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ABSTRACT
Historical processes manifest remarkable diversity. Nevertheless, scholars have long 
attempted, with some success, to identify patterns and categorize historical actors 
and influences. A stochastic process framework provides a structured approach for the 
analysis of large historical datasets that allows for detection of sometimes surprising 
patterns, identification of relevant causal actors both endogenous and exogenous to 
the process, and comparison between different historical cases. The combination of 
data, analytical tools and the organizing theoretical framework of stochastic processes 
complements traditional narrative approaches in history and archaeology.
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What determines how history unfolds? Are the dynamics 
of history determined by the agency of individual 
actors? Or, in contrast, are they determined by broad-
scale processes that individuals must react to but 
cannot affect? As a third possibility, are the dynamics all 
contingent, a succession of interacting events? Taking a 
more synthetic perspective, is there some way to unify 
all these possibilities in a formal framework, one that can 
account for a combination of factors jointly governing 
the dynamics of human societies?

Social scientists have not found it easy to find a 
consensus on such fundamental issues. At least as far 
back as Ibn Khaldun, observers of history hypothesized 
that history followed simple, universal dynamic rules 
(Alatas 2013). Similarly, in the 19th century, partly building 
on the work of Kant, thinkers like Hegel, Comte, Marx, 
Morgan, and Tylor emphasized necessity, generality, 
natural laws, and impersonal trends (McAllister 2002). 
They saw history as progressing in a law-like manner 
through well-defined stages, to approach some final 
destination. In the 20th century, while still ascribing 
a prominent role to impersonal trends, authors like 
Spengler speculated about the inevitable decline of 
societies, removing the assumption of “inherent progress” 
made in those 19th-century investigations. Both of these 
perspectives view impersonal processes — what some 
contemporary social scientists refer to as “structural 
factors” (Sewell 1992) — as key for understanding 
how history ultimately unfolds. In contrast, others like 
Dilthey and Simmel, and continuing through Geertz and 
other late-20th-century anthropologists, have argued 
that understanding human societies requires particular 
attention to individual agency, which, it is claimed, 
cannot be reduced to impersonal processes (although 
enacted within the “piled-up structures of inference and 
implication” provided by culture Geertz 1973: 7). (We are 
unaware of any proponents for a third view – that history 
is mostly contingencies, with randomness paramount 
rather than agency or rules – though Ingold’s description 
of wayfaring as opposed to point-to-point travel seems 
germane Ingold 2007.) More recently, environmental 
factors have gained prominence in the study of human 
history, encompassing both gradual, predictable 
pressures such as climate change (e.g., Weiss et al. 1993, 
Strawhacker et al. 2020) and unpredictable, exogenous 
events, like volcanic eruptions (Peregrine 2020). In a 
similar vein, diseases exert influence through continuous 
pressure (Durham 1991) and as well as episodic shocks in 
the form of epidemics (Harper 2021).

This brief overview does not exhaust the perspectives 
of social scientists and historians on what drives 
history, but it captures many prominent and disparate 
tendencies. Can we unify these perspectives into 
an integrative, formal framework for describing and 
investigating history? Better still, can we construct such a 
framework that is also well-suited to analyzing the new 

historical datasets that are rapidly being constructed and 
made publicly available?

Of course, many social scientists attempt to mediate 
some of these different perspectives on history by 
emphasizing interactions among actions by specific 
individuals and structural contexts – linguistic, material, 
economic, etc. – within detailed narratives. They often 
invite us to informally imagine webs or meshes or other 
entangling relationships that may constrain agency 
(e.g., Hodder 2012). These approaches, however, are 
semi-formal at best, and are not readily extended to 
include fundamental roles for randomness, exogenous 
perturbations, gradual environmental processes, etc. 
Moreover, they cannot take advantage of the great 
analytic power provided by modern methods in machine 
learning and statistics.

In this paper we consider a different approach, based 
on n-order Markov stochastic processes. As described in 
more detail below, such a process maps any sequence of 
n states of a dynamical system occurring at n different 
times all ≤ t, to a Gaussian distribution giving the state 
of the system at any future time t′ = t + δ. An important 
feature of such processes is that the smaller δ is — the 
less far into the future we are looking — the tighter that 
Gaussian distribution.

We can view deterministic (“rule-based”) dynamics as 
the limiting case of a Markov process where no matter 
how far into the future we predict (i.e., no matter how 
large δ is), the Gaussian distribution has zero width. In 
contrast, purely random (“contingent”) dynamics is the 
limiting case of a Markov process where the Gaussian 
distribution governing possible future states of the 
system is extremely wide, even for times very near in the 
future (i.e., δ very small). These features suggest that we 
can gainfully cast the semi-random dynamics of human 
groups through spaces of social, political, economic, 
environmental, and other variables — a dynamics that is 
midway between fully deterministic and fully contingent 
dynamics — as a (Markov) stochastic process.

Going further, we can readily accommodate 
discontinuous perturbations to such an underlying 
Markov stochastic process, simply by using appropriately 
modified, more complicated stochastic process models 
like Levy distributions (Lawler 2018). Alternatively, we 
can detect such perturbations in a time-series dataset, 
as events in that time-series that have low likelihood 
under some particular Markov process. In both of these 
ways we can readily incorporate perturbations in our 
analysis of historical time-series data sets based on 
stochastic process models, whether those perturbations 
are environmental, or due to the actions of particularly 
important individuals. 

There are other substantial advantages to using 
(Markov) stochastic processes to model historical 
dynamics, in addition to unifying some of the most 
popular perspectives on what drives the dynamics of 
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history. First, like any other formal framework, adopting a 
stochastic process perspective forces us to be precise and 
explicit in our thinking about the dynamics underlying 
any historical dataset. Second, stochastic process models 
in particular provide a way to quantitatively investigate 
the randomness in the dynamics of human groups, how 
that randomness varies depending on the characteristics 
of the group, and how that randomness differs from 
the observational noise inherent in the construction of 
all historical datasets. Third, stochastic process models 
allow us to use the data to distinguish when external 
perturbations to the dynamics of a particular human 
group actually occurred, and when instead an apparent 
perturbation was actually the result of purely human 
processes. More broadly, analyzing historical datasets as 
stochastic process models allows the data to identify how 
human social groups evolve, possibly revealing emergent 
phenomena like unanticipated relations, rather than rely 
on preconceived notions.1

Fourth, as discussed in more detail below, there have 
recently been some very powerful algorithms developed 
in the machine learning community that allow us to 
fit stochastic processes to the time-series datasets 
commonly encountered in history, archaeology, and 
related fields. Many such datasets contain large amounts 
of missing data. Indeed, one of the major challenges 
with analyzing archaeological time series data using 
conventional techniques is the need to either “imputate” 
missing data in the time-series (as in (Turchin et al. 
2018a)), or simply remove from the analysis any time-
series that has too much missing data (as in (Whitehouse 
et al. 2019); see also (Beheim et al. 2021, Whitehouse 
et al. 2021)). As we describe in Section IIC below, 
recently there have been stochastic process estimators 
constructed that allow us to both avoid the entire issue of 
imputations, and to use all of our data, without throwing 
any out. 

Furthermore, many datasets encountered in history 
and archaeology have a large number of variables but 
relatively few observations. One’s statistical method 
must either be appropriate for such a dataset or utilize 
a dimensionality reduction, such as principle component 
analysis (PCA), as a first step (more on this below). There 
have been some recent advances in machine learning on 
latent space representations of observations that could 
prove useful in addressing this problem.

In addition, having an underlying first-order Markov 
stochastic process model of the dynamics of a social 
group has particular advantages for the social scientist. 
Such a model tells us how the future dynamics of a human 
group directly depends on the current characteristics 
of that human group, i.e., on the current position in a 
vector space of such characteristics. In contrast, the 
insights from a high-order time-series analysis of the 
same dataset are often more opaque, being of the form, 
“if the social group has had a particular sequence of 

characteristics in a succession of time periods, then its 
future dynamics is likely to be ...”. Similarly, a first-order 
process tells us how the randomness in future dynamics 
varies directly as one changes current characteristics.

