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ABSTRACT
Temporal predictions can be formed and impact perception when sensory timing is 
fully predictable: for instance, the discrimination of a target sound is enhanced if it is 
presented on the beat of an isochronous rhythm. However, natural sensory stimuli, 
like speech or music, are not entirely predictable, but still possess statistical temporal 
regularities. We investigated whether temporal expectations can be formed in non-
fully predictable contexts, and how the temporal variability of sensory contexts affects 
auditory perception. Specifically, we asked how “rhythmic” an auditory stimulation 
needs to be in order to observe temporal predictions effects on auditory discrimination 
performances. In this behavioral auditory oddball experiment, participants listened to 
auditory sound sequences where the temporal interval between each sound was drawn 
from gaussian distributions with distinct standard deviations. Participants were asked 
to discriminate sounds with a deviant pitch in the sequences. Auditory discrimination 
performances, as measured with deviant sound discrimination accuracy and response 
times, progressively declined as the temporal variability of the sound sequence 
increased. Moreover, both global and local temporal statistics impacted auditory 
perception, suggesting that temporal statistics are promptly integrated to optimize 
perception. Altogether, these results suggests that temporal predictions can be set 
up quickly based on the temporal statistics of past sensory events and are robust to a 
certain amount of temporal variability. Therefore, temporal predictions can be built on 
sensory stimulations that are not purely periodic nor temporally deterministic.
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INTRODUCTION
Temporal predictions are believed to play a key role in the way we process sensory information 
(Jones, 1976; Schroeder & Lakatos, 2009; Arnal & Giraud, 2012; Nobre et al., 2012). Predicting 
the timing of future sensory events allows to allocate cognitive resources at the expected time 
of occurrence, and therefore facilitates the sensory processing of these upcoming stimuli (Jones 
& Boltz, 1989; Large & Jones, 1999; Nobre et al., 1999). As a consequence, the perception 
of sensory events is improved when their timing is fully predictable. Auditory discrimination 
performances are also improved when the temporal context of the stimulation is deterministic, 
as when auditory stimulation is periodic (Cravo et al., 2013; Jaramillo & Zador, 2010; Lawrance 
et al., 2014; Morillon et al., 2016; Rimmele et al., 2011), when temporal intervals are repeated 
(Breska & Deouell, 2017), or when the temporal intervals are slowing decreasing or increasing 
at a predictable pace (Cope et al., 2012; Morillon et al., 2016).

However, from a naturalistic point of view, temporal contexts are rarely fully isochronous 
nor deterministic. Speech acoustic signals in particular presents complex statistical temporal 
regularities (Singh et al., 2003; Cummins, 2012; Varnet et al., 2017) that are supposedly used 
to form temporal expectations and influence language comprehension (Tillmann, 2012; Jadoul 
et al., 2016; Kösem & Van Wassenhove, 2017; Kösem et al., 2018; Aubanel & Schwartz, 2020). 
How temporal predictions occur in non-fully predictable temporal contexts such as speech and 
music and how they influence auditory perception is still under debate (Jadoul et al., 2016; 
Herbst & Obleser, 2017, Zoefel & Kösem, 2022). During speech listening in particular, temporal 
prediction mechanisms are put forward as an important mechanism that would contribute 
to acoustic segmentation and enhanced processing of relevant auditory information (Giraud 
& Poeppel, 2012; Meyer et al., 2019; Peelle & Davis, 2012; Zoefel & Kösem, 2022). In line with 
this, temporal predictability based on rhythmic cues present in the signal, specifically on the 
average speech rate, influences speech perception (Dilley & Pitt, 2010; Kösem et al., 2018). 
Yet, speech processing also requires to take into account probabilistic temporal variations in 
syllable and word durations naturally present in languages (Jadoul et al., 2016; Varnet et al., 
2017; Ten Oever & Martin, 2021). Probabilistic inference of sensory timing influences explicit 
temporal judgments of auditory events (Cannon, 2021; Doelling, 2021), tapping (Cannon, 2021), 
warned reaction time tasks (Los et al., 2017), responses times during auditory discriminations 
tasks (Herbst & Obleser, 2017). However, it is unclear to what extent probabilistic temporal 
predictions influence the discrimination of sounds per se. The aim of this study is therefore to 
investigate how the temporal statistics of auditory stimulation influences ongoing auditory 
perception, specifically when the temporal context is not fully predictable in time. Additionally, 
the perception of rhythmicity, here defined as the perception of how temporally regular the 
sound sequences are, is known to vary across participants (Geiser et al., 2009; Krause et al., 
2010; Repp, 2010; Fiveash et al., 2022). Subjective perceived rhythmicity may have an influence 
on the way temporal predictions are formed (Doelling & Poeppel, 2015): if participants rely on 
an internal model of temporal predictions that differs from external timing, maximal auditory 
discrimination performance would occur when participants judge the temporal context to by 
maximally predictable, and not necessarily when the external context is regular. We therefore 
also explored whether auditory perception is influenced by the subjective perception of the 
contextual temporal structure.

