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I. TYPES OF DYNAMICS
A. Which stochastic process model to use

Although we believe there are many advantages to us-
ing stochastic processes, there are also potential limita-
tions and important considerations in choosing the type
of stochastic process model to use. In this appendix, we
discuss some of these issues, and provide further details
on examples discussed in the main text. In many cases,
the examples offer a concrete illustration of the limita-
tions and pitfalls that we must otherwise discuss fairly
abstractly (and, of course, of the benefits). One major
set of issues has to do with the sparsity of archaeological
data, which means that a formal stochastic model may
not capture every salient aspect of the socio-political-
environmental dynamics, and implies that, a priori, we
should not necessarily propose detailed models with too
many parameters and explicit features. This is one ben-
efit using first order Markov models rather than more
complex models with more delays. This problem can
be somewhat mitigated by using prior information in a
Bayesian modeling framework.

We should regardless be aware of the shortcomings of
first order Markov models. We treat potentially deter-
ministic fluctuations whose underlying causes we do not
grasp as stochastic. Some models may be “blind” to de-
tails of human agency. Since the data and models oper-
ate at a rather coarse level, as will be discussed below,
it is possible to violate the Markovian assumption. Sim-
ilarly, even though the some underlying variables, such
as humans, polities, dollars, etc., are discrete, we often
work with continuous state spaces to simplify the mathe-
matics. Fortunately, this is usually a good and legitimate
approximation. In spite of these and other shortcomings,
these first order Markov models offer crucial advantages,
as they allow us to capture dominant features and qual-
itative aspects in a robust manner. They can be flexibly
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adapted to add complexity when new data come in. They
are simple enough for understanding the dynamics they
generate. They may allow us to identify driving forces
and critical turning points in historical processes.

There are many variants of the basic first-order Markov
process given in Eq. 1. For example, if the state space is
discrete rather than real-valued, then the integral in Eq.
1 gets replaced by a sum. If in addition one models a
historical process as evolving in discrete time, e.g., years,
then the derivative on the LHS of Eq. 1 gets replaced
by a discrete-difference. In fact, that is also the setting
of the formal example discussed below, as well as the
discrete-time Markov chains discussed in Section 2B and
Section 2D of the main text.

It is important to note though that there are subtle
assumptions that arise if we use a discrete-time Markov
chain. It turns out that a sizeable portion of all discrete-
time Markov chains are theoretically impossible, if one
presumes that the true underlying Markov process is ac-
tually continuous in time. As a striking example, sup-
pose we have a system with only two states, {—1,1},
e.g., due to coarse-graining. The simple discrete-time
Markov chain that flips the two possible states, send-
ing —1 < +1, cannot even be approximated as aris-
ing from an underlying continuous-time Markov pro-
cess over those two states [IL 2]. In fact, the set of
all discrete-time Markov chains that cannot even be ap-
proximated with a continuous-time Markov process has
nonzero measure (according to any of the usual measures
over the space of stochastic matrices defining discrete-
time Markov chains). The same is true if we restrict at-
tention to discrete-time Markov chains that (unlike the
bit flip) are highly non-deterministic. Since the physical
world is in fact continuous in time, this means that if one
wishes to fit a discrete-time Markov model to time series
generated by some evolving physical system — including
sociopolitical systems — one should exercise great care,
to avoid accidentally selecting a Markov chain that is
physically impossible.

In addition, even in the context of continuous-time
models, the assumption of a first-order Markov process is
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a very strong one. Formally, it means that knowledge of
the current state of x suffices to compute the probabili-
ties of its future states. This amounts to assuming that,
due to the nature of the variables in x, knowledge of past
values of x will not lead to better predictions of future
values, beyond knowing the current value. This assump-
tion is satisfied when all relevant details of the state are
known. However, if we coarse-grain the state, that is,
lump similar values together into some kind of coarse or
macro state, then the dynamics of those states need no
longer be Markovian. (See [3] for a systematic analysis of
coarse graining.) Likewise, if there are hidden variables
that cannot be directly observed, but influence the dy-
namics of the observable state x, the latter’s dynamics
need not be Markovian. Generally, when our information
about the current state is incomplete, be it due to coarse
graining, hidden variables, or some other factor, we may
have to draw upon the memory of the states x to make
better predictions.