Furthermore, many historical and archaeological 
datasets contain very few data in a very large space. 
This means that a first order Markov model with (far) 
fewer parameters than higher order models is a sensible 
baseline model. Indeed, if the data is particularly sparse 
it may not even be possible to use a higher order model 
without over-fitting the data2 Clearly relatively high-
order, possibly expert-defined, models are suitable for 
certain problems (discussed further below). Even in 
such situations though, first-order models can provide 
a starting point, and model selection techniques can be 
employed to determine suitable assumptions. 

Summarizing, recent advances in machine learning 
make using stochastic process models to analyze 
historical datasets both possible and desirable, and 
we have outlined some practical advantages for doing 
so. Current machine learning learning algorithms are 
improving rapidly. Adopting and modifying state-of-the-
art research in machine learning, together with reaching 
some consensus on best practices for handling missing 
data and performing dimensionality reduction, will 
greatly benefit historical and archaeological research.

Roadmap: In the next section we present a high-level 
summary of stochastic process models, beginning with 
a discussion of first-order Markov processes, and then 
discussing higher-order processes.

To ground these abstract considerations, we then 
present several examples of how to analyze historical 
datasets with stochastic processes, chosen to illustrate 
the strengths of stochastic process modeling described 
above. The first set of examples presents recent research 
that explicitly involves stochastic process models. 
Following that, we present several examples of recent 
research that do not explicitly invoke stochastic process 
models, but develop analytical approaches or datasets 
that (we argue) can contribute to the development 
of such models. We end with a section suggesting 
possible near-future research projects fully grounded in 
a stochastic process perspective.

Importantly, the more powerful the tools for analyzing 
a time series dataset, the greater the opportunity to 
misuse them. This issue is especially challenging when 
(as is often the case in the social sciences) the datasets 
are relatively small, and / or have many missing entries, or 
entries with some missing values. Therefore one must be 
quite careful when estimating an underlying stochastic 
process from a historical dataset. Accordingly, we also 
use the examples to illustrate some potential pitfalls 
and how to avoid them. In the same pragmatic spirit, we 
present lessons learned in many of the examples.

Through these examples, we hope to convincingly 
demonstrate that the framework of stochastic processes 
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is particularly well-suited to uncovering deep regularities 
in the unfolding of history. More broadly, we argue that a 
stochastic process perspective provides a way to (at least 
start to) unify the many perspectives on the unfolding of 
history promoted by previous researchers.

One of the most exciting aspects of fitting low-order 
Markov models to time series data is how quickly the field 
of machine learning is generating advances in techniques 
for doing this. As an aid to the reader, in Table 1 we highlight 
some of the more prominent such techniques that exist 
at present. In that table, “homogeneous” means that 
the parameters of the Markov process do not vary across 
the (Euclidean) vector space. As an illustration, suppose 
that a human society is characterized by a set of n real 
numbers, which collectively specify a vector space. We 
would say the evolution of that society is homogeneous 
if it does not depend on where it is in that vector space. 
For example, the dynamics of a uniform drift up the 
diagonal of that vector space is homogeneous. “Fields” 
refers to the components of such a vector space. Missing 
fields, ubiquitous in social science data, are data points 
where one more of the components of each vector data 
point is missing some of its entries.

The primary focus of this paper is Markov models over 
Euclidean vector spaces, i.e., vector spaces where every 
component of the vector is a real number. Accordingly, in 
the interests of space, we do not present here any of the 
techniques for fitting Markov models over discrete, finite 
spaces. This important issue is discussed below.

1 STOCHASTIC PROCESSES

1.1 FIRST-ORDER MARKOV PROCESSES
To make the ideas above more precise, we now introduce 
the most basic type of stochastic process, which we shall 
refer to repeatedly in the sections below. This process 
is called a “(first-order, time-homogeneous) Markov 
process”, with the associated equation for the dynamics 
sometimes referred to as a “master equation.”

Let x be the location of a society in some appropriate 
socio-political-environmental state space, and let t be 
time. Consider the evolution of the society through that 
space starting at the value x0 at time t0. (For the moment 

we take x to be a real-valued vector, for expository 
purposes.) A fixed (time-invariant) stochastic process 
assigns a probability to each trajectory of x emanating 
from this starting point. In a Markov stochastic process, 
there is a parameter θ specifying a “transition matrix,” 
or kernel, Wθ(x′/x), and the probability distribution of 
trajectories through x is governed by the linear differential 
equation,

	 ( ) = [ ( | ) ( | )] ( )t t

d
p d p

dt
′ ′ − ′ ′∫x x W x x W x x xθ θ � (1)

Intuitively, the term Wθ(x/x′), captures the flow from all 
states x′ into x, while the term Wθ(x′/x) captures the flow 
from x into all other states.

As (1) illustrates, in a stochastic process it is not the 
state of variable x that evolves deterministically and 
continuously. Instead, it is its probabilities that do. These 
probabilities tell us how the trajectory of values x(t) can 
fluctuate, in general allowing both smooth, drift-like 
behavior, as well as discontinuous jumps. Importantly, 
there are two types of such jumps. If the system is 
currently at x′, and the kernel Wθ(x/x′) places non-
infinitesimal weight on an x that lies a non-infinitesimal 
distance from x′, then there is nonzero probability of a 
discontinuous jump across the space. On the other hand, 
it could be that a small change in the current position, 
x′, results in a large change in the kernel Wθ(x/x′), and 
therefore a large change in where the system is likely 
to move from x′. This can be viewed as a “jump” in the 
derivative of x, arising from a small change in x′ i.e., a 
jump the “direction of flow” of the system, rather than 
in the position of the system itself. The parameter 
θ parameterizes the stochastic rule, and so directly 
specifies where in state-space either type of jump occurs.

No matter what the precise stochastic process model 
being used to explain historical data, we will refer to 
the average-case, smooth patterns in the trajectories 
through the space of random variables as the trends 
emphasized by structural approaches. These include 
patterns in the trajectories through the space of 
environmental variables as well as through more strictly 
socio-political ones. Similarly, discontinuous jumps in 
the trajectories of the random variables often but not 
always involve human agency. The distinction between 
trends and jumps is often invoked in the historiography 
of science. For example, the invention of new ideas or 
technologies can occur through a gradual process, such 
as with Moore’s law. New ideas can also occur through 
a jump, however, such as Einstein’s invention of general 
relativity.

In addition to such changes in the value of x at some 
time t that are governed by the stochastic process, it 
is possible that the stochastic process itself changes at 
some time t. Such a change in the process would not 
affect the immediate value x(t), but rather it would affect 
how x is likely to evolve after time t.3 We refer to such a 

TIME SERIES TYPE ALGORITHM

Homogeneous and/or very 
little data 

(Pavliotis 2016)

Inhomogeneous, missing 
fields in data 

(Yildiz et al. 2018)

Inhomogeneous, no missing 
fields in data 

(Kidger et al. 2020, Li et al. 
2020)

Table 1 Three type of time-series data over vector spaces, and 
papers showing how to fit those types of time series with a 
Markov process. (Current as of 2023.)
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change in the stochastic process itself as an exogenous 
perturbation of the stochastic process.4 Formally, an 
exogenous perturbation is a change at some time t in 
the parameter θ in (1), due to an event not captured in 
the stochastic process variables, x.

To illustrate these points, suppose x is a vector of 
variables related to socio-economic characteristics of 
a particular society. For that space of variables x, slow 
changes in climate due to reasons independent of human 
activity constitute gradual exogenous perturbations. 
For the same space of variables, events like volcanic 
eruptions would also be exogenous perturbations, but 
sudden ones. Similarly, the birth of a great leader who 
is in fact historically consequential (not just idolized 
that way by future generations) would be a sudden 
exogenous perturbation. It can be quite challenging to 
ascertain from a given historical dataset when (if ever) 
such exogenous perturbations happened, or if instead 
the dynamics of the data through the space of values 
x just reflects evolution under (1) for an unvarying θ. Yet 
making this determination is crucial if we wish to infer 
any general principles of historical dynamics. We touch 
on this issue several times in the examples below, and 
also discuss it with some actual historical dynamics from 
the US Southwest in the supplement, Section III A.