To do this, we used an auditory oddball paradigm adapted from the study of Morillon and 
colleagues (2016). Participants were asked to detect deviant sounds that where embedded in 3 
min-long sound sequences. The Stimulus-Onset-Asynchrony (SOA) between each sound of the 
sequence was drawn from Gaussian distributions. The distributions had the same mean (500 
ms) but different standard deviations (STD): from 0 ms (periodic) to 150 ms STD (Figure 1B). 
Results suggest that (i) temporal predictions can be formed in aperiodic probabilistic context, 
though auditory discrimination performance progressively declines with the temporal variability 
of a context, (ii) these temporal prediction effects are set up quickly from the local temporal 
statistics of the context. Therefore, this work suggests that temporal prediction mechanisms 
are robust to temporal variability, and that temporal predictions built on sensory stimulations 
that are not purely periodic nor temporally deterministic can influence auditory perception. 
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MATERIALS AND METHODS
PARTICIPANTS

Twenty-three participants (11 females, mean age = 25.6 years, 3 left-handed) took part in 
the experiment. Participants reported no history of neurological or psychiatric disease, normal 
hearing and normal or corrected-to-normal vision. Four participants had outlier data and 
were excluded from data analysis: one participant responded at chance level throughout the 
experiment, three participants had outlier subjective rhythmicity ratings of the sequences 
(±1.5 interquartile range of regression scores) (Figure S1). Therefore, nineteen participants 
were included for the analysis. The study was approved by an ethical committee (CPP) and all 
participants signed a written consent and received payment for their participation.

STIMULI

Participants heard sequences of pure tones, that were either a standard sound (corresponding 
to a pure 440 Hz sound) or a deviant sound (pure 220 Hz sound). The sounds were presented 
via headphones for 100 ms (with 5 ms ramp-up and ramp-down in volume). With each sound, 
visual cues were presented via a digital display (1600, 1024 resolution; 120 Hz refresh rate) 
and were displayed in front of them (70 cm) in the center of the screen for a duration of 100 
ms. Visual cues were synchronized to appear simultaneously with the sounds. A “red circle” 
visual cue indicated a target and that the participant had to respond to this trial by pressing 
a button (Figure 1A). A “white cross” cue indicated a standard trial of the context and that 
participants did not have to respond to this trial. When the “white cross” was presented on the 
screen, the synchronized sound was always a standard sound whereas when the “red circle” 
was presented, the synchronized sound could either be a standard or a deviant sound (with 
equal 50% probability). The “red circle” stimulus was used to indicate to the participant that 
the sound was a target stimulus and that an answer was required. With this manipulation, we 

Figure 1 Experimental 
design. (A) Example of three 
sequences of different 
temporal STD used in this 
experiment. Each sequence 
consisted of a stream of 
simultaneous auditory and 
visual stimuli. A standard 
stimulus corresponded 
to a 440 Hz pure tone 
co-occurring with a white 
cross. Occasionally a red 
circle appears in the stream 
indicating a target stimulus, 
on which participants had 
to discriminate between 
a standard (440 Hz) and 
deviant (220 Hz) pure tone. (B) 
Distribution of SOAs in each 
sequence. For each sequence, 
the distributions of the SOAs 
were drawn of Gaussian 
distributions with equals 
means (500 ms) but distinct 
STDs. Six conditions were 
designed: from 0 (periodic) 
to 150 ms of STD with data 
points built from 100 ms to 
900 ms and spaced from 25 
ms. 

A

B
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could make sure that the response of the participant was referring to the last cued sound, and 
not to any other sound from the sequence (which is presented continuously at a relatively fast 
rate around 2 Hz). In the absence of the visual cue, we could not unambiguously decipher to 
which sound the participant was reacting to. In addition to the pure tones, broadband white 
noise was presented continuously to make the task more difficult. The signal-to-noise ratio 
between pure tones and white noise was adjusted individually via a staircase procedure (see 
Procedure). All stimuli were generated and presented via the Psychophysics-3 toolbox.

PROCEDURE

The experiment was composed of 12 blocks of 3 min 30 s. Each block consisted of a sequence 
of auditory sensory stimuli masked in constant noise. Participants had to discriminate the 
sound when a red visual cue was presented on the screen (target trial) (Figure 1A). To vary the 
temporal regularities of the context, the SOAs between the sounds of each block was drawn from 
distinct distributions. In the Periodic condition, the SOA was fixed at 500 ms. For the Gaussian 
conditions, the SOAs were drawn from Gaussian distributions with distinct STDs of 25 ms, 50 
ms, 75 ms, 100 ms and 150 ms (Figure 1B). The SOAs data points used to build these gaussian 
distributions were spaced out every 25 ms to allow accurate sampling of these conditions. Both 
standards and target trials were drawn from these distributions. Each block consisted of 410 
trials including 56 target trials. Between two target trials, a minimum of 4 standard sounds and 
a maximum of 10 standard sounds (uniform distribution) could occur. The target trials could 
not appear in the first 10 trials of the sequence. Two blocks were presented for each condition 
and the block order was pseudo-randomized so that the same condition was not presented 
twice in succession. Therefore, 112 target trials were obtained for each condition. 

After each block, the subjective perception of the rhythmicity of the temporal context was 
assessed: participants were asked to rate the global rhythmicity of the sequence. We specifically 
asked to rate whether the sounds in the sequence were presented at a regular pace on a scale 
from 0 (totally not rhythmic) to 10 (totally periodic). Before the main experiment, a staircase 
procedure was performed to adjust the signal-to-noise ratio (SNR) so that the average sound 
discrimination performance was within ~80% correct responses (mean SNR = –14.9 dB, within 
[–16.0, –13.7] dB range). These SNRs are slightly higher than previously reported detection 
thresholds of pure tones (around –17 dB) (McPherson et al., 2022). We think for this reason that 
participants were able to hear both standards and deviant sounds and that our task relied on 
pitch discrimination. In the staircase, 75 sounds were displayed with periodic SOAs (500 ms) 
and targets trials could appear every ~2–3 tones.