Ideally, we could do this by fitting a higher-order
Markov model to the data. Such an approach is closely
related to delay-embedding techniques [4]. (Note that de-
lay embeddings capture chaotic dynamics, which is not
possible with first-order Markov processes.) However, in
practice, the amount of data one needs to fit an order-n
model grows exponentially with the the size of the space
and the value of n — using a larger value of n will result
in a poor statistical fit. Especially in the context of fit-
ting historical data-sets, where data is quite sparse, this
can mean that for purely statistical reasons we have to
either choose n = 1, or adopt a careful Bayesian analysis
if we wish to fit the data with an n > 1 model. (However,
see [5] for a recent example of trying to fit higher-order
models with non-Bayesian methods even when data are
sparse, in the specific context of historical data.)

In practice, it is probably most common to use cross-
validation to determine m, as well the other hyperpa-
rameters in one’s model, even if one adopts a Bayesian
approach. It is worth noting that there are alternative
approaches though, which don’t involve cross-validation.
For example, in a hierarchical Bayesian approach, one
would average over the hyperparameters according to a
hyperprior. As another example, one could set hyper-
parameters using the semi-Bayesian approach of ML-II.
(As a technical comment, the use of Bayesian “Occam
factors” should not be used to choose n, since they build
in a bias to low-dimension models; see [6].)

B. Noise versus chaos versus bifurcations

Often stochastic processes can be viewed as a deter-
ministic evolution of the variable x with noise super-
imposed. In particular, for a broad class of functions
Wo(x|x'), Eq.1 in the main text, which involves the
dynamics of a time-dependent probability distribution
pt(x), can be reformulated as a noisy equation for the

time-dependent state of the system, x(t):

d

dt
where the £(t) is the Wiener noise process, and the func-
tions A(.) and B(.) are determined by Wy (x|x’). (This is
the “Langevin equation”, discussed in the text.) A(x(t))
can be viewed as the deterministic dynamics of the vari-
able x(t), with B(x(t)) determining the amount of noise
superimposed on that dynamics.

The conceptual distinction between deterministic and
stochastic dynamics can get blurred in practice because
the deterministic dynamics may be chaotic and there-
fore appear random. Chaos essentially means that very
small fluctuations can get amplified so that from very
similar initial conditions very different endpoints can be
reached after a long enough time, even if the dynamics
are deterministic. Fortunately, people have developed so-
phisticated methods to distinguish chaotic and stochastic
components in time series [7]. The formal concept of a
stochastic process can accommodate both deterministic
and stochastic features. In such a process, the probabil-
ities for a state variable x change in time according to
some rule that is described by some parameter . The
state x is observed, while the parameter 6 defines the
model and can only be statistically inferred, but not di-
rectly observed. 6 itself may also change, in which case
the process is called non-stationary, but usually on a
slower time scale than x. In nonlinear dynamics, the
qualitative properties of the dynamics may change at par-
ticular values of 6. One speaks of bifurcations. That is,
a very small variation of the parameter can send the dy-
namics into completely different regimes. Thus, while in
chaotic dynamics, the future of a trajectory may depend
very sensitively on the initial conditions, at bifurcations,
the dynamics depends very sensitively on a parameter
value. It is clearly important to identify such bifurcation
points in historical dynamics.