The foregoing summary of Markov processes elides 
many potentially important details. To present some of 
those details, in the SI Section 1 we work through perhaps 
the simplest Markov process, a 1-dimensional random 
walk with step size 1. We also discuss some important 
variants to (1) there.

1.2 HIGHER-ORDER STOCHASTIC PROCESSES
It is important to emphasize that the first-order 
Markovian dynamics given in (1) is only one type of 
stochastic process. If a system is first-order Markovian 
then the values of our variables in the past provide no 
useful information beyond what’s in their current value 
for predicting their future values. However, in many 
common circumstances this property will be violated, 
at least to a degree, and so the system will not evolve 
precisely according to (1).

As an example, suppose we coarse-grain the values 
of x into large bins, e.g., to help in statistical estimation. 
Then in general, even if the dynamics over x is first-order 
Markovian, the dynamics over those coarse-grained 
bins will not be. (We illustrate this with the random 
walk example in the supplement, Section 1) Similarly, 
if we leave some important components of x out of our 
stochastic process model, they become what are called 
“hidden variables”. In such circumstances, again, the 
dynamics over the visible components of x will not be 
first-order Markovian (although it might be n-th order 
Markovian for n > 1).

In all of these scenarios, alternative techniques like 
Hidden Markov models (see Section II D)), or high-order 

Markov models, may be more appropriate than first-
order Markov models obeying (1). Another example of a 
powerful alternative technique is delay-embedding time-
series analysis (Takens 1981, Sauer et al. 1991) versions. 
In some cases, such use of delay coordinates to predict 
future trajectories can be formulated as a technique for 
estimating the average future trajectory under a high-
order Markov model.5 In particular, vector autoregressive 
moving-average (VARMA) models (Lütkepohl 2005) can 
be formulated as such a stochastic process.

While such higher-order models have been applied 
before in historical analyses, they have several non-
trivial shortcomings, as discussed above. Nonetheless, 
there are situations where it is a priori plausible that 
using a higher-order process would provide substantially 
higher predictive accuracy of the fit to the time series 
data. Fortunately, recent research in machine learning 
has developed techniques to to fit a continuous-time 
Markov process over a “hidden space”, with the visible 
time series being a projection of that Markov process 
onto a “visible space” (Kidger et al. 2020, Li et al. 2020). 
(These techniques are based on cutting-edge deep-
learning algorithms like generative adversarial networks, 
and variational auto-encoders.) Intuitively, these 
techniques fit the time-series data with a continuous-
time hidden Markov model (HMM). In general, such 
a continuous-time HMM can capture behavior in the 
dynamics over the visible space that is more than first 
order. Crucially, these techniques for fitting continuous-
time HMMs avoid the curse of dimensionality that 
plagues conventional approaches to time-series analysis 
involving delay coordinates. There are also situations 
when using a continuous-time HMM is inappropriate, and 
a conventional discrete-time HMM makes more sense. 
Section IID below discusses an example of this situation 
in detail.

To keep this perspective article focused however, aside 
from Section IID, in the parts of the discussion where we 
explicitly consider Markov processes, we will concentrate 
on first-order Markov processes, without hidden variables. 
In other parts of our discussion we won’t even explicitly 
specify the precise type of stochastic process we are 
considering. In these parts of the discussion we analyze 
the stochastic process at an even more abstracted level 
(e.g., in Section IIC).

2 RECENT RESEARCH IN HISTORY 
BASED ON STOCHASTIC PROCESS 
MODELING

2.1 JUMPS IN SOCIOPOLITICAL COMPLEXITY 
OF POLITIES IN THE LONGUE DURÉE
It is widely agreed that over long-enough periods of time 
there is a strong trend for polities to increase in size, or to 
disappear (e.g., Tainter 1988). Less clear is whether such 
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increases are relatively smooth trends in which various 
measures of scale and/or capability, such as information 
processing or capability at warfare, increase in lock step; 
or whether there are clear discontinuities or disjunctions 
in the growth processes.

The Seshat dataset (Francois et al. 2016) allows 
analyses that can address such questions. This dataset 
contains values for a large and diverse set of variables 
concerning societies over the past several thousand 
years, in both Afro-Eurasia and the Americas. (We provide 
more background in the supplement, Section 3.) This 
dataset has been condensed for some recent analyses 
into a set of nine complexity characteristics (CCs) defined 
by the researchers for multiple past societies. These are 
reported at (usually) one-hundred-year intervals for the 
dominant polity controlling each of thirty world regions 
called Natural Geographic Areas (NGAs; the controlling 
polity may have its capital outside the NGA). For some 
NGAs, these time-stamped data stretch back millennia. 
PCA on the CCs found that the primary component, PC1, 
explained roughly three-quarters of the variability of the 
9 CCs (Turchin et al. 2018a). The Seshat team suggests 
interpreting PC1 as an overall, scalar measure of social 
complexity (Turchin et al. 2018a, Whitehouse et al. 
2019) This is because, by construction, the individual 
CCs represent separate complexity measures, and PC1 
“captures three quarters of the variability”. Note as well 
that PC1 has a roughly equal loading on all 9 CCs – that 
is, it is a weighted version of the individual complexity 
measures. Note that PCA is independent of the time-
stamps of the individual data points. So mathematically, 
there is no reason to expect that PC1 bears any relation 
to time; it could just as readily decrease with time as 
increase. Nonetheless, examination of the data makes 
clear that there is a strong tendency for polities (and 
sequences of polities within an NGA) to increase their 
PC1 value with time, albeit with long periods of stasis 
(Turchin et al. 2018a). Crucially, different NGAs have 
different starting dates, and there is no guarantee that 
sociopolitical change will march in lock-step across NGAs. 
On the other hand, as discussed below, PC2 consists 
of two sets of CC components: one related to polity 
scale and another related to information processing 
capabilities (Shin et al. 2020). This suggests fitting a very 
basic “stochastic process model” to the Seshat data, by 
graphing PC2 against PC1, with larger PC1 values generally 
corresponding to later times in an NGA’s sequence.

A recent paper (Shin et al. 2020) explored this 
possibility by analyzing how PC2 and PC1 co-vary. 
Whereas PC1 has positive loadings on all 9 CCs, PC2 has 
negative loadings on the scale variables (such as polity 
size) and positive loading on information variables (such 
as writing, texts, and money). Interestingly, as illustrated 
in Figure 1, PC2 is a “saw-tooth” function of PC1, first 
decreasing until PC1 is about –2.5, then increasing until 

Figure 1 The mean value of PC2 as a function of PC1, where 
the mean and error bars are calculated using a sliding window 
with a width of 1.0 in PC1-space. The top curve is identical 
to that in (Shin et al. 2020). The middle plot uses the new 
Seshat Equinox dataset, but the new NGAs added to Equinox 
have been removed. The bottom plot uses the new dataset 
and utilizes all Equinox NGAs. The key difference between 
the original datasest and the Equinox dataset is that the 
latter dataset uses one fewer CCs, collapsing the two original 
information processes CCs into a single CC. These figures 
can be reproduced using the code in the publication github 
repository (see supplement).
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PC1 is about –0.5, then decreasing again. This reveals 
an unexpected sociopolitical phenomenon: there is 
a strong average tendency among the polities in this 
sample to first increase in size until a certain threshold 
size is reached (PC1 = –2.5), at which point the dynamics 
is taken over by increases in the information-processing 
ability of the polity (broadly defined) with relatively little 
increase in size. Eventually this process reaches a new 
threshold (PC1 = –0.5), after which a dynamic process 
increasing the size of the polity again takes over.

