
Introduction
The past decade has witnessed an explosion in the variety 
and sophistication of data sources, sensors, and platforms 
employed in archaeological remote sensing (ARS). The 
proliferation of UAVs, regional and research-driven lidar 
surveys, the uptake of hyperspectral imaging, the launch 
of high-temporal revisit satellites, the advent of multi-
sensor rigs for geophysical survey, and the explosion 
of use of structure from motion (SfM) mean that more 
archaeologists are engaging with remote sensing than 
ever. Improvements in data quality and coverage make the 
techniques broadly available and applicable. At the same 
time, increased availability of low-cost and open software, 
creative implementation of non-metric sensors, and 
public and free data sources have made remote sensing 
and its applications to archaeology more accessible 
to non-specialists. Growing awareness of remote 
sensing methods and their applications has created an 
environment in which new technologies are applied to a 
relatively broad set of projects early in their development, 
with many researchers experimenting in parallel.

This positive momentum is reflected in both university 
level teaching and the literature. The broad definition 

and basic applications of archaeological remote sensing, 
including the use of aerial photographs, satellite 
imagery, geophysical prospection, and topographic 
data to investigate past landscapes, are now introduced 
at a basic level at universities in the Anglophone world 
and beyond, albeit with uneven depth of coverage and 
frequency (Aitchison 2017; Cowley & Palmer 2009; CIfA 
2014; but see the absence of ARS in the 2015 special issue 
of The Historic Environment: Policy & Practice on Training 
and Teaching in the Historic Environment). The breadth 
of interest in remote sensing in archaeology is reflected 
in recent volumes including Comer and Harrower’s 
(2013) Mapping Archaeological Landscapes from Space 
or Kamermans, Gojda and Posluschny (2014) A sense of 
the past: studies in current archaeological applications 
of remote sensing and non-invasive prospection methods, 
McKinnon and Haley’s (2017) Archaeological Remote 
Sensing in North America, and in metric surveys of trends 
in archaeological literature e.g. by Agapiou and Lysandrou 
(2015) who show the increase in citations and the variety 
of venues in which they appear. 

While the discipline has gained momentum and 
technological advances continue to drive research in the 
specialist community, providing reasons for optimism 
that we will see increasingly sophisticated research and 
heritage management applications forthcoming, many 
long-standing problems remain unresolved. Central 
are the need to broaden access to task-appropriate 
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high-quality data to reach regions and sub-disciplines 
where remote sensing is underutilized, the need to 
cultivate the necessary theoretical and methodological 
expertise to engage with increasingly complex data 
and tools, and the development of frameworks to 
contextualize remote sensing applications within the 
process of archaeological interpretation. Why, we may ask, 
are these problems so persistent if they are readily named 
and widely recognized? In this article we suggest that 
while technological obstacles have been progressively 
overcome, these challenges stem predominantly from 
the discipline’s intellectual history and orientation. 
In this light, this article aims to contextualize these 
problems, drawing on reviews on various specialist 
topics (e.g. Colomina & Molina 2014, Comer & Harrower 
2013, Thompson et al. 2011, Verhoeven & Sevara 2016, 
Verhoeven 2017), reports on individual fieldwork projects, 
and on analytical projects across three broad segments of 
landscape archaeology: data collection in the field, the 
current state of data access and archives, and processing 
and interpretation. In bringing these threads together, we 
endeavour to encourage reflection on the broad impacts 
of recent rapid technological progress on the trajectory 
and roles of remote sensing in archaeological practice.

Data Collection in the Field
While the roster of remote sensing techniques used in 
archaeology has largely remained static, the mechanics 
of data collection have improved significantly thanks to 
technological advances over the past decade. Applications 
using data collected from UAVs, large area geophysical 
survey rigs, and high temporal revisit satellites all 
represent a reworking of the platforms and equipment 
behind existing techniques already used in archaeology. In 
each case, marked improvements in spatial and temporal 
resolution, together with a decrease in cost, have led to a 
step change and a significant broadening of the application 
of these technologies. Lidar and SfM in particular, while 
based on extant technology, were so transformed as to 
appear on the scene as ‘new technologies’. Lidar has been 
available since the 1960s (McCormick 2005) and SfM has 
roots in photogrammetry (Carrivick, Smith & Quincey 
2016), but technological developments in the early 2000s 
allowed the collection of dense topographic data at a level 
of detail previously impractical and, in the case of airborne 
lidar, allowing the efficient collection of high resolution 
topographic data in wooded areas, as well as in open fields 
(Shell & Roughley 2004, Doneus & Briese 2006). 

These progressive improvements in spatial resolution 
and coverage, and the renewed enthusiasm for each 
technology as the data it provided became more granular 
for larger areas, highlight the community’s preoccupation 
with detail and feature detection. In the fieldwork culture 
of archaeological remote sensing, higher resolution, 
larger areas, and faster data collection are prized. While 
an improved ability to detect small features of interest 
is clearly important for many applications, the strong 
emphasis placed on working with high spatial resolution 
data may lead to the neglect of the potential for lower 
resolution data to continue to shed important light 

on land use patterns, activity areas, and geological and 
morphological contexts affecting preservation (see 
Herrmann 2012 and Howey et al. 2014 for examples of 
the use of moderate resolution satellite data in the age of 
high resolution). Further, improved spatial resolution and 
coverage, the canonical ‘more data’, may be promoted as a 
solution to interpretive difficulties or end in itself. Below, 
we explore the implications of the transformation of the 
key platforms for aerial and terrestrial remote sensing, 
considering the impact of the emphasis placed on spatial 
resolution and extensive collection.

UAVs
The emergence of UAVs as a platform for archaeological 
prospection is probably the most visible trend in 
archaeological remote sensing in recent years (e.g. Campana 
2017a; Lasaponara & Masini 2016, Mozas-Calvache et 
al. 2012; Sonnemann, Malatesta & Hofman 2016). The 
popularity of the platform not only in archaeology, but 
across industries including construction, agriculture, 
security, and survey (Nex & Remondino 2014; Valavanis 
& Vachtsevanos 2015), incited the miniaturisation of 
a variety of sensors and platforms (Casana et al. 2017; 
Ludeno et al. 2017; McDaniel et al. 2017; Suomalainen et 
al. 2014; Yarlequé, Alvarez & Martínez 2017). These include 
thermal, hyperspectral and lidar instruments, as well as a 
variety of multispectral sensors, conventional still cameras 
and video cameras, and the development of relatively user 
friendly, if black-box, tools for the analysis of the data 
captured. These broad industry investments, coupled with 
an active amateur UAV user community, have benefitted 
archaeology in promoting the availability of relatively 
low-cost instruments, as well as an active ‘UAV survey as a 
service’ market that allows for rental or contracting surveys 
rather than ownership. In the archaeological context, the 
greatest effect of this technological watershed has been 
a democratisation of the collection of small-area remote 
sensing datasets, a topic taken up in more detail later in 
this article. The attraction of UAVs for the archaeological 
community has been twofold: they provide a degree 
of independence as fully licensed pilots and aircraft are 
not required, and they can be used to collect very high 
spatial resolution data. UAV data is typically captured at 
the trench, site, or site and hinterland scale to support 
the detailed mapping of remains either on the surface 
or with some surface expression e.g. sub-surface remains 
affecting spectral response, or resulting in topographic 
features. A review of the major journals shows dozens 
of articles promoting the results of UAV-based surveys 
(e.g. Fernández-Hernandez, González-Aguilera & 
Rodríguez-Gonzálvez 2014; Khan, Aragão & Iriarte 2017; 
Smith et al. 2014), and many other projects are clearly 
using UAVs to carry out basic tasks such as capturing aerial 
views of trenches or creating local topographic models, as 
discussed below under ‘Structure from Motion’. Given the 
energy currently going into UAV surveys in archaeology 
we must ask: what are the impacts and benefits of these 
often centimetre scale models and images? Are they used 
for illustration, as baseline data for monitoring, to explore 
fine-grained temporal patterns, or integrated into further 
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analyses and interpretations? What are the archaeological 
questions we ask at the 5 cm–25 cm scale at the extent 
of a site, a site and its hinterland, or a small chunk of 
landscape? Identifying research themes that truly benefit 
from scaling up the available data is likewise important 
in the practice of terrestrial geophysical survey, which has 
undergone its own revolution in platforms over the past 
decade. 