DATA ANALYSIS

Generalized linear mixed models (GLMMs) were computed using lme4 (version 1.1-28) (Bates et 
al., 2014) with R 4.1.2 (2021-11-01), on both the subject’s responses (1 for a correct response, 
0 if incorrect, binomial distribution) and subject’s response times (gamma distribution) as 
dependent variables. We first included the global temporal STD (global STD, continuous variable) 
as fixed effect, and the factor Subject as a random effect. Stepwise models comparison was 
done using the likelihood ratio test, and Type II Wald chi-square tests were used to assess the 
best model fit, and the significance of fixed effects (Bates et al., 2014; Luke, 2017). For subjects’ 
responses, the best model only included the Subject random intercept (as adding the random 
slope did not significantly improve the model’s explained variance: Chi-square = 2.72, p = 
0.2557). For the response times, the best model included both random intercepts and random 
slopes. To evaluate the difference in performance between each Global STD condition in our 
experiment, we then performed post-hoc tests using the emmeans package version 1.7.4.1. For 
this we considered Global STD as a categorical factor and compared each Global STD level (0, 
25, 50, 75, 100, 150 ms) using Tukey multiple comparison correction. As exploratory analyses, 
we investigated the impact of the subjective perception of rhythmicity on performances. To 
do this, we compared the first models to a new model that included the predictor Rhythmicity 
Rating (gaussian distribution) as additional fixed effect. We also investigated the correlation 
between Global STD and Rhythmicity Rating. For this, Rhythmicity Rating was considered as a 
dependent variable and Global STD as fixed effect, and Subject as Random effect. 
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We also investigated how the recent temporal statistics in the non-periodic sequences 
impacted performance (i.e. based on the statistical distribution of the SOAs between the 
last N sounds before target presentation). To do this, we computed for each participant 2-D 
plots representing the discrimination accuracy and response times according to the STD and 
mean of the N previous SOAs. Specifically, we computed the mean and STD of the local SOA 
distribution drawn from the N previous SOAs before each target trial (with N ranging from 1 
to 7 SOAs for the mean SOA, and N ranging from 2 to 7 SOAs before target trial for the SOA 
STD). We then binned target trials per SOA distribution mean (from 400 to 600 ms SOA mean, 
with a sliding window of ±20 ms length) and per SOA distribution STD (from 10 ms to 100 SOA 
STD, with a sliding window of ±10 ms length). Bins containing less than 5 trials per participant 
were excluded from further analysis. For each bin, we computed the average accuracy and 
response time across trials. We obtained a 2-D plots representing how the mean and STD of the 
2/3/4/… last SOAs impacted accuracy and response times for each participant. We investigated 
whether, across participants, performances would be relatively better or worse depending on 
the mean or STD of the local temporal statistics. To test this, we therefore Z-scored the 2-D 
plots for each participant and applied cluster-based permutation statistics (using MNE version 
1.0.3) to the z-scored data (Maris & Oostenveld, 2007). One sample t-tests against zero were 
computed for each sample. Adjacent samples with a p-value associated to the t-test of 5% 
or lower were selected as cluster candidates. The sum of the t-values within a cluster was 
used as the cluster-level statistic. The reference distribution for cluster-level statistics was 
computed by performing 1000 random sign-flipping permutations of the data. Clusters were 
considered significant if the probability of observing a cluster test statistic was below the 2.5-
th quantile and above the 97.5-th quantiles for the reference distribution. The choice of the 
cluster permutation tests was done to solve multiple comparison testing, and was motivated 
by the fact that we had two-dimensional data whose adjacent samples were correlated in 
both dimensions (i.e. we expected that samples with close mean SOA and close SOA STD would 
lead to similar performances; similarly, we expected that the computation of the mean and 
STD of the N preceding SOAs would also correlate with the mean and STD of the N-1, N-2 
SOAs, and so forth). Additionally, cluster-based non-parametric permutation testing allows to 
capture nonlinear effects (expected to occur for mean SOA effects in particular). Finally, to 
further evaluate the relative contribution of global and local temporal STD on performances, 
we ran GLMMs that included both Global STD and the Local STD (from the N previous SOAs, N 
rating between 2 to 7), and the last SOA before target presentation as predictors of subject’s 
response and response times (Table S1).

RESULTS
TEMPORAL VARIABILITY IMPACTS AUDITORY DISCRIMINATION ACCURACY 
AND RESPONSE TIMES 

We tested the effect of the temporal variability of auditory sequences on auditory accuracy and 
on response times. Participants auditory discrimination significantly decreased as a function of 
contextual temporal variability (main effect of the factor Global STD (χ2(1) = 14.574, p = 0.0001)). 
Discrimination accuracy was highest in the periodic context, and progressively decreased 
with increasing global temporal STD (accuracy decreased by 0.6% every 25 ms). Contrasting 
each global STD condition between one another, post-hoc tests revealed that accuracy in the 
periodic condition was statistically different from the more aperiodic condition (difference % 
correct responses Periodic – Gaussian 150 = 4.28%, p = 0.0061). Moreover, performance was 
also statistically different between the contexts Gaussian 25 and Gaussian 150 (difference % 
correct responses Gaussian 25 – Gaussian 150 = 3.76%, p = 0.0262).). These results suggest 
that the percentage of correct responses is higher in conditions with less variable contexts even 
if they are not completely periodic (e.g., in the Gaussian 25 condition) (Figure 2A). 

