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ABSTRACT
As of yet, visual working memory (WM) training has failed to yield consistent 
cognitive benefits to performance in untrained tasks, despite large improvements 
in trained tasks. Investigating the mechanisms underlying training effects can help 
explain these inconsistencies. In this pre-registered, pre-test/post-test online training 
study, we examined how training affects the quantity and quality of representations 
in visual WM using continuous-reproduction tasks. N = 64 young healthy adults were 
randomly assigned to an experimental group or an active control group to complete 
four training sessions of practce in an orientation-reproduction or a visual search 
task, respectively. We observed that, in the trained task, only the quality, but not the 
quantity, of visual WM representations significantly increased in the experimental 
group relative to the control group. These improvements did not generalise to 
untrained stimuli or paradigms. Therefore, our findings suggest that training gains 
are not driven by enhanced capacity. Instead, gains in the quality of visual WM 
representations that are tied to specific stimuli and paradigms may reflect enhanced 
efficiency in using the existing visual WM capacity.
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Working memory (WM) is a cognitive system providing temporary access to representations 
that are needed for complex cognition in the present moment. WM has a limited capacity of 
around four chunks of information that can be simultaneously maintained at a time (Cowan, 
2001). The individual limit of WM capacity is strongly correlated with reasoning (Conway et 
al., 2003; Engle et al., 1999; Oberauer et al., 2008), executive functions (Miyake et al., 2000), 
and a range of other cognitive abilities (for a review, see Barrett et al., 2004). Furthermore, 
neurocognitive disorders such as ADHD (Martinussen et al., 2005) and age-related cognitive 
declines (Park et al., 2002) often go along with WM impairments.

The central role ascribed to WM in human cognition has motivated research into training 
interventions aiming to enhance WM capacity and, thereby, potentially also reasoning and 
other related cognitive abilities (Jaeggi et al., 2008; Klingberg, 2010; Klingberg et al., 2002). WM 
training typically involves repeated practice on one or more WM tasks over a short period of time, 
aiming to improve performance in trained and untrained cognitive tasks. The improvements in 
related yet untrained cognitive abilities are referred to as transfer effects. However, so far, WM 
training has failed to yield consistent and robust cognitive benefits (Jaeggi et al., 2012; Karbach 
& Verhaeghen, 2015; Melby-Lervåg et al., 2016; Morrison & Chein, 2011; Shipstead et al., 2012; 
von Bastian et al., 2022). Although previous research reported large and replicable gains in the 
trained WM tasks, transfer effects on untrained tasks remain inconsistent and elusive. A focus 
on the theoretical mechanisms underlying training gains can yield important insights for when 
and why transfer effects may occur (Redick, 2019; Smid et al., 2020; von Bastian & Oberauer, 
2014).

The capacity-efficiency model of cognitive training and transfer effects (von Bastian et al., 
2022; von Bastian & Oberauer, 2014) provides a framework for explaining these inconsistencies 
in past findings by proposing two, not mutually exclusive, pathways of how training may induce 
change. One pathway is through expanding cognitive capacity itself. Expanded capacity should 
generalise to any untrained tasks that draw on the same capacity limit. WM training-induced 
enhancements of capacity would be reflected by an increased quantity of representations 
that are simultaneously maintained in WM. These improvements would be expected to yield 
broad benefits across a range of related cognitive abilities. However, given the lack of broad 
and robust transfer effects, it is unlikely that training expands working memory capacity (von 
Bastian et al., 2022).

The other pathway is through enhancing efficiency in using the available capacity. Mechanisms 
of enhanced efficiency can be broadly grouped into compression and optimisation. Compression 
is to learn the regularities of information and making use of observed redundancies to reduce 
the overall cognitive load (Bavelier et al., 2012; Brady et al., 2009). Compression-based efficiency 
can be paradigm-specific through learning the necessary routines and effective strategies for 
completing an ongoing task. For example, performance can be boosted by strategies such as 
chunking (e.g., remembering the three digits 8, 1, and 9 as one number 819). In addition, better 
metacognitive skills, such as improved introspection about self-performance in an ongoing task 
(Carpenter et al., 2019) could facilitate applying effective task strategies to a different context 
(Belleville et al., 2014). Compression can also be stimuli-specific, for example through gaining 
a level of perceptual expertise that allows for more efficient coding of the stimuli (Curby & 
Gauthier, 2007) by increasing the precision of their representations in WM (Scolari et al., 2008). 
Finally, efficiency can also be enhanced by optimizing attention allocation to different stimuli 
or task sets (De Simoni & von Bastian, 2018; Zerr et al., 2021). In contrast to the broad benefits 
that are expected to result from expanding capacity, enhanced efficiency is expected to be 
useful only in contexts where these efficiency mechanisms can be applied as well.

There is tentative evidence for training-induced enhancements in efficiency. For example, De 
Simoni and von Bastian (2018) found that the majority of participants reported the acquisition 
of paradigm-specific strategies during training, including cognitive load-reducing strategies 
such as remembering only one of two items of a pair in an associative memory task. De Simoni 
and von Bastian also found that participants improved selectively in remembering which 
items they have encountered (i.e., item recognition) but not their current context (i.e., item 
recollection; e.g., the item’s location on the screen). De Simoni and von Bastian speculated 
that these improvements in recognition were possibly due to training-induced acquisition of 
stimuli-specific expertise by which the precision of the item representations in memory was 
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enhanced (see also Olson et al., 2005), thereby increasing success of retrieval. In the present 
study, we focus on investigating to what extent the acquisition of paradigm-specific and 
stimuli-specific expertise transfers to other contexts. Paradigm-specific expertise may lead to 
better performance in tasks with the same surface structure but different stimuli (e.g., recall 
the orientation of triangles or the shape of rings). Stimuli-specific expertise may lead to better 
performance in tasks using the same stimuli but different paradigms (e.g., the orientation of 
triangles in a recall or recognition task).