(t) = A(x(t),t) + B(x(t), t)¢(t) (1)

II. PREVIOUS EXAMPLES CONSIDERING
HISTORY AS A DYNAMIC PROCESS

For some time a few archaeologists and historians have
been graphing behaviors of societies through time in
small state spaces, usually considering two variables at a
time. Such phase plots implement part of the program we
discuss here, since they make it possible to describe tra-
jectories through time in these small state spaces, though
they do not generally attempt the fundamental step of
formulating the stochastic process model that underlies
the behaviors such plots reveal. They are descriptive,
graphic devices that do serve to identify semi-cyclic ten-
dencies and possible discontinuities through time. Ex-
amples include [§], who examine the frequency of inter-
personal violence against population size through time,
and [9], in which the number of communities and the
population size of a study area are plotted against each
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FIG. 1: Relationship through time between number of
communities and population on the Mesa Verde cuesta,
Colorado shown in z-score space across the periods used
by the Village Ecodynamics Project. This area was first
densely colonized by farming populations ca. A.D. 600

(at bottom left of figure, unlabeled), and was
completely depopulated by ca. AD. 1285. Each point is
plotted at the midpoint (AD) of each of the 14 periods

recognized; the size of each bubble is proportional to
average community population at that time. A 20-year
smoothed maize productivity niche is shown on a red
(low productivity) to green (high productivity)
spectrum. Source: [9, Figure 6]

other, using line colors and symbol sizes to put these into
the contexts of estimated maize production levels and av-
erage community sizes (Fig. . In the case considered
in that figure, a population bearing a new sociopolitical
system intruded on this area between the AD 1040 and
1080 points. From the perspective of this study area, that
immigration can be considered as an exogenous perturba-
tion that changed the subsequent evolution of the social
and settlement system by (among other things) allowing
larger communities to be supported (hence, changing 6).

Peter Turchin and colleagues have investigated the dy-
namics of agrarian states with special attention to their
demography, social structure, surplus extraction, and so-
ciopolitical instability [I0]. These variables, and their
proxies, are expected to exhibit a patterned relationship
with each other through time based on theory developed
in [I1], [12]. These examples go further than the archaeo-
logical cases mentioned above by positing formal models,
though there is no attempt to quantify the fit between
any of these models and the empirical examples, or to
derive models directly from the data.

III. USING PC1/PC2 HINGES AS REFERENCE
POINTS FOR THE APPEARANCE OF
MORALIZING GODS

So long as one can evaluate the value of Seshat’s PC1
for the polities recorded in that data set, one can quantify
how “complex” those polities were when they underwent
events recorded in that data set. In earlier work with Se-
shat this was done simply by identifying PC1 with com-
plexity. In particular, [13] used a time series fit to Seshat
data to determine when “jumps” occurred in the complex-
ity of individual polities. The times of those jumps were
then compared to the time of appearance of Moralizing
Gods (MGs) in the polity. [I4] The conclusion was that
jumps in complexity are preconditions for the appearance
of MGs.

Note that this approach assumes that all intervals in
PC1 space correspond to the same amount of “social com-
plexity”, since it identifies large changes in PC1 during
small times as “jumps in complexity”. In addition, in or-
der to assign a time of the complexity jump to any par-
ticular polity based on its time series, which is then used
to determine whether the jump was before the MG onset
for that polity, any time series was discarded from the
data set unless it had a continuous sequence of PC1 val-
ues stretching to before the MG onset. This introduces
statistical artifacts.[15]

The discovery of hinge points provides an alternative
way to investigate the relationship between jumps in
social complexity and the appearance of MGs, without
these two shortcomings.

As shown in Figure[2] MGs arise in polities both before
and after the polity undergoes a “jump in complexity”.
At least based on the complexity thresholds found by
analyzing Seshat [16], there are instances in which MGs
arise before the threshold at PC1 = —2.5, and instances
in which MGs arise after the threshold at PC1 = —0.5.

