possibly for regulating the 
groups’ affective state (Cross, 2014; Dunbar, 2012; McNeill, 1997; Tarr, Launay, & Dunbar, 2014). 
Indeed, musical pleasure has been shown to be closely tied to emotions that are associated with 
the sense of belonging (Saarikallio, Maksimainen, & Randall, 2019). This suggestion resonates 
with our finding that temporal predictability was associated with valence in excerpts that were 
characterized by tempi within the range of salient beat perception (i.e., 80 to 160 Bpm; Figure S1). 

The one exception for our findings was in the second slower part of Mussorgky’s piece. In this section 
of the piece, the relationship between valence and predictability measures behaved in an opposing 
fashion – showing a negative correlation between temporal predictability and pleasantness. It has 
been established that accuracy of tapping is significantly reduced in tempi slower than 80 Bpm, as 
that found in slower part of Mussorgky’s piece (Møller, Stupacher, Celma-Miralles, & Vuust, 2021). 
This suggests that temporal predictions in such pieces cannot be as pleasing as in the optimal 
range of 80 to 160 Bpm. Slower songs or sections may rely more on other musical features and 
on other psychological mechanisms such as emotional contagion (Juslin, 2013). In fact, slow 
movements characterized by a lyrical melody as found in the last section of Mussorgsky, require 
from players extra expressivity to convey the quality of emotional speech. Hence, despite pointing 
to a general mechanism that seems to contribute to the hedonic response to music, we further 
highlight that the association is weakened or even reversed under some conditions. However, 
we suggest to examine in further studies whether this reversal is influenced more by the musical 
genre as proposed by Eerola (2011) or rather by the tempo of the piece. 

LIMITATIONS

In this study, we focused on explaining the responses to naturalistic and relatively long pieces and 
used experts-based annotations for indexing temporal predictability – two experimental decisions 
that limited the number of musical materials used. The use of a small number of musical pieces 
in our study therefore limits our ability to generalize our conclusions to other musical contexts 
and genres. To address this shortcoming, we focused on effects that were consistent across 
highly distinct musical pieces in terms of their tonal and temporal design and supported them 
using large database of songs that contains annotations of music-induced emotions (Aljanaki et 
al., 2017). Further, our ability to generalize the conclusions is somewhat limited by the relatively 
modest sample size of participants we used. Future studies should replicate these findings while 
incorporating another set of musical materials. It should also be noted that the tapping data and 
the subjective ratings were obtained from completely different groups. Future studies could aim 
to gather both emotional ratings and tapping data from the same participants (both musically 
trained and untrained). In that case, individual differences in tapping synchronization to the beat 
may be further used to predict the level of music-induced pleasantness. 
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It is also important to note that while this study highlighted the role of temporal predictability in 
music-induced emotions, other musical features and variables, such as loudness, timbre, pitch 
height, harmonic and melodic complexity also play a significant role in shaping the emotional 
experience of music (Chapin et al., 2010; Coutinho & Cangelosi, 2011; Eerola, 2011; Eerola et al., 
2009; Gabrielsson, 2014; Stupacher, Hove, & Janata, 2016), and were found to correlate with 
this experience in our study as well (Table 2). This multi-level account also suggests that there 
may be an interaction between the different features (Granot & Eitan, 2011). Therefore, further 
investigation into how the interaction between different musical features may affect the 
ongoing emotional experience, as demonstrated in previous studies on groove using systematic 
manipulations of features such as harmonic or rhythmic complexity (Matthews et al., 2019), or 
bass frequency and attack time (Stupacher et al., 2016), would be intriguing. Another important 
consideration for future research is whether musical pleasure and music-induced emotional 
valence, as measured in this study, are equivalent constructs that are similarly affected by 
temporal predictability (Goupil & Aucouturier, 2019). For example, studies have shown that 
pharmacological dopamine manipulation can impact reported pleasure levels but not valence 
and arousal levels (Ferreri et al., 2019), and that individuals may derive enjoyment and pleasure 
from sad or negatively valenced songs (Sachs, Damasio, & Habibi, 2015), highlighting the need 
for further investigation into the complexities of music-induced emotions (for example, Keller 
& Schubert, 2011).

Finally, using naturalistic music enhances the ecological validity of the investigation and allows 
for uncovering the temporal unfolding of music-induced emotions in relation to temporal 
predictability. However, it also introduces additional variables that could account for such 
experiences. Although we controlled for some of these variables in the current investigation 
using the multiple regression analyses, future studies should complement our findings using 
a controlled set of stimuli that vary solely in terms of rhythm, while keeping all other variables 
constant. Similar studies investigating groove have yielded findings that align with our current 
work (Matthews et al., 2019; Stupacher et al., 2022; Witek et al., 2014). 