Response times were also significantly affected by the temporal STD of the context (main 
effect of the factor Global STD (χ2(1) = 115.47, p < 0.0001)). Response times were faster in 
temporal contexts with low variability and progressively slowed as the global temporal STD 
increased (response times increased by 5 ms as the context variability increased by 25 ms). 
Post-hoc tests showed that the three conditions with the lowest temporal variability: Periodic, 
Gaussian 25 and Gaussian 50 were statistically different from the three conditions with the 
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highest temporal variability: Gaussian 75, Gaussian 100 and Gaussian 150 (difference response 
times (Periodic – Gaussian 75 = –20.2 ms, p < 0.0001); (Periodic – Gaussian 100 = –21.6 ms, p < 
0.0001); (Periodic – Gaussian 150 = –21.2 ms, p < 0.0001); (Gaussian 25 – Gaussian 75 = –20.8 
ms, p < 0.0001); (Gaussian 25 – Gaussian 100 = –22.1 ms, p < 0.0001); (Gaussian 25 – Gaussian 
150 = – 21.8 ms, p < 0.0001); (Gaussian 50 – Gaussian 75 = –19.3 ms, p =0.0001); (Gaussian 50 
– Gaussian 100 = –20.7 ms, p < 0.0001); (Gaussian 50 – Gaussian 150 = –20.3 ms, p =0.0003). 
Results on response times suggest that there is a gap between contexts with low temporal 
variability and contexts with global temporal STD that exceed 75 ms (Figure 2C).

The more variable the auditory sequence, the more variable the target stimuli’s SOA. It could 
therefore be possible that the preceding results only reflect the impact of target’s SOA variability, 
and not of the overall temporal context. In particular, perception is subject to temporal hazard 
rate, so that auditory discrimination performances improve the longer you wait for the stimulus 
(Herbst & Obleser, 2019), and reversely, auditory perception performance could decrease 
drastically for shorter SOAs. To alleviate these effects, we restricted our analyses to all targets 
whose preceding SOA were of 500 ms only. We still observed similar effects of temporal context 
as when all SOAs were included. Participants auditory discrimination significantly decreased 
as a function of contextual temporal variability (main effect of the factor Global STD (χ2(1) = 
14.490, p = 0.0001409)). Contrasting each global STD condition between one another, post-
hoc tests revealed that accuracy in the periodic condition was statistically different from the 
condition Gaussian 75 ms and from the condition Gaussian 100 ms (difference % correct 
responses Periodic – Gaussian 75 = 7.50%, p = 0.0174; Periodic – Gaussian 100 = 8.04%, p = 
0.0371). Condition Gaussian 25 ms was also significantly different from the conditions Gaussian 
50 ms, Gaussian 75 ms, and Gaussian 100 ms (difference % correct responses Gaussian 25 – 
Gaussian 50 = 8.27%; p = 0.0036; Gaussian 25 – Gaussian 75 = 10.59%; p = 0.0004; Gaussian 25 
– Gaussian 100 = 11.13%; p = 0.0013). These results suggest that when we took only the SOA 

Figure 2 Auditory deviant 
discrimination is influenced 
by the temporal variability 
of the sound sequences. 
(A) Percentage of correct 
responses and (C) Response 
times as function of the 
standard deviation of SOAs 
in the auditory sequences. 
Each color dot represents 
a participant. Black dots 
represent the average across 
participants. Error bars 
indicate the Standard Error 
of the Mean (SEM) and stars 
indicate significant differences 
(p < 0.05). (B) Percentage of 
correct responses and (D) 
Response times restricted 
to target trials presented at 
SOA = 500 ms (mean of the 
distributions).
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7at the mean of the distributions (500 ms) auditory accuracy was also better in low variability 
conditions (e.g., periodic and Gaussian 25 ms) compared to conditions with more variability in 
the context (e.g., Gaussian 75 and 100 ms) (Figure 2B). 

For the response times, there was also a significant main effect of the factor Global STD (χ2(1) 
= 77.926; p < 0.0001). Response times were also faster in temporal contexts with low variability 
and progressively slowed as the global STD increased. Post-hoc tests show that the Periodic 
condition was different from the Gaussian distributions above 50 ms STD (Periodic – Gaussian 
50 = –19.6 ms, p < 0.0218; Periodic – Gaussian 75 = –41.1 ms, p < 0.0001; Periodic – Gaussian 
100 = –38 ms, p < 0.0001; Periodic – Gaussian 150 = –21.5 ms, p < 0.0218). RTs in Gaussian 25 
ms and Gaussian 50 ms were also significantly different from the Gaussian 75 ms and Gaussian 
100 ms conditions (Gaussian 25 – Gaussian 75 = –43.3 ms, p < 0.0001; Gaussian 25 – Gaussian 
100 = –40.2 ms, p < 0.0001; Gaussian 50 – Gaussian 75 = –21.4 ms, p < 0.0432; Gaussian 50 
– Gaussian 100 = –18.3 ms, p < 0.0001). RTs in the conditions Gaussian 100 and Gaussian 150 
were also statistically different (Gaussian 100 – Gaussian 150 = –16.4 ms, p < 0.0288). Results 
on response times with the SOA at 500 ms only also shows differences between low variability 
contexts (e.g., Periodic, Gaussian 25 ms or 50 ms) and contexts with more variability in the 
global temporal STD (Figure 2D).