Large Array Geophysics
As Kvamme (2003) demonstrated and Campana (2017b) 
recently reiterated, geophysical survey can operate as a 
form of landscape archaeology thanks to the increasing 
spatial extent of the areas covered by individual surveys. 
This thinking has been borne out, particularly in open 
alluvial and plains landscapes where the use of motorized 
arrays of multiple sensors with integrated with positioning 
systems have become de rigueur for surveys of entire 
urban settlements and of landscape blocks, wherever cost, 
ground cover, and topography permit. It is increasingly 
common for magnetometer surveys to be carried out with 
cart-mounted arrays paired with dGPS, RTK GPS, or robotic 
total stations that can guide sensor orientation and field 
coverage, allowing for larger areas to be surveyed with 
considerable speed (Figure 1). Coverage with geophysical 
sensors is not only wider but more detailed. Arrays of 
multi-frequency GPR antennae arranged at distances 
shorter than the central antenna frequency wavelength 
can produce three-dimensional full-waveform maps of the 
subsurface (Gramuseck et al. 2005). When tracked with 
precise positioning systems, multi-channel GPR survey, 
like magnetometry, can reasonably produce data for 5+ 
hectares per day, far surpassing the density and coverage 
possible otherwise.

Landmark survey projects including the Stonehenge 
Hidden Landscapes project (De Smedt et al. 2014; 
Gaffney et al. 2012) and BREBEMI project (Campana & 
Dabas 2011) and ongoing work mapping prehistoric 
landscapes in Ohio (Burks 2014a; Burks 2014b) 
demonstrate the value of scaling up geophysical 
survey beyond the site, prompting a reconsideration 

of approaches to the archaeological countryside. These 
new approaches to the archaeology of the rural world 
draw on extensive geophysical survey data that can 
complement fieldwalking or shovel testing (Thompson 
et al. 2018), leading to the identification of physical 
roads and pathways that link sites to points of interest 
in the wider landscape (Casana & Herrmann 2010: 64), 
and to the identification of previously undiscovered 
and archaeological features and sites (Campana 2017b: 
1238) that contextualize previously known sites or show 
activity in formerly quiet areas of the landscape. The 
implications of larger scale geophysical surveys have 
also been particularly profound for the study of urban 
plans and urban development, building on numerous 
surveys of entire cityscapes (Bossuet et al. 2012; Gaffney 
& Gaffney 2000; Gaffney et al. 2016; Johnson & Millett 
2013; Keay et al. 2000; Keay et al. 2009) and providing 
a framework for analyses of architectural forms and site 
organization (Benech 2007), and movement (Branting 
2010). In addition to providing growing quantities of 
new data, as discussed below, the increase in coverage 
of high spatial resolution geophysical data provides 
opportunities for a refocus of geophysical survey from 
feature detection to land use characterisation, increasing 
the overlap between archaeological prospection and 
geomorphological approaches to landscape taphonomy 
and expanding opportunities for basic research in the 
context of landscape archaeology more broadly.

UAVs and Multi-sensor Arrays Together
One apparent impact of the new resolution and extent of 
the data provided by UAV and multi-sensor array platforms 
is a rapprochement between aerial and terrestrial survey. 
This convergence in scale leads to the potential for an 
increase in projects integrating aerial and geophysical 
data productively. This stands in contrast to past 
circumstances, where aerial photography was available 
at 20 cm resolution, but most other non RGB-IR aerial 
data sources remained at 50 cm resolution or coarser, 
and data at better than 2 m resolution were relatively 
expensive. These data were collected for extensive areas, 

Figure 1: Multi-sensor array geophysics in action. Left: magnetic gradiometry, right: multichannel GPR survey (image 
courtesy Alexandre Novo and Geostudi Astier).



Opitz and Herrmann: Recent Trends and Long-standing Problems in 
Archaeological Remote Sensing

22  

and generally used to address micro-regional or large 
landscape questions. Terrestrial geophysics was frequently 
collected at resolutions ranging from 50 cm to 1 m over 
small areas, and the limited collection areas oriented 
research and management applications to the site or 
feature scale.

Consequently, a divide has persisted between the aerial 
and geophysical communities, as evidenced by separate 
professional societies. In Europe, for example, CIfA’s 
GeoSIG (CIfA 2018) and the International Society of 
Archaeological Prospection (ISAP) (ISAP 2018) primarily 
focus on terrestrial geophysics and the Aerial Archaeology 
Research Group (AARG) (AARG 2018) primarily focuses 
on aerial remote sensing. This divide is also reflected in 
the delimitation of remits in organizations like Historic 
England, which maintain separate groups for these 
areas. With airborne sensing and terrestrial geophysics 
allied more closely through their scale and extent, closer 
professional links and intentionally integrated training 
schemes should be a priority. The ArchaeoLandscapes 
Europe Project (2010–2015), and the formation of 
ArcLand International (ArcLand 2018) in 2016, an 
umbrella organization in which ISAP and AARG serve 
jointly as leadership organizations, represent important 
steps in this direction. 

Structure from Motion
Topographic study has a long history in archaeology but, 
we note, has traditionally been more closely connected 
to the domain of survey than to remote sensing. Manual 
photogrammetric workflows for aerial imagery from stereo 

pairs were relatively slow and the use of this approach 
to create 3D data therefore remained limited, although 
interpretation and planning from stereo pairs was widely 
practiced (Brophy & Cowley 2005; Ducke, Score & Reeves 
2011; Lambers et al. 2007). Although significant interest in 
Structure from Motion for 3D modelling is evident from the 
early 2000s (Pollefeys et al. 2002; Pollefeys et al. 2003), the 
step change came in the 2010s when, almost concurrent 
with the wider availability of UAV platforms, significant 
improvements in algorithms and computational capacity 
led to a revolution in the generation of 3D models from 
imagery (e.g. Green, Bevan & Shapland 2014; Remondino 
et al. 2011; Verhoeven 2011). Together with increasing 
engagement with lidar, discussed below, the availability of 
SfM data has led to the study of the shape of landforms 
and topographic morphology at various scales through 
3D models becoming an integral part of archaeological 
remote sensing. Structure from Motion (SfM), particularly 
employing aerial imagery, is now an important source 
of topographic data for small landscape areas and for 
site-based projects (Fernández-Hernandez et al. 2015; 
Jorayev et al. 2016; Remondino et al. 2011, Verhoeven 
2009; Campana 2017b; Watanabe et al. 2017). Together 
with the proliferation of UAV use in archaeology, SfM 
allows the creation of high spatial resolution topographic 
models over limited areas at relatively low cost. Examples 
including Mozas et al. (2012) and Wernke, Adams and 
Hooten (2014) illustrate the clear practical utility of SfM as 
a way to fulfil a basic archaeological desire – better maps 
of the area under study and detailed data on local surface 
topography (Figure 2). The creation of terrain models for 

Figure 2: SfM-generated orthomosaic (left) and topographic map (right) of an archaeological site, created from 
photographic images collected with a UAV. Horizontal error for individual ground control points is displayed on the 
orthomosaic. Eastern H

˘
abur Archaeological Survey.
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larger areas by processing historic imagery not collected 
explicitly with photogrammetric processing in mind, as 
carried out by Risbøl et al. (2015) and Sevara et al. (2017) 
demonstrate the potential for SfM to support landscape 
archaeological research by allowing archaeologists to 
reconstruct terrains that have since been transformed, and 
by opening new avenues for tracking landscape change at 
a higher resolutions and through deeper timelines than 
satellite imagery will permit.