CONCLUSIONS AND THEORETICAL PERSPECTIVES
The findings of this study may be interpreted in light of the theoretical perspective of predictive 
coding (Koelsch, Vuust, & Friston, 2018; Witek et al., 2014). In a nutshell, the theory of predictive 
coding asserts that the brain continuously generates models based on current contexts and 
prior knowledge in order to predict incoming input. As such, neural computations are mainly 
tuned into minimizing prediction error – the difference between an internal model and the input. 
Recently, this framework has been adopted to explain music listening as an active process that 
involves the constant generation of predictions and their subsequent violation (Koelsch et al., 
2018). Such a process includes both the prediction of content and the precision by which this 
content can be predicted. This layer of precision has been formulated as an important factor that 
filters our responses to (content) prediction violations, such that we respond more vigorously to 
“predictably surprising” events and ignore imprecise prediction errors. Bearing these notions in 
mind, it can be suggested that the predictability of the next note may be an important factor 
for the precision layer as it allows generating a predictive model of the timing of subsequent 
musical events, possibly via a neural resonance mechanism (Large, Fink, & Kelso, 2002). Such 
enhanced temporal predictability may augment the listeners’ responses to- and potential 
learning benefits from- predictably surprising events. The latter musical prediction errors have 
been conceptualized as important drivers of musical pleasure (Salimpoor et al., 2015), and have 
been recently shown to engage major nodes of the brain’s reward system (Gold, Mas-Herrero, 
et al., 2019; Shany et al., 2019) and of the limbic network (Cheung et al., 2019). Extending to 
other domains, our findings may also be relevant to other affective processes – suggesting that 
regularities and their violations provide invaluable basic affective codes.
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are available in the supplementary materials. We would like to include this data file as a 
supplementary material. See details below. The individual rating data will be provided upon 
request from the author, depending upon IRB approval.



15Singer et al.  
Journal of Cognition  
DOI: 10.5334/joc.286

ADDITIONAL FILES
The additional files for this article can be found as follows:

•	 Figure S1. Tempo per musical section. DOI: https://doi.org/10.5334/joc.286.s1

•	 Figure S2. Distinct tapping patterns along the Glass piece. DOI: https://doi.org/10.5334/
joc.286.s2

•	 Table S1. List of the extracted musical features. DOI: https://doi.org/10.5334/joc.286.s3

•	 Table S2. Summary of musical factor loadings. DOI: https://doi.org/10.5334/joc.286.s4

•	 Table S3. Association between temporal predictability, calculated using the entire group 
of tappers, and behavioral responses to music: summary of correlation analyses and 
paired t-tests. DOI: https://doi.org/10.5334/joc.286.s5

•	 Supplementary materials. Supplementary data: Musical features and tapping based 
annotations from the current study. DOI: https://doi.org/10.5334/joc.286.s6

ETHICS AND CONSENT
The experiment was approved by the Tel Aviv Sourasky Medical Center institutional review 
board (IRB; Ref: TLV-01-028) and the annotation study was approved by the Hebrew University 
of Jerusalem IRB. All participants gave their informed consent prior to participation.

ACKNOWLEDGEMENTS
We thank Lior Bugatus for his significant help in data acquisition, the pianist and composer 
Dr. Rotem Luz for kindly agreeing to record the musical pieces used in the current experiment, 
Rachel Hashinshoni and Sivan Yerushalmy for their help during the pre-test, Leah Moss, Limor 
Mekaiten and Avraham Moriel for their contribution to the annotation of musical features, 
Dr. Donna Abecassis and Eran Pasternak for their help in selecting the musical materials, Ofir 
Shany for his useful remarks and Dr. Jonathan Rosenblatt for his insightful inputs regarding the 
statistical analyses.

FUNDING INFORMATION
This work has received funding from the Internal funds of the R&D at the Hebrew University (R.G), 
the European Union’s Seventh Framework Program for research technological development 
and demonstration under grant agreement no. 602186 and from the I-CORE Program of behalf 
of the Planning and Budgeting Committee and The Israel Science Foundation under grant 
agreement no. 51/11 (T.H). The work was additionally supported by the converging technologies 
scholarship on behalf of the Council for Higher education and the Levie-Edersheim-Gitter 
Institute for Functional Brain Mapping scholarship to N.S.

COMPETING INTERESTS
The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Neomi Singer  orcid.org/0000-0002-9300-1605 
Sagol Brain Institute and department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; 
Sagol school of Neuroscience, Tel-Aviv University, Tel Aviv, Israel; School of Psychological Science, Tel-Aviv 
University, Tel Aviv, Israel

Nori Jacoby  orcid.org/0000-0003-2868-0100 
Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany

Talma Hendler  orcid.org/0000-0002-4182-4335 
Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol school of Neuroscience, Tel-
Aviv University, Tel Aviv, Israel; School of Psychological Science, Tel-Aviv University, Tel Aviv, Israel; Sackler 
School of Medicine, Tel-Aviv University, Tel Aviv, Israel

Roni Granot  orcid.org/0000-0002-0711-8322 
Musicology Department, Hebrew University of Jerusalem, Jerusalem, Israel

https://doi.org/10.5334/joc.286.s1
https://doi.org/10.5334/joc.286.s2
https://doi.org/10.5334/joc.286.s2
https://doi.org/10.5334/joc.286.s3
https://doi.org/10.5334/joc.286.s4
https://doi.org/10.5334/joc.286.s5
https://doi.org/10.5334/joc.286.s6
https://orcid.org/0000-0002-9300-1605
https://orcid.org/0000-0002-9300-1605
https://orcid.org/0000-0003-2868-0100
https://orcid.org/0000-0003-2868-0100
https://orcid.org/0000-0002-4182-4335
https://orcid.org/0000-0002-4182-4335
https://orcid.org/0000-0002-0711-8322
https://orcid.org/0000-0002-0711-8322