To distinguish training effects through capacity from those through efficiency, WM models that 
differentiate between the quantity and the quality of representations maintained in WM are 
useful (Alvarez & Cavanagh, 2004; Awh et al., 2007; Fougnie et al., 2010; Olson & Jiang, 2002; 
Zhang & Luck, 2008). This distinction between the quantity (the number of remembered items) 
and quality (the precision of these items) has been supported by neural evidence demonstrating 
a dissociative role of different parietal-occipital subregions. Specifically, the inferior intraparietal 
sulcus (IPS) has been found to track the number of items at different locations, whereas the 
superior IPS and lateral occipital complex encoded the precision of the attended items (Todd 
& Marois, 2004; Xu & Chun, 2006). Furthermore, WM quantity, but not quality, shows a strong 
connection with fluid intelligence (Fukuda et al., 2010).

To date, only few existing studies have investigated training-induced changes specifically in the 
quantity and quality of visual WM representations (Buschkuehl et al., 2017; Moriya, 2019; Ovalle 
Fresa & Rothen, 2019; Wang & Qian, 2021), and most of the existing studies offer only crude 
estimates of changes in quantity and quality of visual WM representations. For example, Moriya 
(2019) distinguished between the quantity and quality of visual WM representations using two 
versions of change-detection tasks, in which participants were asked to compare two memory 
arrays and detect whether they are identical or not. Moriya’s tasks varied in the extent to which 
the deviating stimulus differed from the memoranda: 45° in the quantity version vs. 5° in the 
quality versions of the task. Moriya found significant effects of training for both the quantity and 
the quality versions of the change-detection tasks, but with asymmetric patterns of transfer: 
whereas training of the quantity task led to strong transfer to the quality version, training of the 
quality task yielded only weak transfer to the quantity version. However, performance changes 
in quantity and quality of visual WM were estimated by the same parameter (i.e., Pashler’s k, 
1988) and, thus, conclusion about the two types of visual WM representations could only be 
drawn indirectly. Similarly, Wang and Qian (2021) reported training effects of the same change-
detection paradigm on the quantity of visual WM representations as well as transfer effects on 
the quality of visual WM representations, measured by a trained orientation-change detection 
task and an untrained orientation continuous-reproduction task, respectively. However, Wang 
and Qian measured the quality of visual WM representations using the overall recall error which 
mixes quantity and quality of visual WM representations.

Buschkuehl et al. (2017) trained participants in one of two variants of a colour-change 
detection task. Different to the Moriya (2019) and Wang and Qian (2021), Buschkuehl et al. 
(2017) used transfer tasks that allowed for estimating the precision of WM representations. 
Despite substantial training improvements in change-detection performance, the authors 
found no transfer of these improvements to the precision of representations of colour and 
spatial features. However, like the other existing studies, Buschkuehl et al. did not use training 
tasks that allowed for distinguishing changes in the quantity from changes in the quality.

Continuous-reproduction tasks, in which participants were asked to memorise and later 
reproduce features of stimuli on continuous dimensions (e.g., orientation or shape), probe high-
resolution contents of visual WM directly (Gorgoraptis et al., 2011; Ma et al., 2014; Wilken & Ma, 
2004; Zhang & Luck, 2008). The dependent variable, that is, the difference between the original 
and the reproduced feature can then be used to estimate the quantity (or capacity) and quality 
(or precision) of visual WM representations using computational models such as the standard 
mixture model (SMM; Zhang & Luck, 2008). The SMM assumes a mixture of two components: a 
uniform distribution representing random guesses, and the standard deviation of a von Mises 
distribution (a circular normal distribution) around the target, representing that remembered 
information is remembered with a certain degree of precision. For example, Ovalle Fresa 
and Rothen (2019) used a continuous colour-reproduction task to train participants in visual 
long-term memory and applied the SMM. After six training sessions over the course of three 
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days, participants’ precision in both visual long-term memory and visual short-term memory 
improved significantly. However, Ovalle Fresa and Rothen focused on long-term memory 
training, and did not assess transfer to substantially different stimuli and paradigms. Therefore, 
taken together, it remains unclear whether WM training effects are due to changes in quantity 
or quality of visual WM representations, and to what extent these changes are specific to the 
trained paradigm or stimuli. The present study fills this gap.

PRESENT STUDY
This pre-registered study investigated the mechanisms of training gains by distinguishing 
between quantity and quality of representations in visual WM. We administered a continuous 
orientation-reproduction training task for four training sessions. To examine the capacity-
efficiency model and its proposed mechanisms of training and transfer effects, we used the 
SMM (Zhang & Luck, 2008) to estimate changes in the quantity (i.e., capacity) and the quality 
(i.e., precision) of visual WM representations from pre-test to post-test and during training. 
Furthermore, we assessed transfer to two untrained tasks (shape reproduction and orientation-
change detection). All effects in the experimental training group were evaluated relative to an 
active control group practising visual search, which has been shown to demand only minimal 
visual WM (Wolfe & Horowitz, 1998; Woodman et al., 2001). Including an active control group 
controls for placebo effects and expectancy effects (Foroughi et al., 2016; Simons et al., 2016; 
von Bastian & Oberauer, 2014).

Our pre-registered hypotheses1 (https://osf.io/mk8fa) are summarised in Table 1 and stated 
as follows:

(1)	 If visual WM training-induced performance gains reflect increased visual WM 
capacity, the experimental group will show larger gains in the quantity of visual WM 
representations in the trained task (orientation reproduction) and in the untrained, 
structurally similar task (shape reproduction) as well as improved performance in the 
untrained structurally different task (orientation-change detection) above and beyond 
any improvements observed in the active control group.

(2)	 If visual WM training-induced performance gains reflect acquisition of paradigm-
specific expertise, the experimental group will show larger gains than the active control 
group in the quality of visual WM representations in the trained task (orientation 
reproduction) and in the untrained, structurally similar task (shape reproduction), but 
no performance gains in the untrained, structurally different task (orientation-change 
detection).

If, in addition to these improvements in quality, we would observe training-specific 
gains in the quantity of visual WM representations in both reproduction tasks, it would 
suggest that paradigm-specific expertise (e.g., strategies) hindered transfer to the 
structurally different task. If those training-induced quantity gains were observed in 
just one of the reproduction tasks, it would suggest that training-induced performance 
gains were primarily driven by gains in paradigm-specific expertise.

(3)	If visual WM training-induced performance gains reflect acquisition of stimuli-
specific expertise, the experimental group will show larger gains than the active 
control group in the quality of visual WM representations in the trained task 

1	 Hypotheses 2 and 3 were slightly reworded (while keeping the identical meaning) to facilitate understanding. 
Furthermore, paradigm-specific expertise was labelled task-specific expertise in the pre-registration.