In addition to reinvigorating topographic study and 
helping to bring the active use of 3D data to remote 
sensing, together with UAVs, SfM has played a leading 
role in spreading the practice of capturing and working 
with archaeological remote sensing data to a broader 
community. The use of close-range and mid-range SfM 
for the recording of stratigraphy during excavations is 
increasingly common (e.g. Koenig, Willis & Black 2017; 
Roosevelt et al. 2015), as is the practice of documenting 
the landscape surrounding an excavation. This shift in 
recording practice in the context of excavations has 
democratised the practice of working with 3D models of 
miniature terrains, and provides a bridge to working with 
3D topographic data at the landscape scale. 

Lidar
Lidar, also commonly referred to as airborne laser scanning 
(ALS) has now been in relatively wide use in archaeology 
for over a decade (Chase et al. 2011; Devereux et al. 2005; 
Fisher et al. 2017; Harmon et al. 2006; Opitz & Cowley 
2012; Doneus et al. 2013; Vinci & Bernadini 2017). The 
impacts of the increasing availability of this data are clear, 
including the discovery of large quantities of previously 
unrecorded sites and features across the landscape, a 
renewed interest in the study of the topographic context 
of sites and landscape features, an increased integration 
of geomorphological studies in archaeological projects, 
an intensification of interest in woodland landscapes and 
the archaeology of woodlands and a growing number of 
projects targeting uplands and other non-agricultural 
areas that were previously considered prohibitively costly 
or labour intensive to survey. The broad availability of high 
spatial resolution topographic data has also precipitated 
a new generation of projects revisiting path modelling, 
questions of movement, visibility studies, and other 
analyses of the experience of landscape (Brady et al. 2012; 
Corns & Shaw 2009; Primeau & Witt 2017; Schindling 
& Gibbes 2014) previously widely acknowledged to be 
hampered by the limited resolution of the available 
terrain data. 

Beyond its impacts in the research community, ALS 
is now treated as a basic data source to be employed 
wherever available by commercial projects in the UK, 
France, the Netherlands, and other European countries 
with public data available (Barnes 2003; Böfinger & Hesse 
2011; Crutchley 2010; Meylemans et al. 2017). Collection 
of the data in advance of major infrastructure projects to 
benefit their generally planning and execution continues 
to benefit archaeology, as the data is often made available 
for research beyond the mitigation strategy e.g. the LGV 
Est construction (Georges-Leroy & Villier 2016) and the 
Tor Top tunnel system (Stichelbaut et al. 2017). Regional 

and national collections, generally acquired in the context 
of flood risk, landslide, or other hazard management, are 
increasingly being made available to archaeologists, and 
a continuation of this trend will only further increase the 
impact of ALS on archaeological research and heritage 
management. Publicly available and well described data, 
as discussed below in the sections on data access and 
archives, is particularly important for broadening the use 
of archaeological remote sensing data outside the core 
specialist community, and consequently for its application 
to new questions and challenges in research and heritage 
management.

Lidar and SfM together – the landscape in 3D
Measuring and depicting the landscape in 3D and 
topographic survey are nothing new in archaeology. As with 
UAV sensors and multi-instrument geophysical surveys, 
the spatial resolution and extensive coverage of the data 
available has proved key to transforming the research 
agenda and, in this case, the interpretive context and 
process. While reading sparse survey points, contour maps, 
or hachure plans requires a trained eye, the realistic look 
and detail of lidar and SfM generated topographic models 
at least give the impression they are easily understood. 
While not slowing the pace of projects employing the 
3D terrain models to identify sites and features and 
interrogate taphonomic and geomorphological processes, 
the ready availability of detailed (20 cm–1 m resolution) 
3D data for relatively large areas and the transition to the 
domain of remote sensing, where earlier topographic data 
had primarily been collected and interpreted by surveyors, 
has incited some debate within the community over the 
interpretation of this data. The interpretation of landscape 
topography, long inherently tied to the process of carrying 
out the survey on the ground, no longer requires personal 
physical engagement with the terrain to be interpreted. 
This shift in the practice of interpreting terrain data (Opitz 
& Cowley 2012) is the subject of ongoing debate, and is 
now linked to an emerging discourse on automation and 
machine learning (Bennett, Cowley & De Laet 2014). For 
the surveyor and the remote sensing communities, jointly 
engaged in the business of studying the landscape, the 
question is one of situating expertise. Can someone who 
has never been to the place interpret its topography? Can 
an algorithm interpret topography? To what extent is the 
knowledge required to interpret remotely sensed data 
technical, about the sensors and platforms, and to what 
extent is it contextual? The answer, we may surmise, is 
somewhere in the middle as usual, but the implications 
for the practice of remote sensing as practitioners 
increasingly engage with a complex interpretive process 
are important, and we will return to these questions below.

High Temporal Revisit Satellites
While most recent innovations in data collection have 
focused on improving spatial resolution and coverage, 
the value of high temporal resolution data merits serious 
consideration. The launch of high temporal revisit 
satellites producing publicly accessible data, notably the 
Sentinel satellites (Showstack 2014), to date has received 
limited attention in the archaeological literature (but see 
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Agapiou et al. 2014; Agapiou 2016; Ruciński, Rączkowski 
& Niedzielko 2015). The limited spatial resolution of these 
data, too low for the reliable detection and interpretation 
of many archaeological features, is the primary reason 
for their relative neglect. However, archaeologists 
whose interests lie in reconstructing paleoenvironments 
(El-Baz et al. 2007; Herrmann 2012; Howey et al. 2014), 
the distribution of anthropogenic soils and landscapes 
(e.g. Menze & Ur 2012), or in monitoring of changes in 
overall land use, may find data from Sentinel series and 
other low- to moderate-resolution satellites useful. In 
this light, the potential impact of these platforms within 
archaeological remote sensing, particularly in the context 
of heritage monitoring and management applications, is 
great, and will grow as extensive multi-temporal archives 
are generated (see Giuliani et al. 2017 for a discussion of 
relevant parallel applications in environmental monitoring 
and Cuca & Hadjimitsis 2017 for an overview for heritage 
monitoring). High-temporal revisit platforms, together 
with detailed local weather data, provide an opportunity 
to better understand the process of crop and other 
vegetation development in relation to the presence of 
archaeological features or changes in land use. Improving 
our understanding of the cycle of farmed and unmanaged 
vegetation growth has significant implications for our 
ability to detect cropmarks and understand their formation 
or their absence. It also provides further means of engaging 
in the study of landscape change at a temporal scale often 
neglected, the short term, season, or event. To date, the 
focus of many archaeological landscape studies has been 
long term change, with remote sensing data providing 
a series of snapshots or a single palimpsest of evidence 
(see Bailey 2007 and Fairclough 2003 for discussions of 
temporalities and palimpsest). Pursuing the study of short 
term change in the landscape will require developing 
methods and frameworks to take advantage of improved 
temporal resolution and engaging seriously with theories 
of the temporal rhythms of landscape change.