16Singer et al.  
Journal of Cognition  
DOI: 10.5334/joc.286

REFERENCES
Aljanaki, A., Yang, Y.-H., & Soleymani, M. (2017). Developing a benchmark for emotional analysis of 

music. PloS one, 12(3), e0173392. DOI: https://doi.org/10.1371/journal.pone.0173392

Alluri, V., Toiviainen, P., Burunat, I., Kliuchko, M., Vuust, P., & Brattico, E. (2017). Connectivity patterns 

during music listening: Evidence for action-based processing in musicians. Human brain mapping, 

38(6), 2955–2970. DOI: https://doi.org/10.1002/hbm.23565

Bachorik, J. P., Bangert, M., Loui, P., Larke, K., Berger, J., Rowe, R., & Schlaug, G. (2009). Emotion in 

motion: Investigating the time-course of emotional judgments of musical stimuli. DOI: https://doi.

org/10.1525/mp.2009.26.4.355

Bar, M. (2009). The proactive brain: memory for predictions. Philosophical Transactions of the Royal Society 

B: Biological Sciences, 364(1521), 1235–1243. DOI: https://doi.org/10.1098/rstb.2008.0310

Berlyne, D. E. (1971). Aesthetics and psychology.

Bianco, R., Gold, B. P., Johnson, A. P., & Penhune, V. B. (2019). Music predictability and liking enhance 

pupil dilation and promote motor learning in non-musicians. Scientific reports, 9(1), 1–12. DOI: 

https://doi.org/10.1038/s41598-019-53510-w

Böck, S., Krebs, F., & Widmer, G. (2014). A Multi-model Approach to Beat Tracking Considering 

Heterogeneous Music Styles. Paper presented at the ISMIR.

Bonin, T. L., Trainor, L. J., Belyk, M., & Andrews, P. W. (2016). The source dilemma hypothesis: Perceptual 

uncertainty contributes to musical emotion. Cognition, 154, 174–181. DOI: https://doi.org/10.1016/j.

cognition.2016.05.021

Brattico, E., Jacobsen, T., De Baene, W., Glerean, E.,, & Tervaniemi, M. (2010). Cognitive vs. affective 

listening modes and judgments of music–An ERP study. Biological psychology, 85(3), 393–409. DOI: 

https://doi.org/10.1016/j.biopsycho.2010.08.014

Cabrera, D., Ferguson, S., & Schubert, E. (2007). Psysound3: Software for acoustical and psychoacoustical 

analysis of sound recordings. Paper presented at the Proc. 13th International Conference on Auditory 

Display.

Cannam, C., Landone, C., & Sandler, M. (2010). Sonic visualiser: An open source application for viewing, 

analysing, and annotating music audio files. Paper presented at the Proceedings of the international 

conference on Multimedia. DOI: https://doi.org/10.1145/1873951.1874248

Cannon, J. J., & Patel, A. D. (2021). How beat perception co-opts motor neurophysiology. Trends in 

Cognitive Sciences, 25(2), 137–150. DOI: https://doi.org/10.1016/j.tics.2020.11.002

Chapin, H., Jantzen, K., Kelso, J. A. S., Steinberg, F., & Large, E. W. (2010). Dynamic emotional and neural 

responses to music depend on performance expression and listener experience. PLoS ONE, 5(12), 

e13812. DOI: https://doi.org/10.1371/journal.pone.0013812

Cheung, V. K. M., Harrison, Peter, M. C., Meyer, L., Pearce, M. T., Haynes, J.-D., & Koelsch, S. (2019). 

Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and 

auditory cortex activity. Current Biology, 29(23), 4084–4092. e4084. DOI: https://doi.org/10.1016/j.

cub.2019.09.067

Chmiel, A., & Schubert, E. (2017). Back to the inverted-U for music preference: A review of the literature. 

Psychology of Music, 45(6), 886–909. DOI: https://doi.org/10.1177/0305735617697507

Coutinho, E., & Cangelosi, A. (2011). Musical emotions: predicting second-by-second subjective feelings 

of emotion from low-level psychoacoustic features and physiological measurements. Emotion, 11(4), 

921. DOI: https://doi.org/10.1037/a0024700

Cross, I. (2014). Music and communication in music psychology. Psychology of Music, 42(6), 809–819. 

DOI: https://doi.org/10.1177/0305735614543968

Daldry, S. (2002). The hours [motion picture]. United States: Paramount Pictures. 

Davis, F. C., Neta, M., Kim, M. J., Moran, J. M., & Whalen, P. J. (2016). Interpreting ambiguous social 

cues in unpredictable contexts. Social cognitive and affective neuroscience, nsw003. DOI: https://doi.

org/10.1093/scan/nsw003

Disney, W. (1940). Fantasia [animated picture]. United States: Walt Disney Productions. 