From a social science perspective, this suggests that
a discontinuity in social complexity neither causes the
onset of MGs nor requires them, contradicting several
other analyses in the literature (including one that was
based on the same Seshat dataset). In terms of building
an underlying stochastic process model, these results are
broadly consistent with the hypothesis that the onset of
MGs is a jump of the first kind, where a large change
of x(t) occurs with small but non-negligible probability
under the transition matrix Wy (x|x').[17]

Note though that precisely because such a Poisson pro-
cess is independent of the current value of x(t), as well as
previous values, it is very challenging to distinguish the
hypothesis that the onset of MGs is a Poisson process
from the hypothesis that it is be an exogenous perturba-
tion. This is a significant difference from the hinge points
themselves. Because the thresholds captured in those
hinge points do depend on the current value of x(t), (by
definition), and since the precise value of ¢ differs widely
from one polity to another, those hinge points seem much
more certain to be a jump, albeit of the second kind.



FIG. 2: Movement plot for the moralizing gods
material. The x-axis is the PC1 value and the y-axis is
the PC2 value. This is the original Seshat data. The
first vertical line marks the scale threshold and the
second line marks the information threshold [16]. The
arrow colors indicate the status of the of the
MoralisingGods variable at the beginning of the
movement, where grey indicates missing/unknown, blue
indicates absent, and green indicates present. The
orange points mark transitions from unknown to
present and the red points mark transitions from absent
to present. The root cause of the retraction of the
original moralising gods paper [18] is that transitions
from unknown to present were treated as absent.

IV. A 1-DIMENSIONAL RANDOM WALK AS A
SIMPLE STOCHASTIC PROCESS

We illustrate stochastic processes using perhaps the
simplest such process there is. A random variable x that
at every discrete time step assumes some integer value,
and from one time step to the next can change its value
by £1, The probability of going up is p, and that of
going down hence 1 — p. Such jumps at different times
are independent of each other. Only z, but not p can
be directly observed. p can only be estimated from the
observed data of x. Suppose we observe a finite time
series of points generated by sampling such a process,
but cannot directly observe p. If p changes at some time
t — an exogenous perturbation that we do not observe —
then the dynamics after ¢ will be different. But based
only on the time series, no matter how different it may
look before and after ¢, we cannot definitely conclude that
p changed, either at t or some other time. We can only
suspect such a change when the time series starts to look
qualitatively different. The best we can do is statistically
estimate that such a change occurred. Fortunately, there
do exist powerful techniques for such estimates.

Next, suppose that p never changes, but we coarse-
grain z into bins of width 5. Then if we know that
the system is currently in the bin {0,1,2,3,4}, in or-
der to predict the probability that at the next time step
the system will be in bin {5,6,7,8,9} we need to esti-
mate the relative probabilities of which precise point in
{0,1,2,3,4} the system is currently in. In general, we
will assign a non-zero probability to the event that the

system is currently at the precise point 4, and therefore
assign a nonzero probability that at the next time step
the system is in {5,6,7,8,9}. On the other hand, if we
also know that at the previous time step the system was
in the bin {—5, —4, —3,—2, —1}, then in fact we know the
system is currently at the point 1, with probability 1, and
so cannot be in the bin {5,6, 7, 8,9} in the next time step.
So knowing something about the past state of the system,
in addition to knowing its current state, changes the rel-
ative probabilities of its future states. This illustrates
that coarse-graining the observed time series will in gen-
eral change a Markovian dynamics into a non-Markovian
one.

V. SESHAT: GLOBAL HISTORY DATABANK

Begun in 2009, the Seshat project has pursued the am-
bitious goal of developing a dataset to test theories about
sociocultural evolution by cataloging the development of
human civilization from the dawn of the Neolithic to the
Industrial Revolution [I9]. Two foundational elements
of Seshat are the Natural Geographic Area (NGA) and
polity. An NGA is a roughly 100 km by 100 km geo-
graphic area delimited by natural geographical features
such as river basins, coastal plains, valleys, islands, and
so forth [20]. A polity is an independent political unit
that controls territory, and can range in size from small
groups organized in local, independent local communities
to territorially expansive, multi-ethnic empires. At any
given time, exactly one polity controls an NGA, though
that controlling polity may have its base or capital out-
side the NGA. For example, the Konya Plain NGA is
located in the Central Anatolia Region of contemporary
Turkey and has an area of 28,900 square km. It was con-
trolled by the Hittite Empire (a polity) in 1000 BC and
by the Eastern Roman Empire (also a polity) in AD 500.
Seshat data used in recent analyses (i.e., the CCs in the
World Sample 30; see below) are coded at 100-year in-
tervals. Thus, a useful way to think about the Seshat
data is as a data matrix in which each row consists of an
NGA-polity-time triplet.