These satellites also provide an important resource for 
monitoring in areas of conflict or rapid development. 
Recent articles by Parcak et al. (2016) and Fradley and 
Sheldrick (2017) in Antiquity, while in disagreement 
on some points, highlight the importance of ongoing 
monitoring and timely data updates to manage heritage 
in dynamic contexts. Several major efforts now leverage 
the advantages of serial satellite imaging across the Middle 
East and North Africa for the purpose of site and landscape 
monitoring, including the Endangered Archaeology of the 
Middle East and North Africa project (EAMENA – Bewley 
et al. 2016), the ASOR Cultural Heritage Initiatives (Casana 
and Panahipour 2014; Casana 2015; Danti et al. 2017) and 
the Afghan Heritage Mapping Project (Stein 2015). Now 
that these projects have been operating for three years or 
more, they are able to move beyond data collection and 
examine the how and why of looting and destruction 
through development. For example, analysis of the timing 
and location of looting patterns over the duration of 
the Syrian civil war through WorldView series satellites 
has helped to untangle the complex social and political 
forces that drive threats to cultural heritage (Casana & 

Laugier 2017). Parallel efforts are using satellite imagery 
to monitor looting and its effects in South America 
(Lasaponara et al. 2014; Contreras 2010) and Asia (Chen 
et al. 2017; Lasaponara & Masini 2013; Thomas & Kidd 
2017). These projects can be viewed as a foray into dealing 
with the event temporal scale, and conversations among 
different areas of the community, between heritage 
monitoring and research practitioners, will be essential 
to translate these experiences into a landscape research 
context.

Access, Archives and Standards
While technologies for data collection have advanced 
significantly, the archaeological community continues to 
struggle with the uneven availability of these technologies 
and the data produced through them, and with our ability 
to manage, maintain and make useful that data once it has 
been collected. These challenges are not unique to remote 
sensing within archaeology, but the scale, variability and 
complexity of the data involved make them acute. This 
section synthesizes and reflects on the wide-ranging 
discourse surrounding access, archiving and standards 
for archaeological remote sensing data, as well as the 
question ‘what constitutes good data?’

Access to data and ‘good data’
While it is widely acknowledged that the availability 
of satellite and aerial data has improved significantly 
overall, because much archaeological work is location 
specific, most archaeological users wish to know if data, 
and if ‘good data’ is available for their area. In spite of 
the general improvement, the availability of data, or 
coverage, varies widely. While some satellite data sources 
have global coverage, airborne and terrestrial data are 
collected on a national, regional or ad hoc basis. Over 
the past decade, national and regional airborne datasets 
have become increasingly important to archaeologists, as 
lidar, conventional high resolution aerial photography, 
and some multispectral data are collected at these levels, 
and frequently made available at no cost to researchers. 
Examples of national and regional (e.g. state, province, 
department) data made freely available, at least to in 
country researchers, include lidar data from Denmark, 
Spain, the USA, Australia, and the UK (Denmark: Styrelsen 
for Dataforsyning og Effektivisering 2018; Spain: Centro 
de Descargas 2018; USA: Office for Coastal Management 
NOAA 2018; Australia: Australian Government 2018; UK: 
Government Digital Service 2018). In short, it is unusual 
to work somewhere for which no data is available, but 
the increasing availability of relatively high resolution 
data, with which much of the research community is 
enamoured, means that it is difficult to engage in the 
current research discourse on the basis of what may be 
viewed as sub-par data. The consequence of this is a relative 
lack of engagement with researchers working in less data-
rich regions. Variability in coverage (Figure 3), in this 
sense, is a structural problem in itself, and often the divide 
is along the lines of more and less wealthy or developed 
nations or regions. The Amazon region provides a case 
in point. This region has seen significant international 
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investment in remote sensing through NGOs for purposes 
of environmental monitoring (e.g. Asner et al. 2010 and 
2012) but this data has not been made widely available 
to the broader research community, nor is it necessarily 
collected using parameters that would make it most useful 
for archaeologists, as well as environmental scientists. The 
regional picture in Central America is rather different. 
NCALM (NCALM 2018) are active in Central America, 
collecting data specified for research projects (see Chase 
& Chase 2017 for a useful summary) and making this 
data available on an Open Access basis after an embargo 
period, or immediately if agreed by the project’s lead 
investigators. These data have been instrumental in the 
rapid uptake of lidar-led landscape and survey projects 
in this region. The availability of data on an Open Access 
basis is clearly directly linked to the extensive application 
of this method across the board, and particularly in less 
wealthy regions. Appropriate lobbying of international 
agencies and government organisations may result in 
some improvements in the availability of high resolution 
data for research or management, or alterations in data 
collection strategies. 

Closely linked to the problem of coverage in the sense 
of data vs. no data, is the variable availability of high 
spatial resolution data (Chase & Chase 2017, Table 1; 
Rosenswig, López-Torrijos & Antonelli 2015). Spatial and 
signal resolution, especially spatial resolution, are 
long-standing problems in archaeological remote sensing 
(although recall our discussion above for research strands 
that benefit from lower spatial resolution data). In spite 
of the availability of very high resolution data from 
public sources for some areas and the proliferation of 
UAV surveys, archaeologists working at the landscape 
scale still regularly make choices between extensive 
areas and spatial detail. In arguing for a role for lower 

spatial resolution data and the need to develop research 
frameworks and questions to leverage it, it is essential to 
provide good training in the real, pragmatic relationship 
between nominal data resolution and the ability to 
recognize features reliably and run different analyses 
realistically. The resolution required for both detection of 
certain feature types and for some analyses is higher than 
may at first seem apparent. 

If you imagine a square feature, how many points are 
needed, if they are placed on a regular but random grid, 
to capture the shape? If a shape is curved or irregular, 
how many points are needed? This simple thought 
exercise leads to the conclusion that a ground resolution 
of 20–50 cm is necessary to reliably capture many 
archaeological features such that they are recognizable. 
Again, we are faced more with a social problem than 
a technical one. Too many projects attempt to “get 
something out of” lower resolution data and start off with 
unrealistic expectations, resulting in a general frustration 
with remote sensing as an approach (see comments 
in Campana 2016; Lasaponara et al. 2017; Linck et al. 
2013; Viberg, Trinks & Lidén 2011). As evidenced by 
many successful projects (see the recent special issue 
of Remote Sensing (Kvamme 2017) for a collection of 
examples of good practice) when data is collected at a 
resolution appropriate (Schmidt et al. 2015: 12–16) to 
the scale of the features, archaeological interpretations 
can be reached. Given the importance of the availability 
of high resolution data, and of basic coverage in less well-
resourced regions, archival data sources play an important 
role, and the support of the development of new archives 
should be a priority. Equally, the reframing of the research 
agenda to take landscape change at a broader scale into 
account could be pursued, among other research strands, 
to provide a means of activating the vast and growing 

Figure 3: lidar coverage in the USA is partial, as seen on the United States Interagency Elevation Inventory map provided 
by NOAA (accessed 13 December 2017). Partial coverage is typical of national and regional datasets. In addition to 
areas without available data, the quality and spatial resolution of the data will vary.
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archive of lower resolution (5–10m) data, opening regions 
with limited high resolution data to further study.