The preceding remarks apply to the original dataset 
analyzed by (Shin et al. 2020) and (Turchin et al. 2018a). 
An expanded version of the Seshat dataset called 
Equinox (Turchin et al. 2020) has recently been released 
that displays some different patterns. There are four 
primary differences between the original dataset and 
the Equinox dataset. First, some of the entries have 
been modified, for example, to fix errors. Second, four 
new NGAs have been added. Third, the Equinox version 
contains only one imputation for every observation, as 
opposed to twenty for the original dataset. Fourth, the 
Seshat team has collapsed the original 9 CCs into 8 CCs. 
This choice and the associated methodology does not 
appear to be documented anywhere, but it seems that 
the two original information processing CCs (Writing 
and Texts) have been collapsed into a single CC (Info). 
This collapse yields a qualitatively different relationship 
between PC1 and PC2, which is perhaps not surprising 
since information processing is a crucial consideration in 
(Shin et al. 2020). To determine the primary driver of the 
qualitative differences, we reproduced the sliding window 
plot for the new Equinox dataset using only the original 
NGAs and with all NGAs (the middle and bottom plots of 
Figure 1). Because the two plots appear very similar, it 
does seem that the primary driver is the CC collapse.

We have also plotted histograms (Figure 2) and 
movement plots (supplement Figure 3) for each of the 
three cases. While the updated sliding window plots 
pick up the same two hinge points as in the original 
Seshat data, they differ markedly for larger values of 
PC1. Similarly, the means and variances of the two 
components of the PC1 histogram may be similar, but 
the component with the larger mean has lower density 
(i.e., the weighting of the second mixture is lower). 
Pending a more detailed analysis of the differences, we 
believe the main message from this comparison to be 
cautionary: variable choice and methodology used for 
dimensionality reduction (or to otherwise simplify the 
dataset) matter. This is a topic that is largely outside the 
purview of this perspective piece, but should, we think, be 
a major topic for the discipline as a whole.

A key point shared by these two analyses (portrayed 
admittedly more clearly in the first) is that values along 
PC1 at approximately –2.5 and –0.5 appear to constitute 
thresholds in complexity, with different sociopolitical 
processes dominating the dynamics depending on 

whether the PC1 value is less than –2.5, between –2.5 
and –0.5, or greater than –0.5. This tendency is exhibited 
by polities that reached these thresholds at vastly 
different times, in far-separate locations and differing 

Figure 2 Histogram of PC1 values for all polity-time pairs. 
The top curve is identical to that in (Shin et al. 2020). The 
middle plot uses the new Seshat Equinox dataset, but the 
new NGAs added to Equinox have been removed. The bottom 
plot uses the new dataset and utilizes all Equinox NGAs. 
The key difference between the original datasest and the 
Equinox dataset is that the latter dataset uses one fewer CCs, 
collapsing the two original information processes CCs into a 
single CC. These figures can be reproduced using the code in 
the publication github repository (see supplement).
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local environments, with extremely different neighbors. 
Therefore these two thresholds cannot be due to 
exogenous perturbations, in which θ would change at a 
specific time. Likely they are instead examples of jumps 
of the second type discussed above, where the transition 
matrix Wθ(x′|x) in (1) changes discontinuously once x (in 
this case, PC1-PC2) reaches a particular threshold.

One benefit of stochastic process modeling is that 
it fosters cumulative cascades of analyses, in which 
an insight from analyzing one dataset allows us to 
analyze a second set in a way that would not have been 
possible otherwise. We can illustrate this with the current 
controversy about the relationship between when a 
polity undergoes a jump in “social complexity”, and 
when its members widely adopt worship of “moralizing 
gods.” One side of the debate are researchers who say 
that the emergence of such gods is a precondition for 
a jump in social complexity. (Loosely speaking, the 
reasoning underlying this hypothesis is that worship of 
such deities fosters wide-spread sacrifice in pursuit of 
the common good, which in turn results in the jump in 
social complexity.) Others have argued just as vigorously 
that the causal influence is the other way around, that 
such jumps are actually a necessary condition for the 
emergence of moralizing gods in a society.

We can exploit our analysis described above 
concerning hinge points to address this issue. To begin, 
we suppose that the first hinge point is a marker for a 
jump in social complexity. As described in App. A(2), we 
can then analyze the relationship between the time that 
moralizing gods appear in a polity and the time when 
that polity undergoes a jump in social complexity. The 
results contrast with the somewhat polarized views in the 
literature (Whitehouse et al. 2019, Beheim et al. 2021, 
Purzycki et al. 2016). Given a null hypothesis that polities 
with moralizing gods arise later than polities without 
them, there appears to be little evidence of correlation 
between the time that moralizing gods appear in a 
polity and the time that that polity experiences a “jump 
of social complexity”.6 Such gods do not seem to be a 
precondition for jumps in complexity by a polity, nor 
does it seem that a polity’s having gone through such 
a jump is an absolutely necessary precondition for their 
appearance (as claimed in (Whitehouse et al. 2019), now 
retracted by many of its authors).

This is only a suggestive, preliminary analysis, not 
meant to be definitive. Historically, its only use was to 
cast doubt on the claim in (Whitehouse et al. 2019), 
before the controversy about that paper arose which 
resulted in its retraction. A natural way to extend this 
preliminary analysis would be to fit a full stochastic 
process model to historical data in a state-space x that 
consists of both the CCs of a society (or one or more of 
the corresponding PC-values) and a variable representing 
the presence/absence of moralizing gods.

2.2 ARE THERE STABLE SOCIAL 
EVOLUTIONARY TYPES OF SOCIETIES?
Social researchers sometimes argue that some set 
of multiple time-series across a space seems to move 
quite slowly across one or more regions of that space. 
This has sometimes been interpreted as meaning that 
those regions are “basins of attraction” or “attractors” 
or “equilibria” of an underlying stochastic process 
(Peregrine 2018). A long-running interest in archaeology 
(stretching back at least to the mid-late nineteenth 
century (Tylor 1871)) is whether there really are such 
stable social evolutionary types of societies, or whether 
any apparent instances of such societies in the data are 
largely illusory. Tendencies to see such modes seem 
to be strongly influenced by fashions in research; the 
fashion for several decades has been to minimize their 
existence.
In this subsection we illustrate how careful analysis 
of stochastic processes can help address this issue 
empirically, again using the version of Seshat dataset 
analyzed in (Turchin et al. 2018a). If one plots a histogram 
of the PC1 values of all the time-stamped observations 
across NGAs, one finds that, even though every polity 
is usually sampled once per century (though this is less 
true early in time for polities with long time sequences), 
the PC1 values cluster into two widely separated regions 
(see Figure 2). This could imply that those regions of PC1 
values are “equilibria” of the underlying dynamics, i.e., 
stable social evolutionary types—but is such an inference 
warranted?

While some have thought so (Miranda and Freeman 
2020, Turchin et al. 2018b), an analysis using the sorts of 
tools we advocate in this paper suggests that the answer 
is no. Specifically, those clusters can be explained as 
arising from a null model that results from the interplay 
between the starting values of polities in the dataset (i.e., 
the point at which they are first coded), the underlying 
stochastic process, and the sampling of the stochastic 
process. To give a simple, counter-intuitive example of 
that interplay, even if a stochastic process has the same 
average speed across a space, if the variance of its speed 
varies across that space, then we will see clusters; regions 
with higher variance will have clusters of more data 
points than regions of lower variance (Shin et al. 2020). 
Complicating the picture still further is the fact that the 
Seshat dataset comprises multiple, different time-series, 
reflecting a combination of three factors:

a)	Random variation across the time series of the 
polities in the PC1 value of the earliest data point;

b)	Random variation across the polities in the 
chronological time of that first PC1 value;

c)	 A general drift of polities from low to high PC1 values 
that is well-modeled by a time-homogeneous Markov 
chain.
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Perhaps the most conservative way to test whether such 
factors lead to features like clusters in the dataset is to 
use a null hypothesis that the data were generated by 
a first-order, time-homogeneous discrete-time Markov 
chain, corrected so that the variance of the chain as one 
moves across the space matches the variance in the 
dataset as one moves across the space.