STATISTICAL TEMPORAL PREDICTIONS OCCUR RAPIDLY 

We further investigated the effect of temporal statistics’ recent history in auditory discrimination 
performances. Specifically, we computed, across all targets in non-periodic sound sequences, 
the mean and the STD of the distribution of the N-previous SOAs before a target trial (with N 
ranging from 1 to 7 SOAs for the mean SOA, and N ranging from 2 to 7 SOAs before target trial 
for the SOA STD), and we asked how the temporal statistics of the N previous SOAs impacted 
the perception of the target trial. When data in all non-periodic sound sequences were 
aggregated, auditory discrimination performance was significantly influenced by the mean 
SOA of N-previous sounds: discrimination accuracy was significantly relatively better when the 
mean of the last N SOAs was around 500 ms and was significantly worse when the mean of 
the last N SOAs was around 450 ms (Figure 3A). Moreover, there was a significant effect of 
preceding local STD on accuracy, performance was relatively worse when the STD of the last 
SOAs was high (relative decrease in performance most prominently observed for STD around 
60–90 ms) (Figure 3D). Response times were not significantly affected by the mean SOA of 
local context (though the direction of the effect is consistent with the working hypothesis, 
with a relatively shorter RT when the mean of the last SOAs was around 500 ms) (Figure 3G). 
Furthermore, when the STD of the last SOAs was low, responses times were significantly faster, 
and when the local STD was wider response times were significantly slower (Figure 3J). 

Data were pooled across all non-periodic sound sequences to maximize the number of trials 
per bin. Yet, by the way auditory sequences were designed, more target trials in the less 
temporally variable auditory sequences (e.g. Gauss25 and Gaus50 conditions) had a low STD 
of the N-previous SOAs, compared to the more variable sound sequences. To limit the effect 
of global context, we performed the same analyses by dividing the data into two groups: low-
temporal variability (Gaus25 and Gaus50) and high-temporal variability (Gaus75, Gaus100, and 
Gaus150). Grouping the sequences into 2 groups allowed us to have a minimum of trials for 
each bin of interest. Pooling the data across the more temporally variable conditions (Gaus75, 
Gaus100 and Gaus150 conditions), performances followed similar observed patterns as across 
all non-periodic sound sequences: both local SOA mean and STD significantly influenced the 
discrimination accuracy. Discrimination accuracy was significantly relatively better when 
the last SOA (past history of N = 1) was longer. Accuracy was significantly lower when the 
SOA mean of the previous SOAs was lower than the expected mean 500 ms SOA (Figure 
3B). Moreover, accuracy was significantly higher when the STD of the previous SOAs was low 
and was significantly lower for larger STDs (Figure 3E). No significant clusters were found on 
responses times (Figure 3HK). 

For the less variable conditions (Gaus25 and Gaus50 conditions), no significant effects of the 
mean SOA were observed, though the effects were in the expected direction: accuracy was 
higher, and RTs were faster when the mean SOA was around the expected 500 ms (Figure 3CI). 
We observed no conclusive pattern of local STD on accuracy (Figure 3F). However, contrary to 



our expectations, response times were relatively slower when local temporal variability was 
low and faster when the local temporal variability was high (Figure 3L). Considering that the 
analysis compares the relative change in performance per participant as function of local SOA 
mean and STD, it is possible that the relative change in performance is less important in the 
low-variable conditions than for the more variable conditions. 

To further evaluate the relative contribution of global and local temporal STD on performances, 
we ran GLMMs that included both global STD and the local STD (from the N previous SOAs, 
N rating between 2 to 7), and the last SOA as predictors of subject’s response and response 
times. The models revealed an interplay between local and global STD effects. The local STD 
of the N previous SOAs did not have a significant influence on correct responses when N = 2, 
while the global STD significantly biased perception. However, for N previous SOAs between 3 
and 4 items, we observed that the local STD significantly influenced the subject’s response, 
while the influence of the global context relatively diminished (Figure 4, Supp. Table S1). Similar 
patterns were observed for response times (Supp. Table S1). This suggests that the local STD 

Figure 3 Effect of local 
temporal SOAs’ statistics 
on perception. The figures 
illustrate whether the relative 
performance of participants 
was affected by the mean and 
STD of the previous N SOAs. 
Specifically, we computed 
the mean and STD of the 
local SOA distribution drawn 
from the N previous SOAs 
before each target trial (with 
N ranging from 1 to 7 SOAs 
before target trial for mean 
SOA, and from 2 to 7 SOAs 
before target trial for SOA STD). 
We then binned target trials 
per SOA distribution mean 
(from 400 to 600 ms SOA 
mean, with a sliding window 
of ±20 ms length) and per SOA 
distribution STD (from 10 ms 
to 100 SOA STD, with a sliding 
window of ±10 ms length). 
Bins containing less than 5 
trials per participant were 
excluded from further analysis. 
For each bin, the average 
accuracy and response time 
across trials was computed, 
and then z-scored across 
participants. The obtained 
2-D plots represent whether 
accuracy and response times 
were relatively higher or lower 
depending on the mean and 
STD of the 2/3/4/… last SOAs. 
Data were aggregated for 
either (A, D, G, J) all non-
periodic contexts, (B, E, H, K) 
the more variable temporal 
sequences (Gaus75 and 
higher), and (C, F, I, L) the less 
variable temporal sequences 
(Gaus25 and Gaus50 
conditions). The color label 
represents the one sample 
t-test value against zero 
for each sample. Black lines 
denote significant clusters 
(transparency is applied to 
non-significant areas). Due to 
the low variability in conditions 
Gaus25 and Gaus50 some bins 
are left white (empty) because 
the number of trials was not 
sufficient to be representative 
(<5).