Archival Responsibilities
Increasing access to high quality data is fundamental to 
the continued improvement of archaeological remote 
sensing research and applications. That said, the ability to 
manage this data is increasingly a prerequisite for access, 
introducing a new potential barrier. The management 
and proper archiving of new, often large, archaeological 
remote sensing datasets remains a persistent problem for 
academics and professionals, particularly those without 
strong institutional support who are attempting to comply 
with grant-driven data management policies (Kintigh 
et al. 2015; Richards 2017; Richards & Winters 2015). To 
date it has been relatively unusual to collect large aerial 
datasets without the involvement of an organisation 
who would take responsibility for archiving, as amateur 
flyers working outside an agency or institutional context, 
collecting data purely for archaeological purposes were 
few. With the growing popularity of UAV platforms, this 
situation seems likely to change, and to more closely 
parallel the experience of the archaeological geophysics 
community, where many small research teams collect data 
in support of specific research projects. Good guidance for 
the archiving of archaeological geophysical survey data, 
e.g. the ADS Guide to Good Practice (ADS 2018) exists and 
forms the foundation for many data management plans. 
That said, the implementation of these plans remains 
limited, in part because the cost of archiving larger datasets 
with many files, and the costs of preparing the archive 
correctly remain beyond the reach of many researchers, 
and are insufficiently planned for at the budgeting and 
project planning stage (McKeague, Corns & Shaw 2012). 
Given the choice between collecting more data and paying 
for archiving, most archaeologists will choose the former 
unless forced to do otherwise by funding bodies, or by a 
creation of the expectation of planning and budgeting for 
archiving and data management driven by professional 
societies and the community itself. 

The Stacks/Data Recycling
The implicit aim of increased data availability through 
improved coverage and archival practices is that these 
archived data will be reused in the pursuit of new research 
goals, or that the reliability of analyses and interpretations 
can be interrogated by researchers external to the 
original project (Atici et al. 2013). The reuse of data and 
reproducibility in research are closely linked themes, 
as discussed in Marwick et al.’s (2017) “Open Science in 
Archaeology”. In this context, older archival imagery also 
serves as a distinct resource, adding crucial time depth 
to landscape studies. As discussed fully in Hanson and 
Oltean (2012) and Gojda (2012) archival imagery is widely 
acknowledged in the aerial archaeology community as 
an important resource, “These various sets of data have 
a number of particular advantages over more recent 
imagery (whether aerial or satellite). First and foremost, 
they provide a unique insight into the character of the 
landscape across parts of Europe and beyond as it was 

approximately century or more ago before the destructive 
impact of later twentieth century development, whether 
from the increasing mechanisation of agriculture, 
intensive industrialisation or urban expansion” (Hanson 
and Oltean 2012, p. 6). 

Given the potential of the resource, it remains little 
exploited. In part this is explained by the relative 
difficulty of accessing the collections, which are scattered 
geographically, with major collections in the US (NARA), 
the UK (NCAP), and Italy (Aerofototeca Nazionale) and 
the majority of which are not digitized. Digitisation 
work, primarily led by NCAP (NCAP 2018) is ongoing, 
and continued efforts to bring collections online are 
essential to increasing the use of these resources (Cowley 
& Stichelbaut 2012). The inconsistency of finding aids, 
the documentation provided to locate imagery within 
collections, as discussed by McKeague and Jones (2013) 
likewise hampers progress. The ongoing digitisation 
of finding aids will likewise continue to improve the 
accessibility of these collections. As is the case in other 
areas, however, the problem is as much social as it is 
technical, and the perceived value of the archival work 
remains an important obstacle. “Survey” is usually 
equated with flying in a small aircraft or walking across the 
ground, but probably the most effective means of survey, 
of discovering previously unrecorded sites and creating a 
basic record of them, remains existing aerial photographs. 
Undertaking ‘survey’ in boxes of aerial photographs or 
viewing digital images on screen may lack the appeal or 
glamour of aerial or field survey, but for simple value for 
money in discovering and recording sites, we contend that 
it has no equal” (Cowley & Stichelbaut 2012: 20) Perhaps 
the most good can be done by promoting projects that 
make use of archival materials, and initiatives such as the 
CAA Recycle Award (CAA 2018) are well placed to do this.

Considering archiving of new data and the exploitation 
of extant archives together, the danger of reproducing 
some of the problems with historic archives, notably the 
difficulties discovering data and fragmentation among 
many institutions, in the context of newly created 
archives is clear. Organisations including DANS, the ADS, 
tDAR, and OpenContext are working to play centralizing 
and aggregating roles (Bauer-Clapp & Kirakosian 2017; 
McManamon et al. 2017; Richards 2017), but complications 
of remit and obstacles of costing remain in place. While 
we are not suggesting a single archival solution, there 
is a role for international professional organisations in 
maintaining channels of communication between these 
groups, and providing links out to relevant organisations, 
which most often operate at the national level. In parallel, 
there is a need to engage with the disciplinary discourse 
on open science and open data (Figure 4) in archaeology 
in relation to the use and creation of archival data sets 
and our interactions with archives and other institutions 
acting as data repositories.

Analysis and Interpretation
As archaeological remote sensing data collections grow 
larger and we seek to tap the potential of archived and 
newly acquired data, the ability to analyse complex 
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data effectively and to automate routine tasks such as 
georeferencing and initial feature detection has become 
increasingly important. Image analysis, signal analysis 
and multivariate techniques are all well established 
in archaeological remote sensing (e.g. Aqdus, Hanson 
& Drummond 2012; Cassidy 2009; Challis & Howard 
2006; Giardino 2011). More recently, machine learning 
and computer vision have seen significant recent 
improvements (Barceló 2010; LeCun, Bengio & Hinton 
2015; Szeliski 2010; Schmidhuber 2015; van der 
Maaten 2006), and have been applied successfully to 
archaeological remote sensing projects in the past five 
years (Toumazet et al. 2017; Trier & Pilø 2012; Due Trier 
et al. 2016). Machine learning, computer vision, and 
automation are increasingly seen as instrumental to 
mobilizing archaeological remote sensing’s ‘big data’, and 
a priority for research. This section reviews the state of the 
art in analysis and interpretation, highlighting current 
obstacles to progress, and lays out an agenda for future 
work.

Obstacles to processing advances
Kvamme (2003) notes, in the context of magnetometry 
survey, that data processing is almost as important as 
the collection of raw data. He elaborates on various 
aspects of data processing that improve the visibility and 
coherence of archaeological features in magnetometry 
data, including augmentations designed to improve the 
appearance of the data as presented in print or on screen. 
His article highlights the importance of processing to 
the interpretation process. Fundamentally there are two 
ways to improve the interpretability of the data, and 
consequently the results of an archaeological remote 
sensing project. The first means is improvement in the 
quality of the data collected, e.g. signal to noise ratio, 
spatial and signal resolution and range. The second route 
is to pursue improvements in the processing techniques 
applied to the data. Is it easier to collect better data or to 
improve the processing of less than ideal data? Looking 
at the balance of archaeological innovations over the 

past decade, it seems the community has come down on 
the side of improvements in the quality of the raw data 
itself (e.g. Belina et al. 2009; Schmidt 2004; Trinks et 
al. 2010; see Jordan 2009; Schmidt & Marshall 1997 for 
more general discussion on improvements needed in the 
practice of archaeological geophysics). There has been 
significant investment in particular in the ability to collect 
high spatial resolution data over large areas, perhaps at 
least in part because the gains in interpretability and 
visual clarity from improved spatial resolution are obvious. 
We may further ascribe this emphasis to several factors: 
the relative difficulty in applying more sophisticated 
techniques, the difficulty selecting the right technique 
for a given application, and the fact that sometimes 
data simply is not improvable to the point of becoming 
interpretable (Traviglia 2006; Schmidt 2004). In spite of 
any obstacles, improvements in processing techniques 
should, in some cases, be able to improve the legibility of 
data as collected (Orlando & Soldovieri 2008; Schmidt & 
Tsetskhladze 2013).