Indeed, as described in the supplementary materials 
of (Shin et al. 2020), one can accurately fit a first-order, 
time-homogeneous discrete-time Markov chain to the 
Seshat dataset PC1 values, mapping one PC1 value to the 
next with a conditional distribution that does not change 
in time (as it ought, if polities were “dwelling” in certain 
portions of its space). If one forms 30 sample time-
series by running that Markov chain 30 times, each for 
a different number of iterations, and superimposes the 
30 resultant time-series, one finds that they will typically 
form two widely-separated clusters, just like the clusters 
in the original Seshat data along the PC1 dimension 
(Figure 2). Yet because the underlying process is a time-
homogeneous Markov chain, there are no attractors in 
the underlying dynamics.7

Intuitively, these clusters reflect several factors. First, 
the 30 time-series are all transients (none long enough 
to be samples of the stationary distribution of the 
Markov chain). Second, they are all of different lengths 
(due to (a, b) above). Combined with the fact that the 
generating conditional distribution is non-uniform, 
the result is that two clusters in the data appear, with 
no direct significance for interpreting the underlying 
dynamics. We discuss this example in some detail to 
highlight the formal and theoretical subtleties in using 
stochastic processes to model archaeological datasets. 
But, as this analysis shows, these challenges can be 
met—supporting our claim that such a program can now 
be developed successfully.

2.3 COMPARING DIFFERENT HISTORICAL 
TRAJECTORIES: FLOW MAPS
Another big question in history is to what degree different 
trajectories are comparable. Formal analysis of the sort 
presented here allows us to move beyond metaphorical 
uses of developmental stages or historical cycles. In 
Section IIB we presented a cautionary tale concerning 
computational history, arguing semi-formally that a 
simple null-hypothesis test shows that the Seshat dataset 
is consistent with the hypothesis that it was generated 
by a time-homogeneous Markov chain. While such null-
hypothesis tests are a useful starting point, they are blunt 
instruments that sidestep the critical question of what is 
the best statistical inference from the data.

Fortunately, as mentioned in the introduction, 
recently developed analytical tools provide very powerful 
ways to estimate first order Markov processes from 
time series datasets (see (Yildiz et al. 2018, Kidger et al. 
2020, Frishman and Ronceray 2020, Friedrich et al. 2011, 

Hoffmann et al. 2021, Davis and Buffett 2022, Craigmile 
et al. 2022) for a representative sample of recent papers). 
These promise to be extremely useful for investigating 
historical datasets. In this section we illustrate how 
one such recently developed tool (Yildiz et al. 2018) 
can produce a far more sophisticated estimate of the 
stochastic process that generated the Seshat data than 
a simple fit with a time-homogeneous Markov chain.

Figure 3 presents a plot of trajectories of the polities 
in the Seshat dataset in the joint PC1-PC2 space. Each 
of those 30 time-series is quite short, which makes it 
difficult to extend any single one of them, e.g., by using 
vector autoregressive-moving-average (VARMA) models 
or delay coordinate techniques (Lütkepohl 2005). A 
different approach is to model the dynamics across PC1-
PC2 by fitting the data to a Markov process as in (1), with 
its transition matrix restricted to the set of stochastic 
processes called “Langevin equations” (a.k.a. “stochastic 
differential equations” [SDEs]) where the drift and 
diffusion terms vary across the space. As an illustration, 
Figure 3 shows the drift term of the Langevin equation 
given by applying the Bayesian estimation technique 
recently introduced in (Yildiz et al. 2018) to the time-
series across PC1-PC2 in the Seshat data.

There are several advantages to this kind of fit of 
an SDE for sets of short time series. Most directly, as 
discussed above, the fact that PC1 explains most of 
the variability of the Seshat dataset by itself provides 
no basis for identifying the PC1 position of a polity as a 
measure of its social complexity, despite the fact that 
it has often been explicitly used that way (Whitehouse 
et al. 2019). One could indeed argue that any dataset, 

Figure 3 The two axes are PC1 and PC2 of the (original) 
Seshat dataset, respectively. The red dots are the elements of 
that dataset. Since those elements of the dataset are time-
stamped, one can find the Langevin SDE that has highest 
posterior probability conditioned on that dataset. The black 
arrows are the mean velocity vectors of that Langevin equation 
at the associated PC1-PC2 positions (i.e., they are values of the 
drift vector field of that SDE evaluated on a grid). Finally, the 
blue lines are counterfactual, sample trajectories of that SDE.
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by itself, cannot provide guidance as to how to quantify 
“social complexity” given the vague and intuitive nature 
of the concept, which tends to mean different things to 
different people.

In contrast, a flow field like that in Figure 3 focuses 
attention on the more concrete issue of how real-world 
societies actually evolve. For example, it has long been 
noted that some sufficiently coarse-grained datasets 
seem to suggest that there is a rough tendency for 
polities to go through historical cycles (Khaldun 2015). 
As future work, one can imagine estimating the SDE that 
generated those datasets, then employing Monte Carlo 
sampling of that SDE to quantify this tendency of polities 
to go through such cycles. For example, this could be 
done by Monte Carlo estimating the probability that a 
polity currently at a given x will follow a trajectory that 
goes at least ∈1 away from x but then returns to within ∈2 
< ∈1 of x, as a function of x, ∈1 and ∈2. (In this regard, note 
the suggestion in Figure 3 of a circulation pattern around 
the point (1.5, 0)).

In addition, it may prove fruitful to re-express the 
stochastic flow field (or more precisely, the field of drift 
vectors defining the SDE). In particular, robust algorithms 
have been developed in computer graphics for inferring 
a Helmholtz decomposition (Arfken and Weber 1999) 
of such flow fields. Such a decomposition expresses 
the flow across PC1-PC2 in terms of (the gradient of) a 
scalar potential field and (the curl of) a vector potential 
field. The scalar potential field might prove particularly 
illuminating; level curves of that potential field across 
PC1-PC2 would be an extremely flexible way of 
identifying polities all of whom are at the same “stage of 
development”. In the absence of a vector potential, the 
dynamics of polities would simply be gradient descent, 
descending those level curves.

At a high level, this joint use of tools for inferring SDEs 
and the Helmholtz decomposition is a way to infer directly 
from the data novel laws governing social systems (or at 
least strong empirical regularities emerging from them), 
formulated in terms of the Helmholtz decomposition. 
Note though that both the SDEs and the resulting 
potentials might not have a simple, explicit form. That 
could make it difficult to give them a simple social science 
interpretation. This difficulty is actually fundamental in 
all analysis of longitudinal datasets; in particular a similar 
interpretational challenge holds even for fitting one-
dimensional time series datasets using delay coordinate 
techniques, even linear ones like ARMA models (Takens 
1981, Sauer et al. 1991). Addressing this challenge is a 
topic for future research.

2.4 HIDDEN MARKOV MODEL STOCHASTIC 
PROCESSES
While archaeologists often debate which types of variables 
are most important for understanding a given region’s 

past, a few of these are often considered more crucial than 
others, including climate (principally temperature and 
rainfall), demography, political organization, technology, 
economy, ideology, and local ecology. (Clearly all of these 
could be further deconstructed in various ways.) In this 
section, we describe in some detail a stochastic process 
model that can be used for demographic modeling and 
which can be used to fuse multiple types of data into a 
single inferential framework. Aside from being potentially 
useful in its own right, we offer the model as a template 
for using stochastic process models in archaeological or 
historical work.

Of the variables related to demography, perhaps 
the most crucial is a region’s total population size, 
but it is often necessary to consider in addition how 
that population is structured by age, sex, space, or 
socioeconomic status. High-quality demographic models 
exist for describing structured populations (Rogers 1966, 
Caswell 2001), so the main challenge is how to use 
demographic models to infer past demography from the 
available archaeological data.