Bonnet et al.  
Journal of Cognition  
DOI: 10.5334/joc.344

8

All non-periodic conditions Gaus25 and Gaus50Gaus75, Gaus100, and Gaus 150

-4       -2       0        2        4

P
as

t h
is

to
ry

 (l
as

t N
 S

O
A

s)

A

D

G

J

H

K

B

E

I

L

C

F

t-values

7

6

5

4

3

2

1

P
as

t h
is

to
ry

 (l
as

t N
 S

O
A

s)

7

6

5

4

3

2

1

7

6

5

4

3

2

1

7

6

5

4

3

2

1

400 450 500 550 600
Mean SOA (ms)

400 450 500 550 600
Mean SOA (ms)

7

6

5

4

3

2

1

7

6

5

4

3

2

1
400 450 500 550 600

Mean SOA (sms)

400 450 500 550 600
Mean SOA (ms)

400 450 500 550 600
Mean SOA (ms)

400 450 500 550 600
Mean SOA (sms)

10   20   30   40   50   60   70   80    90   100
SOA  STD (ms)

10   20   30   40   50   60   70   80    90   100
SOA  STD (ms)

10   20   30   40   50   60   70   80    90   100
SOA  STD (ms)

7

6

5

4

3

2

1

7

6

5

4

3

2

1

7

6

5

4

3

2

1

7

6

5

4

3

2

1
10   20   30   40   50   60   70   80    90   100

SOA  STD (ms)
10   20   30   40   50   60   70   80    90   100

SOA  STD (ms)
10   20   30   40   50   60   70   80    90   100

SOA  STD (ms)

Effect of temporal statistics' recent history on % correct responses

All non-periodic conditions Gaus25 and Gaus50Gaus75, Gaus100, and Gaus 150

Effect of temporal statistics' recent history on response times

-4       -2       0        2        4

t-values

less correct more correct

faster slower

P
as

t h
is

to
ry

 (l
as

t N
 S

O
A

s)

7

6

5

4

3

2

1

P
as

t h
is

to
ry

 (l
as

t N
 S

O
A

s)

7

6

5

4

3

2

1



9Bonnet et al.  
Journal of Cognition  
DOI: 10.5334/joc.344

could influence performances, and that the observed effect of global STD could partially be 
explained by the local influence of previous few SOAs. 

Altogether, these results suggest that participants integrated the temporal statistics of the global 
sound sequences. Furthermore, it suggests that the temporal predictions effects at hand were 
not related to hazard rate. We also investigated whether recent temporal variability affected 
performances. Both accuracy and response times were affected by local temporal variability: 
accuracy was significantly improved, and response times were faster when the local temporal 
variability was low; conversely accuracy was lower and response times are significantly slower 
when the local temporal context was highly variable. These findings suggest that temporal 
expectations form quickly, within a few numbers of sounds in the sequence. 

LINK BETWEEN SUBJECTIVE PERCEPTION OF RHYTHM AND AUDITORY 
DISCRIMINATION PERFORMANCE

We also asked participants to subjectively rate their perception of the rhythmicity of each 
sound sequence. After each sequence, participants rated from 0 (totally arrhythmic) to 10 
(totally periodic) the rhythmicity of the sequence of sounds. Participants rated low-variability 
sequences as more rhythmic: rhythmicity rating was negatively correlated with the temporal 
variability of context (main effect of the factor Global STD on Rhythmicity Rating as dependent 
variable: (χ2(1) = 43.364; p < 0.0001)) (Figure 5A). Global STD and Subjective rating being 
highly correlated, Rhythmicity Rating also correlated with the participant’s discrimination 
accuracy (main effect of Rhythmicity Rating on subjects’ responses: (χ2(1) = 14.84; p = 0.0001)) 
(Figure 5B). Yet, inter-subject variability in rating was observed, with some participants rating 
non-periodic sequences as more rhythmic than periodic sequences (Figure 5C). We therefore 
investigated whether rhythmicity rating could be a predictor of participants performances, 
specifically whether adding the Rhythmicity Rating as factor with the model fit would explain 
away more variance in auditory discrimination performance. However, this was not the case: 
comparing statistical models with the likelihood ratio test, adding the Rhythmicity Rating as 
a fixed effect in the model did not significantly improve the data fitting for the percentage of 
correct responses (χ2(1) = 3.24; p = 0.072) nor the response times (χ2(1) = 0.3054; p = 0.624). 

DISCUSSION 
The aim of this study was to investigate the impact of temporal prediction mechanisms on 
auditory perception in probabilistic temporal contexts. For this, participants were asked to 
discriminate deviant sounds in auditory sequences, whose SOAs between consecutive sounds 
were drawn from distinct gaussian distributions. All distributions had the same average SOA 

Figure 4 Interplay between 
local and global temporal 
SOAs’ STD on perception. 
We ran GLMMs that included 
both global STD and the local 
STD (from the N previous 
SOAs, N rating between 2 to 
7) as predictors of subject’s 
response. The red line denotes 
the odds ratios of the global 
STD effect, the blue line 
denotes the odds ratio of 
the local STD effect, when 
local effects are computed 
with the N previous SOAs, N 
ranging from 2 to 7. An odds 
ratio superior to 1 means that 
participants were more correct 
for low STD trials than for high 
STD trials. Bars denote 95% 
confidence intervals, if the 
confidence interval is above 1 
then the observed STD effects 
had a significant influence on 
the subject’s response. The 
models revealed an interplay 
between local and global STD 
effects. The local STD of the N 
previous SOAs did not have a 
significant influence on correct 
responses when N = 2 or N 
> = 5, while the global STD 
significantly biased perception. 
However, for N previous SOAs 
between 3 and 4 items, we 
observed that the local STD 
significantly influenced the 
subject’s response, while the 
influence of the global context 
relatively diminished.

O
dd

 ra
tio

 (a
.u

.)