Dunbar, R. (2012). On the evolutionary function of song and dance. Music, Language, and Human 

Evolution, 201. DOI: https://doi.org/10.1093/acprof:osobl/9780199227341.003.0008

Eerola, T. (2011). Are the Emotions Expressed in Music Genre-specific? An Audio-based Evaluation of 

Datasets Spanning Classical, Film, Pop and Mixed Genres. Journal of New Music Research, 40(4), 349–

366. DOI: https://doi.org/10.1080/09298215.2011.602195

Eerola, T., Lartillot, O., & Toiviainen, P. (2009). Prediction of Multidimensional Emotional Ratings in Music 

from Audio Using Multivariate Regression Models. Paper presented at the ISMIR.

Egermann, H, Pearce, M. T, Wiggins, G. A., & McAdams, S. (2013). Probabilistic models of expectation 

violation predict psychophysiological emotional responses to live concert music. Cognitive, Affective, 

& Behavioral Neuroscience, 13(3), 533–553. DOI: https://doi.org/10.3758/s13415-013-0161-y

Ferreri, L., Mas-Herrero, E., Zatorre, R. J., Ripollés, P., Gomez-Andres, A., Alicart, H., … Valle, M. (2019). 

Dopamine modulates the reward experiences elicited by music. Proceedings of the National Academy 

of Sciences, 116(9), 3793–3798. DOI: https://doi.org/10.1073/pnas.1811878116

https://doi.org/10.1371/journal.pone.0173392
https://doi.org/10.1002/hbm.23565
https://doi.org/10.1525/mp.2009.26.4.355
https://doi.org/10.1525/mp.2009.26.4.355
https://doi.org/10.1098/rstb.2008.0310
https://doi.org/10.1038/s41598-019-53510-w
https://doi.org/10.1016/j.cognition.2016.05.021
https://doi.org/10.1016/j.cognition.2016.05.021
https://doi.org/10.1016/j.biopsycho.2010.08.014
https://doi.org/10.1145/1873951.1874248
https://doi.org/10.1016/j.tics.2020.11.002
https://doi.org/10.1371/journal.pone.0013812
https://doi.org/10.1016/j.cub.2019.09.067
https://doi.org/10.1016/j.cub.2019.09.067
https://doi.org/10.1177/0305735617697507
https://doi.org/10.1037/a0024700
https://doi.org/10.1177/0305735614543968
https://doi.org/10.1093/scan/nsw003
https://doi.org/10.1093/scan/nsw003
https://doi.org/10.1093/acprof:osobl/9780199227341.003.0008
https://doi.org/10.1080/09298215.2011.602195
https://doi.org/10.3758/s13415-013-0161-y
https://doi.org/10.1073/pnas.1811878116


17Singer et al.  
Journal of Cognition  
DOI: 10.5334/joc.286

Fredrickson, W. E. (1999). Effect of musical performance on perception of tension in Gustav Hoist’s 

First Suite in E-flat. Journal of Research in Music Education, 47(1), 44–52. DOI: https://doi.

org/10.2307/3345827

Friston, K. (2005). A theory of cortical responses. Philosophical transactions of the Royal Society B: 

Biological sciences, 360(1456), 815–836. DOI: https://doi.org/10.1098/rstb.2005.1622

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: a process 

theory. Neural computation, 29(1), 1–49. DOI: https://doi.org/10.1162/NECO_a_00912

Fujii, S., & Schlaug, G. (2013). The Harvard Beat Assessment Test (H-BAT): a battery for assessing beat 

perception and production and their dissociation. Frontiers in human neuroscience, 7, 771. DOI: 

https://doi.org/10.3389/fnhum.2013.00771

Gabrielsson, A. (2014). The relationship between musical structure and perceived expression. DOI: 

https://doi.org/10.1093/oxfordhb/9780198722946.013.18

Gabrielsson, A., & Lindström, E. (2010). The role of structure in the musical expression of emotions. 

Handbook of music and emotion: Theory, research, applications, 367–400. DOI: https://doi.

org/10.1093/acprof:oso/9780199230143.003.0014

Gold, B. P., Mas-Herrero, E., Zeighami, Y., Benovoy, M., Dagher, A., & Zatorre, R. J. (2019). Musical reward 

prediction errors engage the nucleus accumbens and motivate learning. Proceedings of the National 

Academy of Sciences, 116(8), 3310–3315. DOI: https://doi.org/10.1073/pnas.1809855116

Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Predictability and 

uncertainty in the pleasure of music: a reward for learning? Journal of Neuroscience, 39(47), 9397–

9409. DOI: https://doi.org/10.1523/JNEUROSCI.0428-19.2019

Goupil, L., & Aucouturier, J.-J. (2019). Musical pleasure and musical emotions. Proceedings of the 

National Academy of Sciences, 116(9), 3364–3366. DOI: https://doi.org/10.1073/pnas.1900369116

Granot, R. Y., & Eitan, Z. (2011). Musical tension and the interaction of dynamic auditory parameters. 