Table 1 Hypotheses.

Note: All performance 
changes are relative to 
changes observed in 
the active control group. 
Hyphens (–) refer to possible 
concurrent improvements. 
ORT: orientation-reproduction 
task; SRT: shape-reproduction 
task; ODT: orientation-change 
detection task.

MECHANISM TRAINED TASK (ORT) UNTRAINED STIMULI
(SRT)

UNTRAINED 
PARADIGM (ODT)

QUANTITY QUALITY QUANTITY QUALITY PERFORMANCE

Capacity Increase – Increase – Increase

Efficiency: Paradigm-
specific expertise

– Increase – Increase No change

Efficiency: Stimulus-
specific expertise

– Increase – No change Increase

https://osf.io/mk8fa
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(orientation reproduction) only, without any improvements in the quality of visual WM 
representations in the untrained, structurally similar task (shape reproduction). If this 
increased quality of visual WM representations is observed in the trained task but not 
in the shape-reproduction task, alongside increased visual WM performance in the 
orientation-change detection task, it would suggest that stimuli-specific expertise 
transferred across paradigms.

Importantly, these hypotheses were not mutually exclusive as increases in visual WM 
capacity and acquisition of stimuli-specific and task-specific expertise may co-occur 
(von Bastian et al., 2023).

METHOD
This online training study used a pre-test-post-test, randomised-controlled design. Participants 
who had completed the pre-test were randomly assigned to the experimental group or the 
active control group where they practised an orientation-reproduction task or a visual search 
task, respectively, for four training sessions. Most participants (87% of the final sample included 
in the analysis) completed the four training sessions over four consecutive days. Participants 
who missed a day were retained until they completed their sessions or withdrew. To ensure 
that participants could maximally complete one training session per day, they received a 
website link for the next day’s session only after they had completed the previous session. After 
the training sessions, participants completed the post-test. The pre-test and post-test were 
designed to assess training effects on performance in the orientation-reproduction task and 
visual search task, as well as transfer effects to a shape-reproduction task and an orientation-
change detection task.

This experiment and its hypotheses were pre-registered on the Open Science Framework 
(https://osf.io/mk8fa). Pilot data from six participants were collected before the pre-registration. 
The pilot study served to test the feasibility of the study and the compatibility between the 
recruitment platform Prolific (https://www.prolific.co) and the experiment software Tatool Web 
(www.tatool-web.com, von Bastian et al., 2013). As the pilot study was successful with no 
further changes to the study materials, the pilot data were included in the current study. The 
study was approved by the University of Sheffield Research Ethics Committee.

PARTICIPANTS

The target sample size was 100 participants at post-test. An a priori power analysis assuming 
a small to medium within-between interaction effect size (Cohen’s f = 0.15) and power of 
1-ß = 0.80 suggested a sample size of N = 90, which we increased by 10 participants to account 
for possible dropouts. We recruited 108 healthy participants, aged from 18 to 35, to take part in 
a study on “Cognitive training” that was advertised on Prolific. We pre-screened participants by 
customising the allow list according to our pre-registered inclusion and exclusion criteria. After 
signing up for the study, participants gave online consent to taking part in the study by clicking 
a button. All participants who met the inclusion criteria and completed the study received 
£17.40. Before the start of recruitment, a list of group assignments was randomly generated on 
GraphPad (https://www.graphpad.com/quickcalcs/randomize2/). Following this pre-generated 
list, participants who completed the pre-test were randomly assigned to either an experimental 
group or an active control group. Participants were blind to the group condition.

The flow chart in Figure 1 illustrates participant recruitment, attrition, and retention. Eight 
participants (four from each group) dropped out, without giving a specific reason, after 
completing the pre-test. We replaced these eight participants who dropped out, so that we 
reached the target sample size of N = 100 participants who completed the post-test. After 
concluding data collection, data from 36 participants were excluded from analysis. Data 
from two participants in the experimental group were partially missing due to technical 
issues and, therefore, these data were excluded. In addition, although we instructed them 
otherwise, we noticed that some participants completed some sessions (pre-test, post-test 
or training) multiple times. We excluded all participants (11 per training group) for whom the 
number of additional trials exceeded 10% for any task (12 trials per task). Furthermore, seven 
participants from the experimental group and five from the active control group were excluded 
according to pre-registered criteria using reaction times (RT) and omission errors designed to 

https://osf.io/mk8fa
https://www.prolific.co
https://www.tatool-web.com
https://www.graphpad.com/quickcalcs/randomize2/
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identify participants who did not follow instructions in an online experiment setting.2 Of the 
remaining 64 participants included in the analysis, 30 were in the experimental group and 34 
were in the control group. Sensitivity analyses which included all these 12 participants who 
were excluded due to pre-registered criteria showed similar patterns of results and, thus, led 
to the same conclusions. Table 2 lists the participants’ demographics. Overall, the groups 
were comparable regarding their gender and age, but the evidence for the absence of group 
differences was ambiguous.

MATERIALS

Figure 2 illustrates the training and transfer tasks. In pre-test and post-test, each experimental 
task comprised 20 practice trials and 120 testing trials with a set size of the stimulus array of 4 
items in the visual WM tasks, and 16 items in the visual search task. The order of representing 
different experimental tasks was random. Pre-test and post-test took approximately 40 min 
each. Participants underwent four training sessions. Each training session consisted of 360 

2	 Participants were excluded with any of the following three data patterns: RT of less than 1500 ms in 1/3 of 
the trials in the orientation-reproduction task and in the shape-reproduction task; RT of less than 300 ms in 1/3 
of the trials in the orientation-change detection task and in the visual search task; omission errors in 1/3 of the 
trials in the visual search task. 

Figure 1 Participant Flow 
Chart.

Table 2 Participant 
Demographics as a Function 
of Groups.

Note: Gender differences were 
tested with a chi-squared 
test and age differences with 
Yuen’s t-test.