* * *
Global STD
Local STD

N=2               N=3              N=4            N= 5             N=6              N=7

0.9

1

1.1

1.2

1.3

1.4

Past history (last N SOAs)



10Bonnet et al.  
Journal of Cognition  
DOI: 10.5334/joc.344

(500 ms) but different STDs (from 0 ms up to 150 ms). Auditory perception was influenced by the 
probabilistic temporal regularities of the sound sequences. Deviant discrimination accuracy was 
highest and response times were fastest when the deviant sounds were presented in periodic 
sequences as compared to non-periodic sequences, in line with previous findings (Morillon et 
al., 2016). However crucially, temporal context also influenced auditory discrimination in the 
non-periodic sound sequences. Deviant discrimination performances slowly decreased when 
the temporal variability of the auditory sequences increased. Auditory deviant perception 
was optimal at the average of the SOA distribution of the sequences, suggesting that both 
influenced by the mean SOA of sequences and by the temporal variability of the last sounds 
prior to target. 

PROBABILISTIC TIMING INFLUENCES AUDITORY PERCEPTION

This study emphasizes that the temporal variability of the context impacts auditory 
performance. These findings are in line with the literature that shows that auditory 
perceptual sensitivity is enhanced when stimuli are presented within periodic streams of 
sensory events (Rimmele et al., 2011; Henry & Obleser, 2012; Cravo et al., 2013; Ten Oever 
et al., 2014; Morillon et al., 2016; Ten Oever et al., 2017) or when the temporal context is 
deterministic (Cope et al., 2012; Morillon et al., 2016; Breska & Deouell, 2017). Our findings 

Figure 5 Link between 
subjective perception of 
rhythmicity and auditory 
performances. (A) Means of 
participant’s ratings of the 
degree of rhythmicity present 
in the temporal contexts. 
(B) Positive correlation 
between the rating and 
the percentage of correct 
responses. Each point and the 
corresponding regression line 
represent a single participant. 
(C) Individual correlations 
between percentage of correct 
responses and rhythmicity 
ratings. Each figure represents 
a participant’s data. Blue 
lines denote the percentage 
of correct response as 
a function of temporal 
standard deviation of sound 
sequences. Red lines denote 
the subjective rating of 
rhythmicity of each sound 
sequence.
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further suggest that auditory perception relies on probabilistic inference of events timing. 
Target discrimination accuracy slowly degraded with increasing temporal variability of 
sound sequences. Response times showed a plateau effect, where a similar increase in 
response times duration was observed for the more variable contexts from 75 ms STD as 
compared to contexts with SOA variability below 75 ms STD. When data were restricted 
to targets presented at the mean SOA of the distribution, we observed that discrimination 
performances (both in terms of accuracy and RTs) were relatively better for periodic and 
for low-temporally variable sound sequences as compared to more temporally variable 
sequences (of standard deviation above 50 ms/75 ms, i.e. 10-15% of the mean SOA of the 
distribution). The persistence of contextual effects when restricting analyses to targets 
presented at the same SOA (500 ms) shows that the effect of temporal context on auditory 
perception cannot be explained by the sole influence of the last SOA between the target and 
the preceding sound. In particular, these results cannot be influenced by hazard rate effects 
(i.e. relatively better performances when targets stimuli occur later than expected, and 
poorer performances when the target stimuli arrive before than expected (Luce, 1986; Nobre 
& Van Ede, 2018). Furthermore, these results also rule out the hypothesis that participants 
only assume a 500-ms SOA, and are surprised when it is not met. If our contextual effects 
only relied on the assumption of a 500-ms SOA, we would observe similar performances 
for all targets with a preceding 500 ms SOA. However, we do see that the discrimination 
performance of these targets decreased when the global temporal context was more 
temporally variable. We argue that these observations result from probabilistic temporal 
predictions mechanisms, i.e. that the participant forms an internal model of the distribution 
of SOAs. Specifically, temporally predictable contexts would give an advantage in target 
auditory discrimination versus no advantage for no predictable contexts: in a low temporal 
variability context, participants can leverage temporal predictions to anticipate stimulus 
arrival, thereby enhancing auditory perception. However, in temporally variable contexts, 
there is no reliable temporal cues in order to predict the timing of the target sound, therefore 
temporal predictability cannot benefit auditory discrimination. This suggests that perception 
is not only influenced by the probabilistic inference of the mean SOA between sounds, but 
also by the amount of temporal variability of the context. 

The effects of probabilistic timing of sensory context have previously been observed on 
response times (Cannon, 2021; Herbst & Obleser, 2017; Herbst & Obleser, 2019; Grabenhorst 
et al, 2019; Grabenhorst et al., 2021). In these studies, participants either performed auditory 
discrimination tasks (Herbst & Obleser, 2017; Herbst & Obleser, 2019), tapping (Cannon, 2021), 
or “set-go” tasks (Grabenhorst et al., 2019; Grabenhorst et al., 2021; Los et al., 2017). The 
temporal distribution of the foreperiod before the target stimuli influenced response times in 
both tasks. Importantly, like in this current study, temporal expectancy mechanisms were not 
uniquely driven by the hazard rate of events, but were also sensitive to the probability of events 
timing so that response times were fastest when events occur around the mean of contextual 
temporal probability distribution. Our results further show that not only response times, but 
also auditory perceptual sensibility is influenced by the temporal probabilities of contextual 
information. They also highlight that the time required to implement temporal predictions 
mechanisms based on contextual temporal probabilities is relatively short (temporal statistics 
from the previous 3 SOAs can already bias target perception and response times) and depends 
on the degree of confidence in the temporal regularities of the context. 