One complication is the temporal fidelity at which 
inference is possible. Seasonal and yearly changes in 
climate can change demography at yearly and sub-yearly 
timescales, but it is rarely, if ever, possible to infer both 
climate variability and demography at these timescales. 
As described in the introduction, this means that the 
data are coarse-grained, and so might not be accurately 
described by a Markov process. Therefore a (discrete-time) 
HMM could prove more suitable. In App. D we describe in 
detail an age- and sex-structured population projection 
model. The fundamental demographic variable is the 
population vector zt of females in the population, the 
elements of which are the number of females in each 
distinct age class. The time-dependent population matrix 
projects the population to the next, distinct time-step per

	 1t t t+ =z A z � (2)

In addition, a corresponding population vector of males 
exists, which depends on the sex ratio at birth (SRB) of 
males to females and male age-specific mortality (details 
in the supplement), which is rarely equal to female age-
specific mortality and may fluctuate more, for reasons 
like warfare.

Substantial work in historical demography and 
life history theory places constraints on the plausible 
values of At (Wood 1998, Jones 2009, Jones and 
Tuljapurkar 2015), or (if adopting a Bayesian approach) 
can be used to specify priors on At. To allow for this we 
assume there exist n = 1, … N distinct types of annual, 
reference population projection matrices. For example, 
one type could be appropriate during a famine or other 
stressing event, while another corresponds to a stable 
population size in which high mortality (especially high 
juvenile mortality) is balanced by high fertility. Let pt be 



144Wolpert et al. Journal of Computer Applications in Archaeology DOI: 10.5334/jcaa.113

a probability vector of length N that gives the probability 
of being in a given reference state. Transitions between 
these hidden states occur per

	 +1 = ,t tp W pθ � (3)

where the transition matrix Wθ depends on a slowly 
changing, exogenous climatic variable θ, which we 
propose modeling as a binary or categorical variable that 
only occasionally changes given the fidelity at which 
climatic reconstruction is possible (hence, the Markovian 
assumption applies only so long as θ is fixed).

What is appealing about the preceding framework is 
that it allows a diversity of data to be used to infer At 
and zt. This has immense value for two reasons. First, it 
is usually better to use more data (and never worse, if 
the statistical model is good). Second, while any given 
type of data is likely biased in distinct and predictable 
ways (e.g., skeletal collections usually have too low a 
proportion of the very young, whereas very old individuals 
are incorrectly aged), these biases are usually different 
for each data type and uncorrelated across samples, so 
inference will be far better when multiple types of data 
are used and sample sizes increase.

This model could be especially valuable if applied to 
archaeological case studies for which a diversity of factors 
and variables have been linked. A pertinent example is 
the so-called Classic Maya Collapse. Between about AD 
750 and 1000, various parts of the Maya cultural region 
in Mexico and Central America experienced a breakdown 
of sociopolitical systems. Associated with this were 
major demographic changes (migrations and, likely, 
overall population decline), changes in long-distance 
trade routes, intra-elite competition, warfare, and 
environmental degradation, all in the context of severe 
drought (Webster 2002, Aimers 2007, Kennett et al. 2012, 
Turner and Sabloff 2012, Hoggarth et al. 2017). Exactly 
how these factors are linked remains an open question, 
yet a stochastic process model would likely help make 
these linkages explicit were it to be correctly fitted to the 
data. For example, drought has been proposed as the 
major, causal factor leading to the breakdown of Mayan 
sociopolitical systems, but others argue that all these 
factors, and more, played some role; using our proposed 
modeling framework would help elucidate the causes.

3 PREVIOUS STUDIES RECAST IN 
TERMS OF STOCHASTIC PROCESS 
MODELS

3.1 INTEGRATING DIFFERENT DATA TYPES FOR 
NEW INSIGHTS
Like demographic processes, environmental processes 
have long been seen as catalysts of past social change. 
In particular, environmental processes are central to 
research on the history of human-centered food webs 

(Crabtree et al. 2017a, Dunne et al. 2016). The benefits of 
bringing a stochastic process perspective to this research 
can be illustrated with the investigation in Crabtree et 
al. (Crabtree et al. 2019). That research focused on the 
question of why small-bodied mammals went extinct in 
portions of Australia after people were removed from the 
Western Desert.

In the absence of humans, animal populations are 
often modeled as evolving via Markovian processes 
(Meyn and Tweedie 2009). However, (Crabtree et al. 
2019) demonstrated that the extinctions experienced 
in the Western Desert would not be predicted from 
the natural baseline extinction rates of such a process. 
Adopting the perspective of this paper, this result 
highlights an important modeling issue: did the 
extinction of small-bodied mammals reflect a change in 
a hidden variable of an underlying Markovian process, or 
was it due to a change of a parameter of such a process, 
via an exogenous perturbation? This distinction is critical 
because there are statistical techniques for predicting the 
evolution of Markovian processes with hidden variables, 
such as time-series analysis, described above. It might 
be possible with such a model to predict a change in 
the dynamics of animal populations by looking at time-
series data of their dynamics. However, by definition, if 
the change in the dynamics was due to an exogenous 
perturbation, then it cannot be predicted from any time-
series data, no matter how exhaustive.

In this particular case, it seems unlikely that the 
change in the dynamics of the animal population level 
x can be accurately modeled as the change in the value 
of a hidden variable, e.g., by using a time-series model 
of the dynamics of x. In other words, it seems likely that 
the change in the dynamics of the animal populations 
reflects an exogenous perturbation of the parameter 
θ governing those dynamics. However, this has yet to 
be formally established. In addition, a more elaborate 
stochastic process model might expand x to include 
some variables concerning the people who eventually 
forced aboriginal peoples to leave. In such a model, 
changes to the dynamics of animal populations might 
reflect the “second type of jump”, described above in the 
discussion just below (1). If that were determined to be 
the case, it would mean that future values of x might be 
predictable, and therefore particular future values of the 
animal population level might be predictable.

As another example, Yeakel et al. (Yeakel et al. 2014) 
leveraged Egyptian art by coding the taxa present 
from the Narmur Palette and other datable art work 
to model animal species extinctions over time. By 
combining these data with contemporaneous climate 
data, they found that aridification pulses in the context 
of a growing Egyptian population played an important 
role in destabilizing the ecosystem. In the language of 
stochastic processes, if we take x to be the combination 
of human and animal population levels, we see a trend 
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as growing human populations exerting increasing 
pressures on the ecosystem. These pressures were 
exacerbated by exogenous perturbations in the form of 
a series of aridification pulses and a worsening climate.

This example suggests that it may be possible to 
look at the dynamics of human and animal populations 
in other regions and infer when aridification pulses, 
or indeed other climatic events, likely occurred, by 
testing for exogenous perturbations to the trends in the 
dynamics of the joint human/animal population levels. In 
the original context of ancient Egypt, where we already 
have identified some exogenous perturbations in the 
form of aridification pulses, we could perhaps test for the 
presence of other exogenous perturbations, e.g., due to 
invasions, or perhaps even due to causes currently absent 
from the historical record. More broadly, a stochastic 
process framework could suggest a new avenue for 
research for Egyptologists: the impersonal trends of 
extinction and exogenous perturbations of aridification 
likely had feedbacks on Egyptian society, from impacts 
on hunting to impacts on cosmology. Exploring how the 
societal impacts at a given time varied depending on 
whether there was only an underlying trend or also an 
exogenous perturbation at that time could lead to new 
insights on the dynamics of Egyptian social structures.