MEASURE GROUP COMPARISON

EXPERIMENTAL ACTIVE 
CONTROL

STATISTICAL 
VALUE

p BF10 ± ERROR %

Group size: n 30 34

Gender:  
female/male/non-binary

8/22/0 17/17/0 2.73 .098 3.40 ± 0.00

Age: M (SD) 22.73 (3.92) 21.94 (2.52) 0.33 .745 1/2.62 ± 0.00
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trials, with 120 trials per set size (2, 4, and 6 in the orientation-reproduction task, and 8, 16, 
and 24 in the visual search task). Set sizes were intermixed within each session. Each training 
session lasted approximately 30 min.

Orientation-Reproduction Task

Each trial began with a fixation cross displayed centrally for 1000 ms. Next, an array of randomly 
orientated (0–360°) isosceles triangles was arranged in a circular manner and appeared on the 
screen for 200 ms, followed by a 1000 ms blank screen. Then, one of the displayed triangles was 
randomly selected as the target stimulus and presented in a random orientation. Participants 
were instructed to reproduce the original orientation by rotating the triangle with the computer 
mouse and clicking the left mouse-button to record their response.

Figure 2 Training and Transfer 
Tasks.

Note: Panel A: Orientation-
reproduction task at set size 4. 
Panel B: Shape-reproduction 
task at set size 4. Panel C: 
Orientation-change detection 
task at set size 4 in the change 
condition. Panel D: Visual 
search task at set size 8 in the 
change condition.
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We measured recall errors, that is, the difference in degrees between the reproduced 
orientation and the target orientation, ranging from -π to π, to estimate capacity and efficiency 
parameters by fitting the SMM (Zhang & Luck, 2008) using the MemToolbox (Suchow et al., 
2013).3 The SMM consists of two components, a von Mise distribution approximating a circular 
normal distribution, and a uniform distribution:

			       
( ) ( )

0

,
( )

1 1
( ) 1

2 2
cos xP x g e g

I
κ

π κ π
⋅= − + � (1)

where x is the response, g is the proportion of random guess responses, κ is the concentration 
parameter of the von Mises distribution, and I0(κ) is the modified Bessel function of order 0. The 
SMM assumes that the target can either be recalled with a certain precision or not at all, leading 
to random guesses. Therefore, the probability of remembering the target (Pm) is calculated as

				             1 .Pm g= − � (2)

The quantity of representations in visual WM, that is, capacity K is computed as the product of 
the probability of remembering the target and the set size N:

				           .K Pm N= × � (3)

Finally, the quality of representations in WM, that is, precision, is computed as the inverse 
of the standard deviation (SD–1) of the von Mises distribution, which was converted from the 
concentration parameter κ.

Shape-Reproduction Task

Following a central fixation cross for 1000 ms, an array of black ring-shaped objects with 
varying proportions filled in white were distributed on the screen in a circular manner for 
200 ms. After a 1000 ms blank screen, one of the displayed objects was randomly selected 
as the target stimulus. The target stimulus was presented in black colour with a white bar. 
Participants were instructed to reproduce the original proportion of the white segment by 
rotating and left clicking the mouse. As for the orientation-reproduction task, capacity and 
precision were estimated based on the recall errors using the SMM.

Orientation-Change Detection Task

After a fixation cross presented centrally for 1000 ms, an array of randomly orientated (0–360°) 
isosceles triangles appeared on the screen for 200 ms, followed by a 1000 ms blank screen. 
Immediately afterwards, a second array was presented until response. In half of the trials, the 
two arrays were identical. In the other half of the trials, one of the triangles in the second array 
was randomly selected and presented in a randomly selected, different orientation. Participants 
were instructed to press the ‘C’ or ‘M’ key of the keyboard to respond to a detection of change 
or match respectively. To measure visual WM capacity, we computed Pashler’s k (Pashler, 1988) 
for whole-display tasks using Equation 1 (Pashler, 1988; Rouder et al., 2011):

				      
,

1
H FA

k N
FA

−
= ×

−
� (4)

where H and FA are the hit and false alarm rates and N is the display set size.

Visual Search Task

On each trial, participants first saw a fixation cross for 1000 ms. Then, an array of isosceles 
triangles with two or three semi-circular gaps, pointing to random directions, was presented. In 
half of the trials, all triangles had three gaps. In the other half of the trials, one of the triangles 
had only two gaps. Participants were instructed to press the ‘M’ key of the keyboard within 5 s if 
all triangles had three gaps, or to press the ‘C’ key if one of the triangles only had two gaps. The 

3	 As noted in the pre-registration, we also explored fitting other existing visual WM models, such as, swap 
model (Bays, 2016), signal discrimination model (Oberauer, 2021), and target confusability competition model 
(Schurgin et al., 2020), to the data and conducted a series of systematic model comparisons. Overall, the SMM 
turned out to be the best fitting model for pre-test to post-test changes and, therefore, is reported here. The 
model comparisons will be reported elsewhere as this would exceed the scope of the present study.



9Jiang et al.  
Journal of Cognition  
DOI: 10.5334/joc.306

overall accuracy which is calculated by the proportion of correct responses excluding omission 
errors (no response given after 5000 ms), as well as the mean reaction time (RT) for correct 
responses were measured and used for analysis.

RESULTS
In addition to frequentist significance tests (including t-tests and analyses of variance, 
ANOVAs), Bayes factors (BFs) using the default priors from the BayesFactor package (Cauchy 
distribution with r = 0.5 for ANOVAs, r = 0.707 for t-tests; Poisson distribution for chi-square 
tests with a = 1) were calculated to evaluate the strength of evidence for the absence or 
presence of effects (Ly et al., 2016; Rouder et al., 2012). Table 3 lists the categorical labels for 
describing the strength of evidence adapted from Wetzels and Wagenmakers (2012). As most 
of the data violated the assumption of normality, we ran robust Yuen t-tests (Yuen, 1974) 
and report Algina-Keselman-Penfield robust effect sizes, δt (Algina et al., 2005). We calculated 
and report both general effect sizes, 2

Gη  and partial effect sizes, 2
pη , for ANOVAs to facilitate 

further use in power analyses and meta-analyses (Lakens, 2013). All statistical analyses were 
performed with R Statistical software (v4.1.3; R Core Team, 2022). The R packages rstatix 
(Kassambara, 2021) and ez (Lawrence, 2016) were used for frequentist significance tests. 
BayesFactor (Morey & Rouder, 2021) and WRS2 (Mair & Wilcox, 2020) were used for Bayesian 
and robust statistical tests.