Music Perception, 28(3), 219–246. DOI: https://doi.org/10.1525/mp.2011.28.3.219

Grewe, O., Nagel, F., Kopiez, R., & Altenmüller, E. (2007). Emotions over time: Synchronicity and 

development of subjective, physiological, and facial affective reactions to music. Emotion, 7(4), 774. 

DOI: https://doi.org/10.1037/1528-3542.7.4.774

Grillon, C., Baas, J. P., Lissek, S., Smith, K., & Milstein, J. (2004). Anxious responses to predictable 

and unpredictable aversive events. Behavioral neuroscience, 118(5), 916. DOI: https://doi.

org/10.1037/0735-7044.118.5.916

Herry, C., Bach, D. R., Esposito, F., Di Salle, F., Perrig, W. J., Scheffler, K., … Seifritz, E. (2007). Processing 

of temporal unpredictability in human and animal amygdala. The Journal of Neuroscience, 27(22), 

5958–5966. DOI: https://doi.org/10.1523/JNEUROSCI.5218-06.2007

Heyduk, R. G. (1975). Rated preference for musical compositions as it relates to complexity and exposure 

frequency. Perception & Psychophysics, 17(1), 84–90. DOI: https://doi.org/10.3758/BF03204003

Honey, C. J., Thompson, C. R., Lerner, Y., & Hasson, U. (2012). Not lost in translation: neural responses 

shared across languages. The Journal of Neuroscience, 32(44), 15277–15283. DOI: https://doi.

org/10.1523/JNEUROSCI.1800-12.2012

Huron, D. (2008). Sweet anticipation: Music and the psychology of expectation. MIT press.

Jackson, F., Nelson, B. D., & Proudfit, G. H. (2015). In an uncertain world, errors are more aversive: Evidence 

from the error-related negativity. Emotion, 15(1), 12. DOI: https://doi.org/10.1037/emo0000020

James, L. R., Demaree, R. G., & Wolf, G. (1984). Estimating within-group interrater reliability with and 

without response bias. Journal of Applied Psychology, 69, 85–98. DOI: https://doi.org/10.1037/0021-

9010.69.1.85

Janata, P, Tomic, S. T., & Haberman, J. M. (2012). Sensorimotor coupling in music and the psychology 

of the groove. Journal of experimental psychology: general, 141(1), 54. DOI: https://doi.org/10.1037/

a0024208

Juslin, P. N. (2013). From everyday emotions to aesthetic emotions: towards a unified theory of musical 

emotions. Physics of life reviews, 10(3), 235–266. DOI: https://doi.org/10.1016/j.plrev.2013.05.008

Juslin, P. N., Liljeström, S., Västfjäll, D., & Lundqvist, L.-O. (2010). How does music evoke emotions? 

Exploring the underlying mechanisms. In P. N. Juslin & J. A. Sloboda (Eds.), Handbook of Music and 

Emotion: Theory, Research, Applications (pp. 605–642). Oxford University Press. DOI: https://doi.

org/10.1093/acprof:oso/9780199230143.003.0022

Keller, P. E., & Schubert, E. (2011). Cognitive and affective judgements of syncopated musical themes. 

Advances in Cognitive Psychology, 7, 142–156. DOI: https://doi.org/10.2478/v10053-008-0094-0

Koelsch, S., Vuust, P., & Friston, K. (2018). Predictive processes and the peculiar case of music. Trends in 

cognitive sciences. DOI: https://doi.org/10.1016/j.tics.2018.10.006

Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in 

cognitive sciences, 23(1), 63–77. DOI: https://doi.org/10.1016/j.tics.2018.10.006

Koppe, G., Gruppe, H., Sammer, G., Gallhofer, B., Kirsch, P., & Lis, S. (2014). Temporal unpredictability 

of a stimulus sequence affects brain activation differently depending on cognitive task demands. 

NeuroImage, 101, 236–244. DOI: https://doi.org/10.1016/j.neuroimage.2014.07.008

https://doi.org/10.2307/3345827
https://doi.org/10.2307/3345827
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1162/NECO_a_00912
https://doi.org/10.3389/fnhum.2013.00771
https://doi.org/10.1093/oxfordhb/9780198722946.013.18
https://doi.org/10.1093/acprof:oso/9780199230143.003.0014
https://doi.org/10.1093/acprof:oso/9780199230143.003.0014
https://doi.org/10.1073/pnas.1809855116
https://doi.org/10.1523/JNEUROSCI.0428-19.2019
https://doi.org/10.1073/pnas.1900369116
https://doi.org/10.1525/mp.2011.28.3.219
https://doi.org/10.1037/1528-3542.7.4.774
https://doi.org/10.1037/0735-7044.118.5.916
https://doi.org/10.1037/0735-7044.118.5.916
https://doi.org/10.1523/JNEUROSCI.5218-06.2007
https://doi.org/10.3758/BF03204003
https://doi.org/10.1523/JNEUROSCI.1800-12.2012
https://doi.org/10.1523/JNEUROSCI.1800-12.2012
https://doi.org/10.1037/emo0000020
https://doi.org/10.1037/0021-9010.69.1.85
https://doi.org/10.1037/0021-9010.69.1.85
https://doi.org/10.1037/a0024208
https://doi.org/10.1037/a0024208
https://doi.org/10.1016/j.plrev.2013.05.008
https://doi.org/10.1093/acprof:oso/9780199230143.003.0022
https://doi.org/10.1093/acprof:oso/9780199230143.003.0022
https://doi.org/10.2478/v10053-008-0094-0
https://doi.org/10.1016/j.tics.2018.10.006
https://doi.org/10.1016/j.tics.2018.10.006
https://doi.org/10.1016/j.neuroimage.2014.07.008