Basic improvements in processing techniques will most 
likely come from outside archaeology and continued 
experimentation to identify those that will be broadly 
applicable to archaeological data is needed. Once 
major advances in processing have been identified, the 
difficulty lies in identifying situations where processing 
improvements are significant enough, and the basic data 
is good enough, that it is worthwhile to reprocess old 
data to achieve more informative or interpretable results. 
Areas that have been excavated or otherwise altered or 
removed since they were surveyed are likely candidates 
for reprocessing, as are areas rendered inaccessible for a 
variety of reasons. The reprocessing of Corona imagery 
to improve absolute georeferencing and reduce image 
distortions (Casana & Cothren 2013) is one such case, as 
is the re-processing of archival frame imagery to remove 
distortions and improve georeferencing (Verhoeven 
et al. 2013). Encouragement of data reuse broadly in 
archaeology, which has gained momentum in recent years 
(Faniel et al. 2013; Huggett 2015; Kansa & Kansa 2013), 
may further encourage the reprocessing of legacy data.

Prioritizing improving data fusion
In addition to improving the quality of data collection 
and processing, archaeologists have looked to combined 
datasets to aid in interpretability and provide additional 
insights. Combining datasets, or data fusion, in theory 
allows us to supply the deficiencies of one dataset with 
data from another, or bring together information on 
different aspects of the surface or substrata as recorded 
by a variety of sensors or through multi-temporal surveys. 
In practice, data fusion covers a range of techniques 
essential for integrating diverse sources of information 
(Zhang 2010), which are variably applied in archaeological 
contexts. Lasaponara and Masini (2012) usefully outline 
four categories of data fusion: signal level fusion, pixel 
level fusion, feature level fusion, and decision level fusion. 
Signal level fusion is intended to improve signal-to-noise 
ratios and creates a new signal by compiling signals from 
multiple instruments or multiple measurements taken 

Figure 4: After Marwick et al. 2017. The value of 
archives and archival data can be enhanced through 
research practices that promote and reward data reuse. 
Beyond making the data itself and information on 
processing routines available, data reuse is also linked 
to the creation of incentives for reproducible research. 
Archaeologists working with archival data should be 
prepared to engage in the disciplinary discourse around 
these issues as applied to remote sensing data sources.
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with the same instrument. Pixel level fusion is primarily 
carried out to improve the visibility of features by 
combining spectral and spatial information at the pixel 
level, resampling all coarser spatial data to the smallest 
pixel size. Feature level fusion is an object oriented 
technique, where information from pixel and signal 
sources are assigned to a single object. Decision fusion 
is relevant where rules-based systems of classification or 
identification are employed using information abstracted 
from pixel and signal sources. Below, we focus on signal 
and pixel level fusion, the methods most commonly 
applied in archaeology.

Pan sharpening techniques combine the spectral data 
available from coarser resolution multi-spectral imagery 
with the spectral and spatial information from higher 
resolution panchromatic or single band imagery, and 
are widely used in archaeological remote sensing. A 
review of these techniques illustrates the benefits, but 
also the limitations, of fusion as currently employed. 
Many algorithms have been developed (Alparone et al. 
2007; Vivone et al. 2015; Zhu & Bamler 2013) to carry 
out the fusion and pan-sharpening is a standard part of 
processing multi-spectral satellite imagery from platforms 
such as GeoEye or Ikonos, and the techniques have been 
in widespread use since the 1980s (Park & Schowengerdt 
1983; Ngan 1986; Tom, Carlotto & Way 1985). The reason 
for the multiplicity of techniques is that either the spatial 
or spectral properties of the image are always compromised 
in the process. “If the [transformation] is perfect, the 
resulting imagery will have the same sharpness as the 
original panchromatic image as well as the same colors 
as the original multispectral image. In practice, however, 
it is impossible to meet both of these goals and one often 
trades sharpness for color recovery or vice-versa.” (Padwick 
et al. 2010, p. 1). In spite of the inherent loss in fidelity, 
where both pan and multi-spectral imagery is captured 
from the same platform at the same date, the difference 
between the results of various pan-sharpening algorithms 
is not significant and the algorithms such as IHS, PC 
and Brovey available in commonly used GIS or image 
processing software e.g. QGIS and ArcGIS are suitable 
(Pesántez-Cobos, Cánovas-García & Alonso-Sarría 2017). 
Spatial resolution is improved, though usually with a loss 
in spectral consistency (Klonus & Ehlers 2007). However, 
the situation is different when pan-sharpening with data 
from multiple sensors and capture dates. Significant 
spectral distortions can be introduced when fusing across 
multiple sensors, particularly where their spectral ranges 
are not well-aligned, e.g. a fusion of Ikonos and TerraSAR-X 
data. Mercovich (2015) provides a further comparison 
of algorithms as implemented in commercial software, 
noting both spatial and spectral distortions across the 
board. 

The situation with hyperspectral imagery is even more 
complicated because this imagery’s value is primarily 
derived from its fine spectral resolution and correlations 
of the spectral values with known reflective properties 
of materials and, as discussed above, spectral distortion 
is a common artefact of pan-sharpening algorithms. 
New approaches are emerging specific to the fusion of 

hyperspectral imagery e.g. Yi et al. (2017) taking advantage 
of spectral unmixing as a constraint to spatial resolution 
enhancement, but these are not yet widely implemented 
in commercial software.

The case of pan-sharpening illustrates how data fusion 
remains ‘potentially important’ while having limited real 
impact. In cases where it works well as implemented in 
the available software, the added value is limited, as 
the spectral enhancement provided by relatively coarse 
multispectral bands rarely adds features that are not at 
least partly visible in the panchromatic imagery collected 
by the same sensor at the same moment. There is usually 
an improvement but rarely one that takes us from 
‘invisible’ to ‘visible’. On the other hand, where features 
totally invisible in high spatial resolution panchromatic 
imagery are visible in lower resolution hyperspectral 
imagery collected with a different sensor at the same 
moment, the available pan-sharpening techniques 
introduce considerable noise and distortions and often 
do not make the imagery more readily interpretable. We 
have well published examples of hyperspectral imagery 
showing features invisible in panchromatic imagery (e.g. 
Bertok, Gati and Bela 2015; Doneus et al. 2014; Masini et 
al. 2018) and hyperspectral imagery is often collected at 
a lower resolution e.g. 1–2 m than aerial photography, 
with a typical resolution of 20–50 cm. Image collections 
of this nature would benefit greatly from tailored pan-
sharpening algorithms, and some progress is being made 
in this direction (Loncan et al. 2015).

A second important set of applications of data fusion, 
bringing together data from multiple sensors, surround 
the topographic correction of signal data or imagery, such 
as the topographic correction of GPR data (Figure 5) (e.g. 
Piro, Mauriello & Cammarano 2000). These applications 
combine data from a variety of spectral or geophysical 
sensors with terrain data generated from satellite 
sensors like SAR or SRTM, airborne lidar, airborne SfM 
or terrestrial survey. Topographically corrected GPR, 
seismic, or resistance tomography data provide examples 
of how signal-level data fusion directly improves data 
interpretability. By applying topographic corrections to the 
signal, the 3D location of sub-surface reflections is moved, 
significantly reducing spatial distortion of subsurface 
anomalies (Goodman et al. 2006). Topographic correction 
of airborne hyperspectral data and spectral data from 
satellite sensors likewise improves the interpretability 
of the spectral values and, importantly, facilitates 
comparisons between areas of a spectral or signal dataset 
where the landscape has different topographic properties 
(Agapiou et al. 2011; Hesse 2015; Vanonckelen, Lhermitte 
& Van Rompaey 2013).