The Seshat database contains an ever-growing set of
variables, now well over 1500, and cases, coded through
time for each polity in consultation with archaeological
and historical experts. For example, for the Hittite Em-
pire in 1000 BC, the following variables related to money
have these codes:

Neo-Hittite Empire in 1000 BC (Population 1.3
- 2.0 million)



Articles Present

Tokens Absent

Precious Metals |Present
Foreign coins 77

Indigenous coins| 77
Paper currency | Absent

For comparison, when the Konya Plain was controlled
by the Eastern Roman Empire in AD 500, it had a pop-
ulation of about 15 million people.

Seshat is constantly evolving as new data are added
and old data re-assessed. This includes the addition of
new variables and new NGAs. Some relatively recent
articles used a fixed version with 30 NGAs called the
World Sample 30. NGAs for this sample were chosen to
maximize geographic extent and diversity in social orga-
nization. In particular, 3 NGAs were chosen from each
of 10 world regions (Africa, Europe, Central Eurasia,
Southwest Asia, South Asia, Southeast Asia, East Asia,
North America, South America, and Oceania-Australia)
and the 3 NGAs in each region were selected such that
sociopolitical complexity arrived relatively early, inter-
mediate, and late. The more recent Equinox version of
the dataset has five additional NGAs. Both the origi-
nal and Equinox versions provided a summary version of
the dataset in which variables were aggregated into dis-
tinct “Complexity Characteristics” (CCs). For the origi-
nal dataset, 51 variables were collapsed into 9 CCs:

1. Population: Population of the entire polity

2. Territorial Area: Territorial extent (area) of the
polity

3. Capital Population: Population size of the largest
urban center (usually the capital)

4. Hierarchical Levels: Number of types of settlements
(e.g., hamlets to cities) and levels of administrative
hierarchy

5. Government: Aspects of government and bureau-
cracy, such as the presence of a legal code and merit
promotion

6. Infrastructure: Presence of bridges, roads, irriga-
tion, etc.

7. Information Technology/Writing: Presence and
type of writing and recording systems

8. Texts: Presence of specialized literature, including
scientific texts, histories, calendars, fiction, etc.

9. Money: The monetary system—presence of lo-
cal /foreign currencies, paper currency, tokens of ex-
change, etc. (see Neo-Hittite example above)

The Equinox dataset collapses Information Technol-
ogy/Writing and Texts into a single CC. Each of the
CCs is normalized to lie between 0 and 1, and for each

polity-time pair in the dataset there exists an observation
for each CC. One challenge of working with the Seshat
data is that, especially for earlier polities, there is insuf-
ficient evidence to code many variables—and often dis-
agreements among experts. Rather than assign a value
for each CC and create one canonical imputation, the Se-
shat team assigned a distribution of possible values for
the original dataset. These distributions are then sam-
pled 20 times, to produce 20 replicates of the dataset
[20, p. 7]. The imputation is performed on each replicate,
producing 20 different sets of CC values. These replicates
are used to produce confidence intervals on the propor-
tion of variance explained by each PC, the component
loadings, and the values of the PCs for each polity. The
Equinox dataset, however, only contains one imputation
per observation.