18Singer et al.  
Journal of Cognition  
DOI: 10.5334/joc.286

Krumhansl, C. L. (1997). An exploratory study of musical emotions and psychophysiology. Can J Exp 

Psychol, 51(4), 336–353. DOI: https://doi.org/10.1037/1196-1961.51.4.336

Kubrick, S. (Writer). (1999). Eyes Wide Shut.

Large, E. W., Fink, P., & Kelso, S. J. (2002). Tracking simple and complex sequences. Psychological 

research, 66(1), 3–17. DOI: https://doi.org/10.1007/s004260100069

Lartillot, O, Eerola, T., Toiviainen, P., & Fornari, J. (2008). Multi-feature modeling of pulse clarity: Design, 

validation, and optimization. Paper presented at the ISMIR 2008 International Conference on Music 

Information Retrieval, Philadelphia, PA. DOI: https://doi.org/10.1007/978-3-540-78246-9_31

Lartillot, O., Toiviainen, P., & Eerola, T. (2008). A matlab toolbox for music information retrieval 

Data analysis, machine learning and applications (pp. 261–268). Springer. DOI: https://doi.

org/10.1007/978-3-540-78246-9_31

Madsen, C. K. (1998). Emotion versus tension in Haydn’s Symphony no. 104 as measured by the two-

dimensional continuous response digital interface. Journal of Research in Music Education, 46(4), 

546–554. DOI: https://doi.org/10.2307/3345350

Martens, P. A. (2011). The ambiguous tactus: Tempo, subdivision benefit, and three listener strategies. 

Music Perception: An Interdisciplinary Journal, 28(5), 433–448. DOI: https://doi.org/10.1525/

mp.2011.28.5.433

Matthews, T. E., Witek, M. A. G., Heggli, O. A., Penhune, V. B., & Vuust, P. (2019). The sensation of groove 

is affected by the interaction of rhythmic and harmonic complexity. PLoS One, 14(1), e0204539. DOI: 

https://doi.org/10.1371/journal.pone.0204539

McKinney, M. F., Moelants, D., Davies, M. E. P., & Klapuri, A. (2007). Evaluation of audio beat tracking 

and music tempo extraction algorithms. Journal of New Music Research, 36(1), 1–16. DOI: https://doi.

org/10.1080/09298210701653252

McNeill, W. H. (1997). Keeping together in time. Harvard University Press. DOI: https://doi.

org/10.4159/9780674040878

Meyer, L. B. (2008). Emotion and meaning in music. University of chicago Press.

Miguel, M. A., Sigman, M., & Fernandez Slezak, D. (2020). From beat tracking to beat expectation: 

Cognitive-based beat tracking for capturing pulse clarity through time. PloS one, 15(11), e0242207. 

DOI: https://doi.org/10.1371/journal.pone.0242207

Møller, C., Stupacher, J., Celma-Miralles, A., & Vuust, P. (2021). Beat perception in polyrhythms: Time is 

structured in binary units. Plos one, 16(8), e0252174. DOI: https://doi.org/10.1371/journal.pone.0252174

Nagel, F., Kopiez, R., Grewe, O., & Altenmuller, E. (2007). EMuJoy: software for continuous measurement 

of perceived emotions in music. Behavior Research Methods, 39(2), 283–290. DOI: https://doi.

org/10.3758/BF03193159

Overy, K, & Molnar-Szakacs, I. (2009). Being Together in Time: Musical Experience and the Mirror Neuron 

System. Music Perception: An Interdisciplinary Journal, 26(5), 489–504. DOI: https://doi.org/10.1525/

mp.2009.26.5.489

Parisi, E. A., Hajcak, G., Aneziris, E., & Nelson, B. D. (2017). Effects of anticipated emotional category and 

temporal predictability on the startle reflex. International Journal of Psychophysiology. DOI: https://

doi.org/10.1016/j.ijpsycho.2017.03.003

Raz, G., Winetraub, Y., Jacob, Y., Kinreich, S., Maron-Katz, A., Shaham, G., … Hendler, T. (2012). 