TRAINING PERFORMANCE

Table 4 lists the descriptive statistics for the experimental group and the active control group 
in the orientation reproduction and visual search tasks during training. To analyse performance 
changes during training, we ran a repeated-measures ANOVA with the within-subjects factors 
Time (training session 1 to 4) and Set Size (2, 4, 6).

Table 3 Categorical Labels 
for Describing the Strength of 
Bayesian Evidence.

Note: Adapted from Wetzels 
and Wagenmakers (2012). 
H10 = evidence in favour of the 
alternative hypothesis;  
H01 = evidence in favour of the 
null hypothesis.

BAYES FACTORS CATEGORICAL LABELS

H10 H01

>100 <1/100 Decisive

30 to 100 1/100 to 1/30 Very strong

10 to 30 1/30 to 1/10 Strong

3 to 10 1/10 to 1/3 Substantial

1 to 3 1/3 to 1 Ambiguous

1 1 No evidence

Table 4 Descriptive Statistics of 
Performance During Training.

Note: Capacity ranges from 
0 to the set size; precision 
ranges from 0 to ∞. RT = 
mean reaction time.

MEASURE TRAINING SESSION

1 2 3 4

M SD M SD M SD M SD

Experimental Group (n = 30)

Capacity (K)

Set Size 2 1.88 0.15 1.88 0.19 1.89 0.12 1.89 0.16

Set Size 4 2.76 0.71 2.92 0.74 2.93 0.73 2.87 0.79

Set Size 6 2.97 1.29 3.15 1.30 3.28 1.29 3.25 1.33

Precision (SD–1)

Set Size 2 0.08 0.02 0.09 0.02 0.09 0.02 0.09 0.02

Set Size 4 0.06 0.02 0.07 0.02 0.07 0.02 0.07 0.02

Set Size 6 0.06 0.01 0.06 0.02 0.07 0.02 0.07 0.02

(Contd.)
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Orientation Reproduction

Figure 3 illustrates estimates of capacity and precision in the experimental group for each 
training session at set size levels 2, 4, and 6. There was a significant effect of Set Size on both 
capacity, F(2,58) = 39.28, p < .001, 2

G .49η = , 2
p .58η = , BF10 > 100 ± 0.66%, and precision, F(2, 

58) = 46.12, p = < .001,  2
G .37η = , 2

p .61η = , BF10 >100 ± 0.67%. We observed a significant effect 
of Time on precision, F(3,87) = 6.56, p < .001, 2

G .06η = , 2
p .18η = , BF10 = 3.03 ± 0.59%, but not 

on capacity, F(3,87) = 2.17, p = .097, 2
G .01η = , 2

p .07η = , BF10 = 1/34.51 ± 0.83%. Furthermore, 
there was no interaction between Time and Set Size for capacity, F(6, 174) = 1.94, p = .078, 

2
G .01η = , 2

p .06η = , BF10 = 1/60.01 ± 2.56%, or precision, F(6, 174) = 0.97, p = .444, 2
G .01η = , 

2
p .03η = , BF10 = 1/41.37 ± 1.73%. Taken together, we observed an effect of Set Size on capacity 

and precision that replicates the set size effect typically observed in visual WM, that is, the 
bigger the set size, the lower the probability of retrieving an item and its precision. In addition, 
there was only substantial evidence for significant performance improvement in precision 
during training.

Visual Search

During visual search training, there was a significant effect of Set Size on both accuracy, F(2,66) 
= 154.73, p < .001, 2

G .68η = , 2
p .82η = , BF10 > 100 ± 0.81% and mean RTs, F(2,66) = 330.18, 

p < .001, 2
G .82η = , 2

p .91η = , BF10 > 100 ± 6.87%. We also observed an effect of Time on accuracy, 
F(3,99) = 8.50, p < .001, 2

G .08η = , 2
p .20η = , with, however, ambiguous Bayesian evidence, BF10 

= 1/1.36 ± 0.85%, and mean RTs, F(3,99) = 7.54, p < .001, 2
G .08η = , 2

p .19η = , BF10 = 1/6.99 ± 
0.49%. Furthermore, there was no interaction between Time and Set Size for accuracy, F(6,198) 
= 1.32, p = .249, 2

G .01η = , 2
p .04η = , BF10 = 1/61.71 ± 1.73%, or mean RTs, F(6,198) = 0.48, p = .823, 

2
G .01η < , 2

p .01η = , BF10 = 1/143.26 ± 2.27%. Taken together, we observed the set size effect in 
visual search with ambiguous evidence for performance improvements during training.

MEASURE TRAINING SESSION

1 2 3 4

M SD M SD M SD M SD

Active Control Group (n = 34)

Accuracy

Set Size 8 0.91 0.07 0.92 0.09 0.94 0.05 0.93 0.05

Set Size 16 0.84 0.07 0.84 0.10 0.87 0.08 0.86 0.08

Set Size 24 0.73 0.09 0.73 0.09 0.77 0.09 0.77 0.09

RT (ms)

Set Size 8 2056 326 1998 305 1890 282 1918 321

Set Size 16 2871 422 2806 401 2712 453 2707 428

Set Size 24 3257 468 3192 452 3101 499 3066 447

Figure 3 Estimates of 
Capacity and Precision in the 
Experimental Group Over Four 
Training Sessions.

Note: Panel A: Estimates of 
capacity. Panel B: Estimates 
of precision. Data points 
with reduced opacity show 
individual estimates, solid 
data points represent group 
means. S1 to S4 = training 
session 1 to 4.
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COGNITIVE PERFORMANCE CHANGES FROM PRE-TEST TO POST-TEST

Table 5 lists the descriptive statistics for the training and transfer tasks administered at pre-
test and post-test. First, we tested whether the experimental group and the active control 
group were comparable at baseline based on their pre-test performance using two-tailed 
t-tests (Table 6). Next, we assessed training and transfer effects by running two-way mixed 
ANOVAs separately for each dependent variable, with the within-subjects factor Time (pre-test, 
post-test), the between-subjects factor Group (experimental group, active control group), and 
their interaction. Table 7 provides an overview of the results of these analyses. For testing our 
hypotheses, we were primarily interested in the Time x Group interaction.