VI. A HIDDEN MARKOV MODEL OF
AGE-SPECIFIC DEMOGRAPHY

Consider an age structured population of reproductive
females (including juveniles) where the age class j con-
tains individual between Aa - j and Aa - (j + 1) years
of age, with Aa being the age-spacing; it is straightfor-
ward to generalize this to males and post-reproductive
females, as well as to account for other types of popula-
tion structure, such as spatial location and socioeconomic
status[21, 22]. The column vector z; gives the number,
or proportion, of females in each age class at time step
t. Fj is the age-specific fertility of females in age class
7, accounting only for female offspring. The age-specific
survival of females in age class j is P;. Given these defini-
tions, the population projection matrix for reproductive
females is

Iy Iy Fy Fj Fy
P, 0 0 O 0
o P, 0 0 - 0
A=l 0 0P o0 - 0|, 2)
0 0 O 0
0 0 0 . Pj_; O

where J is the last reproductive age class. The popula-
tion project equation is

Ziy1 = AZt. (3)

These preceding equations succinctly summarize three ef-
fects: Females get older, that is, advance from one age
class to the next, give birth to young females, and may
die.

Stable demography: If demographic rates are sta-
ble [23] the population vector z; converges to a constant
growth rate and stable age distribution. The growth
“rate” (more precisely, the per period growth factor)
equals A, the dominant left eigenvalue of A. The stable
age distribution (u) equals the corresponding dominant
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(c) Equinox data with original NGAs
and new Equinox NGAs

FIG. 3: Movement plots in PC1-PC2 space. Each arrow
is the movement in the space for one NGA from one
timestamp to the next timestamp 100 years later. Blue
arrows are for Old World NGAs and red arrows are for
New World NGAs. The top plot is identical to that in
[16]. The middle plot uses the new Seshat Equinox
dataset, but the new NGAs added to Equinox have
been removed. The bottom plot uses the new dataset
and utilizes all Equinox NGAs. The key difference
between the original datasest and the Equinox dataset
is that the latter dataset uses one fewer CCs, collapsing
the two original information processes CCs into a single
CC. These figures can be reproduced using the code in
the publication github repository.

right eigenvector and the age specific reproductive value
(v) equals the corresponding left eigenvector [22] [24].

Time dependence: Rather than assuming a constant
population projection matrix, we now add a subscript to
allow time-dependence, A;. The time-dependent popu-
lation projection equation is

Ziy1 = At Zg. (4)

One can easily expand the preceding model to a
full demographic model that includes males and post-
reproductive females. Parameters such as the sex ra-
tio at birth and age-specific mortality for the additional
segments of the population can be inferred from known
demographic statistics and/or observed data. The full
demographic specification for time period t is D; =
{F¢,P;}, where F; is the time-dependent vector of age-
specific fertilities and P; is the time-dependent vector of
age-specific survivals, and the demographic model for the
period 0 to t is G, = {Dy, D1, -, Dy—1}. An implicit as-
sumption in this definition is that the population vector
at time step 0 is set assuming stable demography defined
by the demographic specification Dy. This assumption
could be relaxed by letting zy be a free parameter in the
demographic model G;.

A. From demographic model to likelihood and a
hidden Markov model

To link the preceding model to the stochastic process
framework suggested in the main text, we now interpret
the population projection matrices A; as being deter-
mined by latent variables in a hidden Markov model.
Further, we assume that there exists an external vari-
able, let’s say for the sake of concreteness a categorical
climate variable (likely slowly changing) that can be di-
rectly or indirectly observed, indexed by k = 1--- K,
where for each climate state, k, different transition prob-
abilities apply:

K
Pt = [Z Ck W(k)] Pi+1, ()
k=1

where ¢, is an indicator variable for the categorical cli-
mate state and W) is the transition matrix that applies
for climate state k. There are many alternatives to this
approach, including modeling the projection matrices A;
as depending on a continuous, exogenous climate param-
eter vector 8. However, the model we describe is suffi-
ciently simple to be motivating yet sufficiently complex
to be realistic. We assume that there exists a set of N
reference dynamics indexed by n = 1--- N, where each
reference dynamics, D™, is for a distinct annual demo-
graphic state — for example, one n could correspond to
famine, another warfare, etc. Next define the vector



q=[mi mg --- mT]T (6)
to be the population dynamics state, n, for the time
periods 1 through 7. Given the preceding formulation,
it is straightforward to calculate the probability of any
given q given the set of transition probabilities (to be in-
ferred) and the set of reference dynamics (pre-specified);
we denote this probability by p(¢|{W®}, {A(1), where
we indicate the set of transition matrices with {W(*)}
and the set of reference population project matrices with
{A(M}. One can then sum over the set of valid vectors
q and use Equations [2| and [3| to calculate the probability
of each z;[j]. Finally, this can be linked to available ar-
chaeological data to calculate a likelihood function, which
can be used for either maximum likelihood estimation or
Bayesian inference. For example, given a set of radio-
carbon determinations (e.g., as in [25]) one can assume
that the probability a given sample is from a given year
is proportional to the total population size in that year,
the sum of the elements of z. Similarly, if skeletal age-
at-death is known, and a rough date estimate is available
from associated artifacts, one can calculate the relative
probability of being in the pertinent age class (and sex
class if the model is suitably generalized) from the popu-
lation vectors by summing across years as determined by
the associated artifacts. Naturally, one can use multiple
types of data as part of a single likelihood calculation
to improve inference of the underlying model parame-
ters; a major benefit of the approach we have described
is that it is straightforward to accommodate additional
types of data in the likelihood calculation in order to fur-
ther improve inference (e.g., isotopic data to inform on
migration, health data such as from linear enamel hy-
poplasias (LEHs) to improve inference on mortality, and
both ancient and modern genetic data).

B. Source code and the Python bighist package

We put a good deal of effort into software engineer-
ing for this project, efforts which we hope will bene-
fit the broader community. Most importantly, we cre-
ated a Python package called bighist that adopts a

data abstraction framework that is viable for many, per-
haps even most, analyses in big history, cultural evolu-
tion, etc. This abstraction is implemented in the class
bighist.Stratified TimeSeries. The strata are distinct sub-
series, or “samples” of the time trajectories. For Seshat,
these are the NGAs. For each time in a sub-series, there
can be multiple observations of the data vector, which
provides support for multiple imputations. The bighist
package provides utility functions to load Seshat data,
do dimensionality reduction using PCA, and make move-
ment plots. We used it to create Figures 1 and 2 in the
main text and Figure [3] in this supplement. Our vision
of the package is that it can provide a unifying frame-
work for analyses where the underlying dataset matches
the data abstraction assumptions, including the types of
stochastic process analyses we discuss in our article. In
addition, we hope to add additional datasets to bighist,
further simplifying the process of doing the types of anal-
yses we discuss. To ensure the code is high quality and
works as intended, bighist utilizes unit tests and adheres
as closely as possible to Python Enhancement Proposal
(PEP) recommendations for syntax and formatting. The
source code for bighist is available here

The README file for the preceding bighist provides
provides installation instructions. Our source code for
this article, available at the following link, provides fur-
ther instructions and example code here

For the moralizing gods material we utilized the R
code here. Note well that all of the code in the follow-
ing repository is deprecated (replaced by the preceding
github repository) aside from the moralizing gods code.
A warning of this is provided in the README of the
repository.

For Figure 3 of the main text, we utilized the npde
(Nonparametric Differential Equations with Gaussian
Processes) code located here:

https://github.com/jinhongkuan /npde

Finally, the following repository has a power calcula-
tion that implements some of the ideas we discuss for us-
ing stochastic latent variable models to fit demographic
processes. Note well that this is a separate piece of work
—i.e., we do not use any results from that repository in
this article. We link to it because it demonstrates that
the overall approach is viable and the code may be of
interest to some readers.

https://github.com/MichaelHoltonPrice/kelmelis maya nsf
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