3.2 STOCHASTIC PROCESSES OVER THE 
STRUCTURE OF LANGUAGE AND OVER HOW 
LANGUAGE IS USED
Stochastic processes that are themselves superpositions 
of Markovian time evolution and branching processes 
describing the temporal evolution of features in systems 
that from time to time break up into parts that evolve 
(largely) independently thereafter. Such processes 
underlie the history of biology and human languages 
and are the base of phylogenetics. Data on cognates 
across many languages, together with a small number 
of historical anchor points, allows for the reconstruction 
of language trees and assign approximate dates of 
divergence. A careful, quantitative analysis of Polynesian 
languages, for instance, revealed some periods of “stasis” 
in the history of subfamilies that correspond to distinct 
phases in the settlement history of the Pacific Islands 
(Gray et al. 2011). Similar arguments have shed light 
on the expansion of Indo-European language families. 
Analogous reconstructions of historical population 
distributions have been conducted using human genetic 
markers. The idea to integrate genetic, linguistic, and 
archaeological data is of course not new (Scheinfeldt 
et al. 2010), although so far this has been done at the 
level of interpreting the data rather then integrating 
them into a common process model. The latter would 
be desirable in particular because linguistic changes 
are strongly impacted by contact phenomena such 
as borrowing, and even correlate with extra-linguistic 
factors such as the prevalence of agriculturally produced 

food (Blast et al. 2019). At present, quantitative studies 
in linguistics are almost always based on datasets that 
are the result of extensive manual curation — although 
modern methods in natural language processing might 
be suitable or at least adaptable to tap into much larger 
resources (Bhattacharya et al. 2018).

Modern large-scale digitized historical archives 
often provide high-resolution data on the words that 
individuals—often, though not always, members of a 
polity’s elite—were writing and sharing with each other. 
Tools from natural language processing are now both 
simple enough and robust enough to allow social and 
political scientists to track the flow of complex patterns 
of language use that correspond to concepts and habits 
of thought.

Ref. (Barron et al. 2018), for example, used the 
French Revolution Digital Archive (https://frda.stanford.
edu) to show the different roles that members of the 
French revolutionary parliament played in introducing, 
sustaining, or rejecting novel ideas in the speeches of 
that country’s constitutional debate. These ideas were 
discovered in an unsupervised manner; rather than pre-
determining a list of important ideas, and words that 
corresponded to them, topic modeling automatically 
extracted word patterns that could then be back-
validated on the speeches themselves. Discovered 
topics include, for example, concepts as fine-grained 
as “the possibility of enemies of the revolution within 
the military”.

3.3 ANALYZING THE GREAT ACCELERATION
We are currently living in the Anthropocene. One of the 
more striking characteristics of this period has been 
the exponential growth in a large number of important 
metrics in earth and social systems since the beginning of 
the 1950s. These growth dynamics are often collectively 
referred to as the “Great Acceleration” (Steffen et al. 
2004). What caused these transformations is less clear 
however.

All the metrics that have contributed to the Great 
Acceleration are, however, dependent on population 
size, which itself has been changing during this period, 
to no small degree as a consequence of growth in 
these metrics. This suggests we fit our data concerning 
those factors with a stochastic process model, to 
gain quantitative insight into their joint evolution (see 
appendices for examples of such a model). In particular, 
because of the specific growth patterns of the variables, 
it is natural to fit the data to a stochastic process over the 
logarithms of the variables. When applied to historical 
datasets, this variant of stochastic process models is 
known as historical or temporal scaling analysis. Not 
only can it give us insights into the joint dynamics of 
population size and the metrics considered by researchers 
of the great acceleration. In addition, when performed 
for different temporal intervals, it gives us insight into 

https://frda.stanford.edu
https://frda.stanford.edu
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changes of those joint dynamics. This then invites us to 
investigate whether those changes in the dynamics are 
due to exogenous perturbations and/or due to changes 
in hidden variables (as in the analysis of HMMs in Section 
IID and/or due to the system reaching a new point of its 
state space (as in the case of hinge points, considered 
above in Section II A).

To make this more concrete, suppose that we find that 
the scaling coefficient remains stable across time. That 
would be evidence for a simple trend of the underlying 
stochastic process. Suppose, as an alternative, that the 
scaling coefficient changes over time. This is evidence 
for one of three phenomena: either a concurrent change 
in some exogenous factor driving the dynamics (like 
a change in climate, or a major drought, or the Green 
revolution of agriculture); a concurrent change in a hidden 
socio-political variable generating the observed historical 
dynamic (like a major war, a world-wide depression, or 
changes in financial regulation) or simply the system 
reaching a critical threshold — a new part of the socio-
political space — in which the dynamics are different. 
This illustrates how the stochastic process perspective 
could invite a host of new investigations, if it was found 
that the scaling coefficients changed over time.

A recent analysis of the dynamics of the Great 
Acceleration (Painter et al. 2020) determined that 
socioeconomic, technological, information, biological and 
earth systems, when scaled to population size, sort into 
four distinct growth patterns. These patterns suggest 
fundamental differences in the underlying network of 
interactions causing the observed patterns of change. 
Besides the already known sub-linear, linear and super-
linear patterns we detected a novel fourth pattern for the 
Great Acceleration, with scaling coefficients larger than 3, 
which is unusually large. This pattern applies to parameters 
that are no longer limited by person to person interactions 
such as those related to knowledge, technology and 
finance. These parameters can be interpreted as the main 
drivers behind the ever accelerating growth dynamics of 
the Great Acceleration. Decade by decade comparison of 
these parameters also revealed patterns of change during 
this time period that correspond well with the possible 
sources of change that can influence the dynamics of an 
underlying stochastic process.

Whether an event or a discovery (such as those 
contributing to the Great Acceleration) is considered a 
transformative innovation or just a random occurrence 
affecting a stochastic process can often only be decided 
in hindsight. What can be done, however, is to asses to 
what extent such events were surprising or predictable, 
given the context of the times–here represented by an 
underlying stochastic process model. Emerging machine 
learning methods, especially deep learning neural 
networks, have succeeded at dramatically improving 
the prediction of quantities across a wide range of 
contexts. These models have begun to enter the social 

and historical sciences as complex event and trend 
prediction (Bainbridge 1995, Davidson 2017, Carley 
1996, Zeng 1999, Maltseva et al. 2016, Zhan et al. 2018, 
MacLeod et al. 2016, Baćak and Kennedy 2019). We can 
apply this methodology to a number of different events, 
such as a regime change, adoption of a technology 
or the emergence of an institution with a particular 
function (e.g., urban garbage collection). Prediction 
targets can also be more complex and specific. For 
example, they have been applied to predict the location, 
amount, denomination, and material composition of 
an archaeological cache of money and precious metal 
hoards, and the distribution of mints from which the 
coinage derives. This might only be limited by the area, 
such as surrounding the Mediterranean, and a period of 
time to which the hoard date (see appendices for a more 
in depth discussion of these methods).

4 FUTURE WORK AND ASPIRATIONAL 
CASE STUDIES

4.1 COMBINING TIME SERIES OF HUNDREDS 
OF RANDOM VARIABLES
As far more datasets become available we will be 
confronted with combining multiple time series of 
systems evolving from up to hundreds of different 
variables, including not only the sorts of variables 
recorded in Seshat, but also completely different kinds of 
variables, like lead levels in glaciers, or tree ring widths as 
climate proxies, to large-scale characteristics of polities 
that others have discussed before. We will be combining 
these with wholly different kind of time series, including 
things like word usage patterns in historical documents, 
structures in legal codes, time series of fashions, 
ecosystem characteristics, etc., all concerning different 
random variables.

As always, great insights will accrue from fine-grained 
analysis, in which domain experts deeply scrutinize only 
a few of these time series at once. However, there is also 
the great allure of integrating all of these myriad time 
series in a systematic, statistically principled way, to 
uncover unanticipated connections and insights. Indeed, 
ultimately, one would want to be able to integrate all 
of these time series into a single underlying stochastic 
process, with associated error bars. However, there 
are many analytical challenges to doing that, due to 
the sheer number of these times series, and the sheer 
breadth of the types of associated random variables.

As an important example of such a challenge, how 
does one infer causalities in a statistically principled way 
among hundreds of time series, all involving different 
random variables? For example, what techniques would 
allow us to uncover statistically significant causal 
connections relating time series ranging over hundreds of 
different spaces? Can we scale up techniques like Granger 
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causality from econometrics (Granger 1969) or transfer 
entropy and directed information from information 
theory, to such large numbers of spaces (Schreiber 2000, 
Amblard and Michel 2013)?