Portraying emotions at their unfolding: a multilayered approach for probing dynamics of neural 

networks. Neuroimage, 60(2), 1448–1461. DOI: https://doi.org/10.1016/j.neuroimage.2011.12.084

Saarikallio, S. H., Maksimainen, J. P., & Randall, W. M. (2019). Relaxed and connected: Insights into the 

emotional–motivational constituents of musical pleasure. Psychology of Music, 47(5), 644–662. DOI: 

https://doi.org/10.1177/0305735618778768

Sachs, M. E., Damasio, A., & Habibi, A. (2015). The pleasures of sad music: a systematic review. Frontiers 

in human neuroscience, 9, 404. DOI: https://doi.org/10.3389/fnhum.2015.00404

Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the 

brain: how musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 86–91. DOI: 

https://doi.org/10.1016/j.tics.2014.12.001

Sauvé, S. A., Sayed, A., Dean, R. T., & Pearce, M. T. (2018). Effects of pitch and timing expectancy on 

musical emotion. Psychomusicology: Music, Mind, and Brain, 28(1), 17. DOI: https://doi.org/10.1037/

pmu0000203

Scherer, K. R., & Zentner, M. R. (2001). Emotional effects of music: Production rules. In P. N. Juslin & J. A. 

Sloboda (Eds.), Music and emotion: Theory and research (pp. 361–392).

Schubert, E. (2004). Modeling Perceived Emotion With Continuous Musical Features. Music Perception: An 

Interdisciplinary Journal, 21(4), 561–585. DOI: https://doi.org/10.1525/mp.2004.21.4.561

Schubert, E. (2013). Reliability issues regarding the beginning, middle and end of continuous 

emotion ratings to music. Psychology of music, 41(3), 350–371. DOI: https://doi.

org/10.1177/0305735611430079

Schubert, E., & Dunsmuir, W. (1999). Regression modelling continuous data in music psychology. In S. W. 

Yi (Ed.), Music, Mind, and Science (pp. 298–352). Seoul, Korea: Seoul National University Press.

https://doi.org/10.1037/1196-1961.51.4.336
https://doi.org/10.1007/s004260100069
https://doi.org/10.1007/978-3-540-78246-9_31
https://doi.org/10.1007/978-3-540-78246-9_31
https://doi.org/10.1007/978-3-540-78246-9_31
https://doi.org/10.2307/3345350
https://doi.org/10.1525/mp.2011.28.5.433
https://doi.org/10.1525/mp.2011.28.5.433
https://doi.org/10.1371/journal.pone.0204539
https://doi.org/10.1080/09298210701653252
https://doi.org/10.1080/09298210701653252
https://doi.org/10.4159/9780674040878
https://doi.org/10.4159/9780674040878
https://doi.org/10.1371/journal.pone.0242207
https://doi.org/10.1371/journal.pone.0252174
https://doi.org/10.3758/BF03193159
https://doi.org/10.3758/BF03193159
https://doi.org/10.1525/mp.2009.26.5.489
https://doi.org/10.1525/mp.2009.26.5.489
https://doi.org/10.1016/j.ijpsycho.2017.03.003
https://doi.org/10.1016/j.ijpsycho.2017.03.003
https://doi.org/10.1016/j.neuroimage.2011.12.084
https://doi.org/10.1177/0305735618778768
https://doi.org/10.3389/fnhum.2015.00404
https://doi.org/10.1016/j.tics.2014.12.001
https://doi.org/10.1037/pmu0000203
https://doi.org/10.1037/pmu0000203
https://doi.org/10.1525/mp.2004.21.4.561
https://doi.org/10.1177/0305735611430079
https://doi.org/10.1177/0305735611430079


19Singer et al.  
Journal of Cognition  
DOI: 10.5334/joc.286

TO CITE THIS ARTICLE:
Singer, N., Jacoby, N., Hendler, 
T., & Granot, R. (2023). 
Feeling the Beat: Temporal 
Predictability is Associated 
with Ongoing Changes in 
Music-Induced Pleasantness. 
Journal of Cognition, 6(1): 
34, pp. 1–19. DOI: https://doi.
org/10.5334/joc.286

Submitted: 05 December 2022 
Accepted: 12 June 2023 
Published: 04 July 2023

COPYRIGHT:
© 2023 The Author(s). This 
is an open-access article 
distributed under the terms 
of the Creative Commons 
Attribution 4.0 International 
License (CC-BY 4.0), which 
permits unrestricted use, 
distribution, and reproduction 
in any medium, provided the 
original author and source 
are credited. See http://
creativecommons.org/
licenses/by/4.0/.

Journal of Cognition is a peer-
reviewed open access journal 
published by Ubiquity Press.

Shany, O., Singer, N., Gold, B. P., Jacoby, N., Tarrasch, R., Hendler, T., & Granot, R. (2019). Surprise-

related activation in the nucleus accumbens interacts with music-induced pleasantness. Social 

Cognitive and Affective Neuroscience, 14(4), 459–470. DOI: https://doi.org/10.1093/scan/nsz019

Singer, N., Jacobi, N., Lin, T., Raz, G., Shpigelman, L., Gilam, G., … Hendler, T. (2016). Common 

modulation of limbic network activation underlies the unfolding of musical emotions and its 

temporal attributes. NeuroImage. DOI: https://doi.org/10.1016/j.neuroimage.2016.07.002

Steinbeis, N., Koelsch, S., & Sloboda, J. A. (2006). The role of harmonic expectancy violations in musical 

emotions: Evidence from subjective, physiological, and neural responses. Journal of cognitive 

neuroscience, 18(8), 1380–1393. DOI: https://doi.org/10.1162/jocn.2006.18.8.1380

Stupacher, J., Hove, M. J., & Janata, P. (2016). Audio features underlying perceived groove and 

sensorimotor synchronization in music. Music Perception: An Interdisciplinary Journal, 33(5), 571–589.  