Leisz’s (2013) overview of remote sensing in archaeology 
reflects an ambition to focus further on data fusion that 
brings together information from very different sensors, 
going beyond topographic correction. He notes, “in 
closing, a final point needs to be made regarding the use 
of remote sensing within the field of archaeology that will 
remain true no matter how many new tools are added: The 
most promising aspect of all of these technologies may be 
how they can be integrated” (p. 18). While we share this 
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ambition, we can cite only limited examples of attempts 
to undertake multi-sensor fusion that go beyond layering 
in GIS, and note that the authors of these studies report 
limited success to date e.g. Agapiou et al. (2017), where 
the authors state that the “proposed regression approach 
provided acceptable but not completely satisfactory 
results” (p. 16). Multi-instrument integration where the 
data types are quite different remains a challenge, and 
should be an active area for future research.

Future applications of Machine Learning and Computer 
Vision
Data fusion and image analysis have relatively long 
histories of application in archaeological remote sensing, 
and recent years have seen increasing exploration of the 
potential of newer sets of methods including machine 
learning, computer vision and automated feature 
detection. The terms machine learning, deep learning, 
convolution neural nets, and support vector machines 
have appeared increasingly in both popular and academic 
media over the past few years, as significant improvements 
in a variety of techniques related to computer vision and 
artificial intelligence continue to be made. Archaeologists 
working with remote sensing data have been quick to 
see the potential applications of these techniques, which 
allow for the automatic detection of a variety of types of 
archaeological features, and a number of discussion pieces 
and articles presenting early case studies have appeared 
(e.g. Leckebusch, Weibel & Bühler 2008; Robin & Sadr 
2016; Toumazet et al. 2017; Traviglia, Cowley & Lambers 
2016; Trier et al. 2016). The ability to rapidly process large 
remote sensing datasets and better target the process of 

visual interpretation has obvious and broadly positive 
implications for both research and heritage management. 
As discussed below, the enthusiasm of many in the 
archaeological remote sensing community is tempered 
by concerns over accuracy and contextualisation. In 
spite of the concerns raised, we can expect studies using 
machine learning approaches to increase in number and 
sophistication.

Machine learning techniques have much to contribute 
to full-waveform processing in remote sensing. In the 
past, the volume of data from such a survey would make 
processing and interpretation difficult, however, advances 
in processing workflows and available hardware have 
now made multi-channel GPR surveys an option for 
archaeological research in suitable areas (see automation 
below). This has become increasingly important as larger 
areas are surveyed at denser resolution (Conyers & 
Leckebusch 2010: 122). 

Distrusting Automation
The potential interest of the automation of feature 
detection has been widely recognized in the aerial 
archaeology and heritage management communities, as 
evidenced by conference sessions e.g. at the Computer 
Applications in Archaeology (CAA) 2016 meeting and the 
Aerial Archaeology Research Group (AARG) 2016 meeting 
devoted to the topic. The growing interest in automation 
occurs in the context of significant improvements in 
machine learning, a field that has greatly advanced over 
the past 5 years, with further significant gains predicted 
(Abadi et al. 2016; Ioannidou et al. 2017; Temam 2016; 
Ceze, Hill & Wenisch 2016). The interest in automation 

Figure 5: Signal-level fusion of topographic and GPR data. GPR data were shifted vertically based on surface topography 
collected with at total station. The vertical shift of radar profiles (in grey) permits creation of secondary 3D datasets 
including vertical slices through radar data (blue) and meshes that represent buried stratigraphic interfaces (red). 
After Herrmann (2012) and Herrmann (2013).
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in archaeological remote sensing, as in the broader 
discipline, is primarily in its ability to improve the rate and 
consistency of feature identification over large areas when 
compared with visual interpretation. While more efficient 
identification of potential archaeological features may 
seem an obvious good, particularly for those institutions 
charged with the management of heritage resources, 
Bennett, Cowley and De Laet (2014) note in an article 
discussing the status quo of automation in archaeological 
remote sensing, “The ability of historic environment 
professionals to engage with large datasets is impeded 
by an overwhelming adherence to an entirely manual 
prospection and interpretation approach, as traditionally 
applied to aerial photographic interpretation” (p. 897).

The reluctance to adopt automated feature extraction, 
in the authors’ opinion, is motivated by a combination 
of technological and social factors. On the technological 
side, machine learning approaches to automation 
remain in their infancy. Automatic feature extraction for 
archaeological materials is still developing (Verdonck et al. 
2017) and has yet to match the efficiency of automatic 
feature extraction for targets with consistent appearance 
(Barton and Montagu 2004; Núñez-Nieto et al. 2014) or 
for features in uniform environments, with accuracy rates 
generally below 75%. In a 2013 study, Risbøl et al. assessed 
detection success rates of a variety of feature classes as 
they appeared in a lidar-derived DTM by four interpreters 
making visual assessments. This study, while in itself 
focused on the impact of point density on predictive 
accuracy, highlighted the variability of detection accuracy 
from near 100% of charcoal kilns to pitfalls and tar kilns, 
at 13% and 40% respectively. In a recent study, Due Trier 
et al. (2016) achieved 85% accuracy detecting charcoal 
kilns using a machine learning (CNN) approach. For a 
feature type like charcoal kilns, is the difference between 
85% and 97% important enough to justify the greater 
cost and time required for visual interpretation and the 
corresponding restriction of the area covered? 

The willingness to trade high levels of reliability in 
detection for the efficiencies gained through automation 
are obviously dependent on the social and organisational 
factors surrounding the project. In the context of 
research projects one must ask: does automated feature 
detection contribute toward a clear anthropological or 
historical research objective? In the context of heritage 
management one might ask: does automated feature 
detection significantly improve heritage management 
practices or interpretation for the public? The objective 
of automated feature detection will vary from case 
to case, but for most endeavours it will fall into one of 
two categories, 1) the detection of cultural features for 
documentation or verification, or 2) feature mapping 
to model human behaviour using detected features as 
a proxy. In both instances, the ‘scale vs. detail’ problem 
looms large. Put simply, what level of accuracy from an 
automated system is acceptable for decision making, 
planning, and research? For cultural heritage projects and 
hypotheses development, automated feature detection 
with middling levels of accuracy may be appropriate, 
since independent verification through field survey or 

other means would presumably follow feature detection. 
Automated detection without independent verification of 
results, however, may not be appropriate as primary data 
used to inform explanatory models of human behaviour 
without external verification, as one runs an even greater 
than usual risk affirming one’s assumptions. 