Baseline Comparisons

There were no significant group differences, though the evidence was ambiguous for capacity in 
the orientation-reproduction task and precision in the shape-reproduction task, with participants 
in the active control group showing numerically slightly lower capacity in the former task and 
lower precision in the latter task at pre-test than participants in the experimental group.

Table 5 Descriptive Statistics 
of Cognitive Performance at 
Pre-Test and Post-Test.

Note: Pashler’s k can range 
from 0 to set size. RT = mean 
reaction time.

VARIABLE GROUP

EXPERIMENTAL ACTIVE CONTROL

PRE-TEST POST-TEST PRE-TEST POST-TEST

M SD M SD M SD M SD

Training tasks

Orientation reproduction

Capacity (K) 2.57 0.77 2.89 0.73 2.35 0.91 2.67 0.69

Precision (SD–1) 0.06 0.01 0.07 0.02 0.06 0.02 0.05 0.01

Visual search

Accuracy 0.76 0.14 0.81 0.13 0.78 0.09 0.86 0.10

RT (ms) 2973 849 2985 633 3101 475 2636 509

Transfer tasks

Shape reproduction

Capacity (K) 2.26 0.76 2.10 0.84 2.22 0.68 2.30 0.71

Precision (SD–1) 0.05 0.02 0.06 0.03 0.04 0.02 0.04 0.03

Orientation-Change detection

Capacity (Pashler’s k) 2.09 1.12 2.37 0.70 2.05 0.82 2.01 0.72

Table 6 Statistical Group 
Comparisons at Baseline.

VARIABLE df t P 𝝳t BF10 ± ERROR %

Training tasks

Orientation reproduction

Capacity (K) 36.72 0.51 .610 –0.13 1/2.42 ± 0.01

Precision (SD–1) 37.72 0.71 .484 –0.18 1/3.91 ± 0.01

Visual search

Accuracy 29.33 0.30 .766 0.08 1/2.93 ± 0.01

RT (ms) 25.34 0.01 .993 0.00 1/3.06 ± 0.01

Transfer tasks

Shape reproduction

Capacity (K) 33.55 0.38 .707 –0.10 1/3.84 ± 0.01

Precision (SD–1) 38.00 1.11 .274 –0.28 1/2.21 ± 0.01

Orientation-Change detection

Capacity (K) 37.49 0.54 .595 –0.14 1/3.87 ± 0.01
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Training Effects

Orientation Reproduction
Figure 4 illustrates the pre-test to post-test changes in capacity and precision in orientation 
reproduction. The Time × Group interaction was not significant for capacity, F(1, 62) < 0.01, 
p = .974, 2

G .01η < , 2
p .01η < , with the absence of the interaction being supported by substantial 

evidence, BF10 = 1/4.25 ± 3.26%. These results suggest that training-induced gains cannot be 
explained by an increase in quantity of representations activated in visual WM.

For precision, there was a significant Time x Group interaction effect, F(1, 62) = 25.63, p < 
.001, 2

G .07η = , 2
p .29η = , which was supported by decisive evidence, BF10 > 100 ± 4.11%. In the 

experimental group, precision significantly increased from pre-test (M = .06, SD = .01) to post-
test (M = .07, SD = .02), t(17) = –4.43, p < .001, δt = –1.16, which was supported by decisive 
evidence, BF10 > 100 ± 0.00%. In contrast, in the active control group, precision decreased 
from pre-test (M = .06, SD = .02) to post-test (M = .05, SD = .01), t(21) = 1.99, p = .059,  

Table 7 Analysis of Variance 
Effects of Training on Cognitive 
Performance.

Note: BF10 = Bayes factor 
in favour of the alternative 
hypothesis. Degrees of 
freedom df1 and df2 were 1, 62 
respectively.