DOI: https://doi.org/10.1525/mp.2016.33.5.571

Stupacher, J., Wrede, M., & Vuust, P. (2022). A brief and efficient stimulus set to create the inverted 

U-shaped relationship between rhythmic complexity and the sensation of groove. Plos one, 17(5), 

e0266902. DOI: https://doi.org/10.1371/journal.pone.0266902

Tarr, B., Launay, J., & Dunbar, R. I. M. (2014). Music and social bonding: “self-other” merging 

and neurohormonal mechanisms. Frontiers in psychology, 5. DOI: https://doi.org/10.3389/

fpsyg.2014.01096

Timmers, R., Marolt, M., Camurri, A., & Volpe, G. (2006). Listeners’ emotional engagement with 

performances of a Scriabin étude: an explorative case study. Psychology of Music, 34(4), 481–510. 

DOI: https://doi.org/10.1177/0305735606067165

Trapp, S., Shenhav, A., Bitzer, S., & Bar, M. (2015). Human preferences are biased towards associative 

information. Cognition and Emotion, 29(6), 1054–1068. DOI: https://doi.org/10.1080/02699931.2014

.966064

Trost, W., Frühholz, S., Cochrane, T., Cojan, Y., & Vuilleumier, P. (2015). Temporal dynamics of musical 

emotions examined through intersubject synchrony of brain activity. Social cognitive and affective 

neuroscience, 10(12), 1705–1721. DOI: https://doi.org/10.1093/scan/nsv060

Trost, W., & Vuilleumier, P. (2013). Rhythmic entrainment as a mechanism for emotion induction by 

music: a neurophysiological perspective. The Emotional Power of Music: Multidisciplinary perspectives 

on musical arousal, expression, and social control, 213–225. DOI: https://doi.org/10.1093/acprof:o

so/9780199654888.003.0016

Vuust, P., & Kringelbach, M. L. (2010). The pleasure of making sense of music. Interdisciplinary science 

reviews, 35(2), 166–182. DOI: https://doi.org/10.1179/030801810X12723585301192

Vuust, P., & Witek, M. A. G. (2014). Rhythmic complexity and predictive coding: a novel approach to 

modeling rhythm and meter perception in music. Frontiers in psychology, 5, 1111. DOI: https://doi.

org/10.3389/fpsyg.2014.01111

Walker, E. L. (1972). Psychological complexity and preference: A hedgehog theory of behavior. Pleasure, 

reward, preference: Their nature, determinants, and role in behavior, 65–97. DOI: https://doi.

org/10.1016/B978-0-12-092550-6.50008-9

Witek, M. A. G., Clarke, E. F., Wallentin, M., Kringelbach, M. L., & Vuust, P. (2014). Syncopation, Body-

Movement and Pleasure in Groove Music. PloS one, 9(4), e94446. DOI: https://doi.org/10.1371/journal.

pone.0094446

Yeshurun, Y., Swanson, S., Simony, E., Chen, J., Lazaridi, C., Honey, C. J., & Hasson, U. (2017). Same story, 

different story: the neural representation of interpretive frameworks. Psychological science, 28(3), 

307–319. DOI: https://doi.org/10.1177/0956797616682029

Zentner, M., Grandjean, D., & Scherer, K. R. (2008). Emotions evoked by the sound of music: 

characterization, classification, and measurement. Emotion, 8(4), 494. DOI: https://doi.

org/10.1037/1528-3542.8.4.494

https://doi.org/10.5334/joc.286
https://doi.org/10.5334/joc.286
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/scan/nsz019
https://doi.org/10.1016/j.neuroimage.2016.07.002
https://doi.org/10.1162/jocn.2006.18.8.1380
https://doi.org/10.1525/mp.2016.33.5.571
https://doi.org/10.1371/journal.pone.0266902
https://doi.org/10.3389/fpsyg.2014.01096
https://doi.org/10.3389/fpsyg.2014.01096
https://doi.org/10.1177/0305735606067165
https://doi.org/10.1080/02699931.2014.966064
https://doi.org/10.1080/02699931.2014.966064
https://doi.org/10.1093/scan/nsv060
https://doi.org/10.1093/acprof:oso/9780199654888.003.0016
https://doi.org/10.1093/acprof:oso/9780199654888.003.0016
https://doi.org/10.1179/030801810X12723585301192
https://doi.org/10.3389/fpsyg.2014.01111
https://doi.org/10.3389/fpsyg.2014.01111
https://doi.org/10.1016/B978-0-12-092550-6.50008-9
https://doi.org/10.1016/B978-0-12-092550-6.50008-9
https://doi.org/10.1371/journal.pone.0094446
https://doi.org/10.1371/journal.pone.0094446
https://doi.org/10.1177/0956797616682029
https://doi.org/10.1037/1528-3542.8.4.494
https://doi.org/10.1037/1528-3542.8.4.494