Underlying all of this is the question of value for money 
or effort. Developing successful machine learning and 
automated detection systems requires a not insignificant 
initial investment. This initial investment includes both 
investment in personnel and access to infrastructure, and 
in developing effective training datasets that identify a 
variety of archaeological features in complex datasets and 
landscape contexts. Further, machine learning systems 
trained on large, generic image sets e.g. Places205 (Zhou 
et al. 2017) or SUN2012 (Xiao et al. 2010) are unlikely 
to be successful on archaeological remote sensing data 
because the features of interest are too different from 
those tagged in the current main training datasets. 
Rather the archaeological record as it appears in remote 
sensing data must be segmented into different feature 
classes, which each need their own training set. For 
example, training datasets must be created for pits, 
linear earthworks, quadrangular buildings, etc. against a 
variety of backgrounds, an approach paralleling work in 
automated detection by Trier et al. (2012) and Trier, Larsen 
and Solberg (2009) where individual classes of features 
are targeted. Therefore, for automated feature extraction 
to work in archaeology, the creation of robust training 
datasets that teach computers to discriminate between 
features of interest and background landscapes requires, 
at the very least, a significant manual investment, as 
images must be selected and tagged correctly. Given the 
effort involved, the likelihood of a reasonable level of 
success and the value of the results in producing new 
interpretations or knowledge must be demonstrated. 
Equally, the place of automated routines within the 
broader process of interpreting remote sensing data must 
be established. 

Interpretation and deskilling
The current debate surrounding the reliability of 
automated detection and the impact of automation 
on the interpretive process is embedded in a broader 
discourse on the practice of interpretation (see Howey 
& Brouwer Burg 2017; Morgan & Wright 2018; Westin 
2014 for related discussions of changes in archaeological 
practice and their effects on interpretation). Working with 
archaeological remote sensing data is, at a basic level, 
easier than it was 20 years ago and this is, on balance, a 
good thing. In the era of Google Maps, Google Earth, and 
national geoportals, non-specialists can readily access high 
resolution RGB satellite imagery, historical imagery, air 
photos and a variety of cadastral and land cover datasets 
for visual interpretation with relatively little effort. Today 
many people spend time navigating and finding shops 
and restaurants via smartphone or desktop map and this 
provides a basic level of comfort and familiarity with the 
top down view and basic aerial image interpretation, 
arguably a generational shift. 
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The basic functionality of GIS software has likewise 
become more accessible. The combination of easier to 
access data and easier to use software, augmented by 
an increasing number of projects successfully using 
community based crowdsourcing to undertake large scale 
archaeological remote sensing, e.g. Parcak’s Global Xplorer 
(Global Xplorer 2018) or Wernke’s GeoPacha (Wernke 
2016), has moved part of the archaeological remote 
sensing skillset from specialist to generalist knowledge 
(see Earley-Spadoni 2017 for a broader discussion of the 
de-specialisation of GIS and spatial work in the context of 
intersections with Digital Humanities). The improvements 
in popular open source GIS packages, notably QGIS, have 
made a difference by providing more sophisticated GIS 
and mapping capabilities while removing the licensing 
barrier and its associated costs. 

A perhaps unexpected consequence of the relative ease 
of programming and the proliferation of open source 
software is that selecting the ‘right tool’ and understanding 
the implications of that selection has become more 
difficult. Generally, for any given GIS task there are 
multiple tools available, and it is often unclear which is 
the best tool for the job, or what the difference is between 
two implementations of the same basic analysis. Slope 
is a classic example of this situation. Conceptually, slope 
is simply the change in elevation over a given horizontal 
distance, an idea that does not need specialist training to 
be grasped. How slope is calculated across a 3D dataset is 
another matter and a student might be horrified to learn 
that there are dozens of algorithms. For many analyses, 
the way slope is calculated will be unimportant, but for 
some it will have an impact. The process of unpacking 
the black box around calculations and highlighting that 
choices are being made become essential tasks. 

On this basis, some practitioners have sounded a 
note of caution in reaction to the current trend toward 
democratisation, expressing concern that with wider and 
less informed use inevitably comes misuse and frustration. 
The widespread availability of evermore powerful personal 
computers and the growing accessibility and relative user-
friendliness of GIS software has led to the notion that anyone 
can sit down and “teach themselves GIS” in relatively short 
order. This attitude toward what is a relatively complex 
technology supported by a substantial theoretical corpus 
may be directly linked to the apparent dissatisfaction 
with the technology in some cases, and be responsible 
for the gap between practical heritage management and 
research applications of GIS (Brouwer Burg 2017). These 
concerns about misuse or unsophisticated use leading to 
frustration and the impression that GIS and RS approaches 
are inherently flawed, while justified, should not prevent 
us from benefitting from the broad improvements in the 
technological status quo. 

While one can find poorly motivated or decontextualized 
applications readily enough in the literature, many 
projects do encourage archaeologists to consider the role 
that remote sensing plays in larger research efforts and 
the discipline itself, with some emphasizing the potential 
for remote sensing to be the central source of data for 
answering archaeological and anthropological questions. 

Conyers and Leckebusch (2010) point out that spatial 
analysis of results of remote sensing surveys, in their case 
GPR surveys, used with complementary archaeological 
data can identify diagnostic architectural forms or to 
understand construction sequences and provide a basis 
for testing cultural historical hypotheses. Thompson 
et al. (2011) define four explicit categories of spatial 
analysis of geophysical results that can lead off intensive 
anthropological and archaeological research: 1) variation 
in the built environment 2) identifying continuity and 
discontinuity in the use of space 3) untangling natural and 
cultural modifications to mapped features and 4) spatial 
regularities in the built environment at the regional level. 
Conyers and Leckebusch (2010: 122), however seem more 
optimistic that future archaeo-geophysical investigations 
can stand alone as automated feature extraction 
techniques are refined and the relationships between 
geophysical signals and specific materials become better 
understood. 

In this context, the aim of the specialist community 
becomes supporting the broadest possible use while 
flagging areas of complexity, the necessity of considering 
the research or management questions posed, and teaching 
spatial thinking and how to choose the right analytical 
tools. Providing guidance about technical choices possible 
at different steps will aid in selecting good analytical tools, 
but does not address the deeper concern regarding the 
potential proliferation of under-theorized analyses. This 
risk seems, to the authors, is one that can be mitigated 
by making the case loudly and often that any application 
of GIS or RS must be question driven and the theoretical 
implications of the spatial analyses well set out, and by 
reinforcing these arguments through the mechanisms of 
teaching, peer review, and public discourse.

Conclusions
This article attempts to provide a balanced view of 
the progress in and obstacles to the contemporary 
practice of archaeological remote sensing. Specialists in 
archaeological remote sensing are actively pursuing the 
opportunities created by technological advances, while 
recognizing that significant obstacles to the broader 
integration of these methods into the general toolkit of 
landscape studies remain. Therefore, while not seeking 
to detract from the real benefits of recent technological 
improvements, the discussion here highlights areas 
where long recognized problems persist: differential 
availability of high resolution data, inadequate methods 
for data fusion, the burden of managing archival imagery, 
outsourcing processing advances, distrust of automation, 
and the democratisation of aerial imagery interpretation. 
We must remain aware of impact of these constraints on 
the potential of emerging technologies and methods, 
and undertake the serious reflection needed to make 
progress on these issues, many of which are both social 
and technical. 

In spite of these persistent challenges, archaeological 
remote sensing has much to contribute to the future of 
heritage management and archaeological research. The 
central themes in archaeological remote sensing theory 
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and practice, including the importance of landscape as a 
framework, awareness of the highly differential uptake of 
archaeological remote sensing methods and availability 
of data in different contexts, the promotion of good 
practice without creating exclusive research communities, 
integration with related disciplines, and connections 
between research and management, continue to be 
developed. Beyond continuing to contribute within 
our own domain, the potential to act as an impetus for 
integration with other domains studying the landscape 
is great. This integrative role, one archaeological remote 
sensing already plays as a data source and set of methods 
in use in a variety of projects, will remain central to its 
future development. 
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