VARIABLE/EFFECT F P 2
Gη

2
pη BF10 ± ERROR %

Orientation reproduction

Capacity

Time 18.12 <.001 .04 .23 > 100 ± 2.04

Group 1.53 .221 .02 .02 1/1.58 ± 1.89

Time × Group 0.00 .974 <.01 <.01 1/4.25 ± 3.26

Precision

Time 3.05 .086 .01 .05 1/2.78 ± 2.21

Group 5.68 .020 .07 .08 2.87 ± 1.60

Time × Group 25.63 <.001 .07 .29 > 100 ± 4.11

Visual search

Accuracy

Time 24.79 <.001 .08 .29 > 100 ± 0.84

Group 2.55 .116 .03 .04 1/1.23 ± 2.06

Time × Group 1.55 .218 .01 .02 1/2.03 ± 4.33

Reaction time

Time 8.22 .006 .03 .12 6.61 ± 0.99

Group 0.67 .417 .01 .01 1/2.80 ± 2.08

Time × Group 9.09 .004 .04 .13 10.96 ± 2.40

Shape reproduction

Capacity

Time 0.15 .704 <.01 <.01 1/5.18 ± 1.28

Group 0.28 .596 <.01 <.01 1/3.31 ± 0.98

Time × Group 1.36 .249 .01 .02 1/2.23 ± 3.69

Precision

Time 1.12 .293 .01 .02 1/3.47 ± 1.05

Group 4.72 .034 .05 .07 1.63 ± 0.80

Time × Group 1.72 .195 .01 .03 1/1.90 ± 2.33

Orientation-Change detection

Capacity

Time 1.83 0.181 0.01 0.03 1/2.79 ± 1.00

Group 1.06 0.306 0.01 0.02 1/1.98 ± 0.55

Time × Group 3.12 0.082 0.01 0.05 1/1.05 ± 2.56



δt = .28, though the evidence for this decrease was highly ambiguous, BF10 = 1.38 ± 0.02%. 
Finally, precision was significantly higher in the experimental group than in the active control 
group at post-test, t(28) = 4.36, p < .001, δt = .71, supported by decisive evidence, BF10 > 100 
± 0.00%. Taken together, we found considerable training-induced gains in visual WM precision 
in the trained orientation-reproduction task, with large effect sizes for changes from pre-test 
to post test and for the comparison to the active control group at the post-test. To further 
explore the differences in changes between the experimental group and the active control 
group in the orientation-reproduction task (not pre-registered), we examined the distributions 
of participants’ responses at pre-test and post-test. As Figure 5 illustrates, we observed a 
pattern of responses suggesting that, at pre-test, individuals in both groups tended to respond 
with familiar or canonical orientations, with peaks at 45°, 135°, 225°, and 315°, χ2(7, N = 7680) 
= 6.30, p = .505, BF10 < 1/100 ± 0.00%. At post-test, however, the distribution of responses 
differed between the groups, χ2(7, N = 7680) = 44.58, p < .001, with decisive Bayesian evidence, 
BF10 > 100 ± 0.00%. Specifically, the experimental group showed a larger number of peaks 
in their response distribution, leading to a flattened density function and suggesting that, 
after orientation-reproduction training, participants’ responses included a larger range of finer 
differences between orientations. In contrast, the active control showed a similar pattern at 
pre-test and post-test. These observations may indicate that the experimental group was able 
to distinguish finer differences in orientations after training.

Visual Search
For accuracy, the Time × Group interaction was not significant, F(1, 62) = 1.55, p = .218, 2

G .01η < , 
2
p .02η = , with the active control group showing a numerically higher accuracy from pre-test to 

post-test than the experimental group. However, the evidence was ambiguous, BF10 = 1/2.03 
± 4.33%. For mean RTs, there was a significant Time x Group interaction effect, F(1, 62) = 9.09, 

Figure 4 Pre-Post Changes in 
the Visual WM Training Task on 
Capacity and Precision.

Note: Panel A: Changes in 
capacity. Panel B: Changes 
in precision. Left: Small 
transparent data points show 
the mean values for each 
individual. Big solid data points 
show the mean values at 
group level, with the error bars 
representing standard errors. 
Right: Density distributions of 
the data for both groups.

Figure 5 Density of Pre-Post 
Responses Changes Differs 
Between Groups.

Note: Purple histograms with 
dashed lines show the density 
of each response at pre-test, 
and the pink histograms 
with solid lines show the 
density of each response at 
post-test. Number of bins: 60. 
Experimental group: n = 30; 
active control group: n = 34; 
total responses per participant 
was 120 each at pre-test and 
post-test.



14Jiang et al.  
Journal of Cognition  
DOI: 10.5334/joc.306

p = .004, 2
G .04η = , 2

p .13η = , which was supported by strong evidence, BF10 = 10.95 ± 2.40%. 
Taken together, participants in the active control group showed larger increases in visual search 
speed after visual search training than the experimental group, without sacrificing accuracy.

Transfer Effects

Shape Reproduction
We detected no significant transfer to a task using the same paradigm as the training task 
but different stimuli. The Time × Group interaction was not significant, F(1,62) = 1.36, p = .249,  
2
G .01η = , 2

p .02η = , with, however, capacity decreasing in the experimental group and increasing 
in the active control group from pre-test to post-test. The evidence for the absence of this 
interaction was ambiguous, BF10 = 1/2.23 ± 3.69%. For precision, the Time × Group interaction 
was also non-significant, F(1,62) = 1.72, p = .195, 2

G .01η = , 2
p .03η = , with precision, numerically, 

slightly improving in the experimental group and remaining stable in the active control group. 
The evidence supporting the absence of the interaction was again ambiguous, BF10 = 1/1.90 
± 2.33%.

Orientation-Change Detection
Similarly, capacity in a different paradigm but with the same stimuli did not significantly improve 
after visual WM training. The Time × Group interaction approached significance, F(1,62) = 3.12, 
p = .082, 2

G .01η = , 2
p .05η = . Numerically, the experimental group performed better at post-test 

than pre-test, whereas the active control group’s performance remained stable. Again, the 
evidence for the absence of a transfer effect was near-perfectly ambiguous, BF10 = 1/1.05 ± 
2.56%. Taken together, there was no transfer to a different type of stimuli or paradigm, with 
the caveat that the evidence was overall ambiguous.

SUMMARY

We found evidence for improvements in the trained tasks, with the experimental group 
improving only in precision, but not in capacity, in the trained orientation-reproduction task, 
and the active control group improving in RTs in the trained visual search task. Therefore, 
we rejected Hypothesis 1 that training gains reflect increases in capacity, and we concluded 
that training gains are driven by increased efficiency. As the improvement in precision did 
not generalise to performance gains in the untrained shape-reproduction task, we rejected 
Hypothesis 2 that training gains reflect the acquisition of paradigm-specific expertise, but with 
the caution that the evidence for the absence of an effect on precision in shape reproduction 
was ambiguous only. Similarly, there was also no significant effect of orientation-reproduction 
training on performance in the orientation-change detection task. Therefore, we also rejected 
Hypothesis 3 that stimulus-specific expertise would transfer to a different paradigm but, again, 
with the caveat that the Time × Group interaction approached significance, with only ambiguous 
evidence for the absence of an effect. Therefore, taken together, we found that training gains 
were stimuli-specific and task-specific, with some ambiguity regarding the potential of these 
gains in efficiency to generalise to other contexts.

DISCUSSION
The objective of the study was to identify the mechanisms underlying visual WM training and 
transfer effects. Specifically, we tested (1) whether training-induced gains after orientation-
reproduction training reflect expanded visual WM capacity or enhanced efficiency in using 
the available capacity by facilitating the acquisition of paradigm-specific or stimulus-specific 
expertise, and (2) whether such training benefits generalise to other types of stimuli and 
paradigms. For this purpose, we distinguished training gains in quantity from training gains in 
quality of visual WM representations and tested transfer effects to an untrained stimulus type 
(shape reproduction) and paradigm (orientation-change detection).

The results showed that four visual WM training sessions improved the quality of visual 
WM representations in the trained task but not the quantity. Furthermore, we observed no 
transfer to different stimuli or a different paradigm. The evidence was ambiguous though, and 
there was a tendency that the experimental group numerically improved in the orientation-
change detection task that used the same stimuli in a different paradigm. Notably, however, 
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if anything, capacity decreased in the experimental group in the shape-reproduction task that 
uses different stimuli in the same paradigm. Taken together, these findings speak against broad 
transfer through expanded capacity, which is consistent with the results from other recent WM 
training studies which reported limited evidence for transfer (Buschkuehl et al., 2017; De Simoni 
& von Bastian, 2018; Guye & von Bastian, 2017; Redick et al., 2013).