Knowing that the perception of rhythmic cues in auditory signals is variable across individuals 
(Potter et al., 2009, Obleser et al., 2017) and could depend on several factors, such as the 
participant’s musical expertise (Geiser et al., 2009), we examined whether participants 
accurately perceived the amount of temporal variability in the sound sequences, and whether 
this impacted their performances. Participants accurately assessed the amount of temporal 
regularity in the sound sequences, as their subjective rating of temporal regularity slowly 
decreased with increased temporal STD of the context. Interestingly, individual variability in 
the ratings were observed, so that certain participants rated more variable temporal contexts 
as more rhythmic. However, subjective variations in the perception of rhythmic cues did not 
significantly add explanatory power to the auditory performances. 
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PUTATIVE NEURAL MECHANISMS BEHIND PROBABILISTIC TEMPORAL 
PREDICTIONS

The present findings have implications for current theories and frameworks linking low-
frequency neural oscillations to temporal prediction mechanisms in auditory perception. 
The neural entrainment theory postulates that external rhythms can entrain endogenous 
neural oscillations, which reflect periodic fluctuations in excitability of neuronal populations 
(Schroeder & Lakatos, 2009; Cravo et al., 2013). According to this view, neural excitability 
fluctuations temporally align to the periodic external stream so that the period of high neural 
excitability coincides with the beat of the external stimuli. A direct prediction of the neural 
entrainment theory is that perception should be optimal when stimuli are periodic enough to 
entrain neural oscillations, and when target sensory events occur on beat with the entrained 
neural oscillation. Here, we do actually report that temporal prediction mechanisms do not 
only account for purely periodic stimuli but are also robust to a certain amount of temporal 
variability. Specifically, we found that temporal predictions benefit auditory perception until 
the variability of temporal context reaches a STD threshold of 10–15% of the mean SOA of 
the distribution. It is possible that the neural entrainment theory, tested in periodic contexts, 
could generalize to more complex temporal predictions observed in hierarchically structured 
rhythms (e.g., speech or music). Importantly, this would explain why temporal properties of 
speech signals, which are not periodic (Nolan & Jeon, 2014) but are still based on probabilities 
of occurrence, influence the perceived duration of speech segments and neural dynamics in 
auditory cortices (Kösem et al., 2018). Interestingly, a recent computational model reports 
that neural oscillators can handle a certain degree of temporal variability: Stuart–Landau 
neural oscillatory models are still able to synchronize to temporally variable stimuli, with SOAs 
drawn from Gaussian distributions with standard deviations going up to 20% of the mean 
SOA (Doelling & Assaneo, 2021). Empirically, neural entrainment is observable for stimuli that 
are not fully isochronous (Calderone, 2014; Lakatos et al., 2008; Herrmann et al., 2016; Kösem 
et al., 2018). Yet, it is still unclear what exact degree of temporal variability entrainment 
mechanisms can handle. Interestingly, local variations of sounds sequences’ timing can affect 
neural entrainment to the delta range (Herrmann et al., 2016): entrained delta oscillations to 
a temporally variable sound sequences were shown to fluctuate in amplitude over the course 
of the sequence. Importantly, the phase of entrained delta oscillations was indicative of 
sound deviant discrimination, but only when the delta entrainment was strong. It is possible 
that, in this experiment, epochs with high delta oscillatory activity were corresponding to 
periods where the sound sequences were sufficiently temporal regular and predictable so 
that entrainment could occur, while epochs with low delta activity were reflecting failure of 
neural oscillatory activity to entrain to more temporally variable contexts (Herrmann et al., 
2016).

Alternatively, the temporal predictions mechanisms observed in periodic and probabilistic 
contexts could rely on low-frequency dynamics, but would not obviously reflect neural 
entrainment per se. Evidence for this hypothesis is that low-frequency neural dynamics 
are shown to reflect temporal predictions in non-entrained sensory context, e.g. when 
temporal predictions rely on memory-based patterns (Wilsch et al., 2015; Breska & Deouell, 
2017; Daume et al., 2021; Herbst et al., 2022). However, it is possible that memory-based 
predictions and temporal contextual predictions may rely on different co-existing neural 
mechanisms (Bouwer et al., 2020; Bouwer et al., 2022). The results of this study also support 
the view that predictive probabilistic timing is more than hazard rate, and that it also relies 
on the probability density function of the timing of previous sensory events. As such, the 
mechanisms related to hazard rate and contextual temporal predictions could be dissociated 
and have different mechanistic origins. While hazard rate processing seems to rely on motor 
regions (Herbst et al., 2018; Cui et al., 2009), contextual probabilistic timing may involve a 
different distributed neural architecture, including early sensory areas (Bueti et al., 2010; 
Herbst et al., 2018). 

In our study, we presented visual cues in synchrony with the auditory sounds. The visual 
cue was indicating the target sound, so as to make sure that the response of the participant 
was referring to the target, and not to any other sound from the sequence. A limitation from 
this manipulation is that visual timing could potentially have affected the temporal precision 
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of the observed auditory effects, considering that the visual event timing can interact with 
the perception of auditory event timing (Di Luca & Rhodes, 2016), and that event timing of 
visual events are usually judged with less precision than auditory events (Di Luca & Rhodes, 
2016; Zalta et al., 2020), though audition is known to dominate the temporal judgments of 
audiovisual stimuli (Wilsch et al. 2020), e.g. during rhythmic stimulation where perceived 
audiovisual rates are usually shifted towards the auditory rate (Wada et al., 2003; Welch et 
al., 1986). Visual timing also interacts with neural entrainment mechanisms, so that visual 
stimuli can modulate the phase of entrainment of auditory cortices (Lakatos et al., 2008; 
Kösem et al., 2014). We cannot fully conclude whether the observed temporal predictions 
mechanisms rely on unimodal or crossmodal mechanisms. However, the present results 
provide evidence that temporal predictive mechanisms influence auditory perception in 
implicit probabilistic temporal contexts, and that they are robust to some amount temporal 
variability. 
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