Instead, these findings suggest that training gains are driven by a more efficient use of 
the available cognitive capacity (von Bastian & Oberauer, 2014; von Bastian et al., 2022). 
Furthermore, the lack of transfer effects supports the conclusion that the training-induced 
efficiency gains were both stimuli-specific and paradigm-specific: neither stimuli-specific 
expertise nor paradigm-specific expertise were generalisable to the same paradigm with 
different stimuli or a different paradigm with the same stimuli. More specifically, the untrained 
shape-reproduction task used the same paradigm as the trained visual WM task but tested 
the memory of shapes instead of orientations. The lack of transfer to this task suggests that 
training gains reflect gains in expertise in orientation discrimination which is specific to the 
stimuli employed in the trained task. Yet, the untrained orientation-change detection task 
used the same stimuli as the trained visual WM task and also tested memory of orientations, 
but we still did not observe any transfer. However, different to the trained paradigm, the 
untrained orientation-change detection task might capitalise on configural information, such 
as the internal representation of the relationship between all displayed orientations at the 
maintenance stage (Boduroglu et al., 2009; Buschkuehl et al., 2017). At the same time, at the 
recall stage, the task requirement to detect only one changed orientation out of all stimuli 
displayed could possibly reduce the need to focus on the feature precision of each stimulus. 
This could explain why efficiency gains in the trained task did not generalise to another visual 
WM paradigm using the same stimuli type.

An alternative, not necessarily mutually exclusive, possibility is that the training gains in the 
orientation-reproduction task reflect a more refined motor control in reproducing the triangles’ 
orientation. However, the trained orientation-reproduction WM task and the untrained shape-
reproduction task arguably require a similar degree of refined motor control to reproduce the 
orientation or shape information, respectively, by rotating and clicking the mouse. Hence, if the 
observed training gains merely reflected better motor control, we should also have observed 
improvements in the untrained shape-reproduction task which requires similar levels of fine 
motor control. The observed lack of such improvements renders this possibility unlikely.

The findings of the present study also provide some indications how stimuli-specific and 
paradigm-specific expertise may operate and interact. Our exploratory inspection of response 
distributions showed that the experimental group but not the active control group reported a 
larger number of different orientations after training, suggesting that training in the orientation-
reproduction task may have catalysed the development of perceptual expertise allowing for 
discriminating finer differences in orientations. This is in line with other research showing 
that visual WM training can boost perceptual processing (Truong et al., 2022). Improved 
perceptual processing due to stimuli-specific expertise may enhance the perceived perceptual 
distinctiveness (Olson et al., 2005). Given the premise that the active control group’s visual 
search training involved only little memory (Wolfe & Horowitz, 1998) while sharing similar 
encoding processing (Kong & Fougnie, 2019), the fact that we observed these precision gains 
only in the experimental group supports the conclusion that visual WM training-induced gains 
in efficiency operate at maintenance and recall stage. These stimulus-specific efficiency gains 
allow for maintaining more precise internal feature representations, and/or discriminating 
these representations with higher resolution when recalling this feature information.

Developing stimuli-specific, perceptual expertise may also help to use effective paradigm-
specific strategies that operate at maintenance and recall stage. Specifically, we found that 
the experimental group did not only respond a larger number of orientations but more peaks 
with canonical orientations after training. Participants may have used canonical orientations 
as a memory aid for the orientations (e.g., 90, 180, and 270 degrees like the numbers 3, 6 and 
9 on a clock face). Increasing the number of available canonical orientations may benefit the 
effectiveness of such a strategy and increase overall performance. Note that this does not 
exclude the possibility that both experimental and active control training could have improved 
sensory discrimination at encoding stage.
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LIMITATIONS

One major limitation of the current design is that the orientation-change detection task – the 
untrained paradigm using the same stimuli – did not allow for assessing precision (i.e., the 
quality of visual WM representations). Consequently, our results cannot fully rule out transfer of 
gains in the quality of visual WM representations to a different paradigm. Future research with a 
more fine-grained assessment of the stimulus features is required to identify the mechanisms 
underlying the transferable gains in quality of visual WM representations.

Another potential limitation of this study is that four training sessions might not be intensive 
enough to induce transferable training gains in the quality of visual WM representations. 
Indeed, this possibility is consistent with our results that training gains in the quality of visual 
WM representations were not detected during training but only at post-test. Furthermore, the 
spacing of the training sessions may not have optimally supported learning. For example, a 
design with only one session a week may have allowed for better consolidation of learning 
effects (e.g., see Lampit et al., 2020). Future research is needed to better understand the 
optimal intensity and spacing of visual WM training interventions.

Moreover, our training tasks were not adaptive, that is, all participants practised all set 
sizes irrespective of their individual performance. We chose this design to ensure sufficient 
measurement of all three set sizes for applying the SMM. However, it might have led to a 
decrease in motivation. A previous study showed no differences between adaptive and non-
adaptive training both for motivation and training and transfer gains (von Bastian & Eschen, 
2016); however, in that study participants still received performance-based feedback. Such 
feedback likely encourages better engagement with the daily training sessions and reduces 
attrition, which could be useful especially in an online setting like the current study.

Finally, we did not assess participants’ training experience, subjective training gains, or 
strategies they employed, because we aimed at minimizing the administration time for the 
benefit of participant retention. However, these data could have added important insights 
regarding the possible mechanisms underpinning the observed training gains (e.g., see De 
Simoni & von Bastian, 2018; Guye & von Bastian, 2017). Future research would benefit from 
including self-report measures for advancing understanding of training-induced change in 
cognitive performance.

CONCLUSION
To the best of our knowledge, the findings of the present study are the first to provide evidence 
from a continuous reproduction task that visual WM training induces stimuli-specific and 
paradigm-specific gains in the quality but not in the quantity of visual WM representations. 
These findings support the notion that training enhances cognitive efficiency through the 
acquisition of expertise but not capacity. A better understanding of how training facilitates a 
more efficient use of the available visual WM capacity, and how the underlying training benefits 
are influenced by the characteristics of stimuli and paradigms, will be critical for harnessing the 
potential benefits of these training benefits.
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