As another example, can we extend breakpoint 
analysis / change detection to involve multiple time series, 
in order to find non-stationary breaks in the underlying 
dynamic process? Such breaks would reflect some 
exogenous events, perturbing the underlying dynamics 
of the system. So, for example, such a breakpoint might 
indicate that a particular leader of a state was indeed 
consequential, rather than just being a “product of their 
time”, in that they perturbed the underlying dynamics 
of sociopolitical processes — we might conclude from 
such a breakpoint that a leader had literally changed the 
course of history.

4.2 LEVERAGING AGENT-BASED MODELS FOR 
STOCHASTIC PROCESS MODELING
Agent-based models (ABMs) are becoming increasingly 
instrumental for investigating processes that leave limited 
physical traces in historical and archaeological data, such 
as work examining the dispersal of hominins out of Africa 
(Romanowska et al. 2017). Typically such models involve 
the dynamics of variables that are hidden, in that they 
do not directly appear in the historical data. For example, 
Crabtree and colleagues (Crabtree et al. 2017b) and 
Kohler and colleagues (Kohler et al. 2018) built a model for 
sociopolitical evolution in the North American Southwest 
in which territorial groups undergoing population growth 
may succeed in subjugating or merging with other groups 
via warfare or intimidation. Networks of flows of maize as 
tribute are among the many outputs from these models. 
These flows constitute hidden variables have not been 
observed directly in the archaeological record.

Adopting this perspective on ABMs suggests many 
new ways they can be combined with stochastic process 
modeling. Most obviously, if our original dataset has lots 
of missing values, by fitting the parameters of an ABM 
to match the data we do have, we could use the values 
the ABM assigns to the variables with missing data as 
estimates of those missing data values, a technique 
proposed by Bruch and Atwell (Bruch and Atwell 2015) for 
social science studies more broadly. In this sense, ABMs 
can sometimes be used as a variant of the technique of 
imputations, used so extensively to deal with missing 
data in the original Seshat analysis (Turchin et al. 2018a). 
As another example, we could sample the values of the 
hidden variables in the ABM at regular time-intervals. By 
adding those samples to the original dataset, we could 
produce an estimated dataset in a much larger space 
than the original dataset. For example, if we fit the 
parameters of an ABM so that it reproduced the data in 
Seshat, then we could sample the variables of the ABM at 
single-century intervals, and add those sampled values 
to Seshat, to produce a dataset in a much larger space. 
We could then perform any of the stochastic process 

analyses described above to this augmented dataset. 
For example, we could perform PCA on this augmented 
dataset, and examine how the PC2 of this new PCA 
varies as the new PC1 increases, perhaps finding a more 
elaborate version of the hinge points that were found by 
analyzing the original Seshat dataset.

5 CONCLUSION

The concept of history unfolding stochastically is not 
new; in the context of the history of life on Earth, Stephen 
J. Gould famously asked what would happen if we 
could “replay the tape”, which implicitly supposes that 
an underlying stochastic process generated that tape 
(Gould 1989). Similarly, stochastic process modeling 
of environmental dynamics has been used to infer 
exogenous perturbations to the dynamics of human 
social systems (Malik 2020). In addition, the phylogenetic 
tree reconstructions of human language dynamics 
discussed in Section IIIB have been used as a “clock” 
to infer the dynamics of socio-political phenomena 
(Currie et al. 2010, Sheehan et al. 2018). There has also 
been some work directly applying time-series analysis 
techniques to socio-political datasets (Turchin 2018).

These are isolated instances though, rather than a 
systematic scientific program. Here we propose something 
more fundamental: that by grounding our investigations 
of human social dynamics in stochastic process models, 
we can not only better investigate the historical record, 
but also begin to unify the myriad approaches that have 
been championed for analyzing that record. Such a 
program would also potentially allow us to detect drivers 
for the historical processes that generated that historical 
record — in particular, drivers that had not already been 
anticipated in social science models. This might allow the 
data to drive our formulation of social science models, 
as an adjunct to the more conventional approach 
under which we analyze datasets only after we first 
formulate models (e.g., based on intuitive insight and/or 
on analogizing with models from other scientific fields). 
Crucially, as we illustrated with the examples above, both 
the datasets and computational tools necessary for this 
vision to become a reality are now coming into being.

It is important to emphasize that we do not argue 
that one specific stochastic process we have identified 
generates the dynamics of history. (Indeed, we expect 
that it will be most fruitful to view history as multiple, 
interwoven stochastic processes, all with different 
characteristics.) We are not even advocating whether 
a time-homogeneous process or time-inhomogeneous 
process be considered. Ultimately, as in all statistical 
analyses, the choice of model to fit to the data is 
governed by considerations of number of data, size 
of the space of variables, types of variables, etc., with 
cross-validation used to help winnow the options. (See 
supplement, Section IA.)
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We are also not advocating that one specific state 
space be used to model the stochastic process(es) of 
human history. Nor are we arguing which subsequent 
analyses should be applied to stochastic process(es) 
models inferred from historical data, e.g., to uncover 
possible causal relationships among historical variables.

More generally, we are also not arguing that all of 
historical analysis should be formulated in terms of 
stochastic processes. Statics, as opposed to dynamics, 
is also (obviously) an extremely important aspect of 
historical analysis, as history is not only concerned 
with time series analysis, but also with revealing the 
internal structures of societies and the patterns of their 
interactions at any given single point of time. Indeed, even 
in those sciences where all phenomena are based on a 
single dynamic law, like quantum physics (Schrödinger’s 
equation), much research focuses on statics rather than 
dynamics.

Finally, we note that a stochastic process formulation 
is also central to the other historical sciences, ranging 
from biology to meteorology to geology. So not only 
does this perspective allow us to unify the analyses of 
computational history, it also allows us to align how 
we investigate human history with how it is done in the 
other historical sciences.

DATA ACCESSIBILITY STATEMENT

For the facilitation of open science and the broader 
research community, we provide transparent access to 
key resources integral to this article:

1.	 bighist Python Package: A cornerstone of our analysis 
pipeline, the ‘bighist’ Python package, not only offers 
a data abstraction framework suitable for analyses 
in big history and cultural evolution but also contains 
the actual Seshat data necessary to reproduce 
our results. The package simplifies the process of 
loading and manipulating the seshat data, ensuring 
its practical utility for researchers. The source code, 
alongside comprehensive installation guidelines, is 
available here.

2.	 Article Source Code: For hands-on replication and a 
deeper understanding of our methods and findings, 
much of our article-specific source code and 
examples are openly accessible here.

3.	 Additional information: Please see the supplement 
for further details, especially the section “Source code 
and the Python bighist package.”

NOTES
1	 Of course, our preconceptions and experience still affect our 

choice of which variables go into the historical dataset in the 
first place. Our concern here is to able to minimize the role of 
such preconceptions in the analysis of our datasets, however 
those datasets were constructed.

2	 This need of high-order Markov models to have very large 
amounts of data is similar to the need of conventional delay 
embedding time-series analysis for such large datasets. See the 
discussion section below.

3	 To be more concrete, suppose that the stochastic process itself 
changes at time t′. This would mean that if we start the society 
at x0 at some time t1 > t′, the likely ensuing trajectories would be 
different from what they would be if we instead start the society 
at x0 at a time t0 < t′.

4	 As a technical comment, throughout this paper we view 
real-world datasets as being formed by noisy observations of 
trajectories x(t), rather than incorporating the observational 
process directly into the stochastic process itself. So we do 
not consider the possible effects of time-dependence in the 
map taking X(t) to our observational data. In particular, for the 
purposes of this paper, we do not consider the many ways that 
archaeological data concerning events further in the past can be 
“more noisy” than recent archaeological data.

5	 Note though that such techniques can also be interpreted 
as estimating deterministic dynamics embedded on a high 
dimensional manifold in state-space (Takens 1981; Sauer et al. 
1991). At present it is unclear how low-order Markov models in 
which the drift and diffusion vary across the space are related to 
such processes generated by deterministic dynamics over a high 
dimensional manifold.

6	 We emphasize, though, that we have not yet done a careful 
analysis of exactly how much correlation there is.

7	 A time-homogeneous Markov chain has a unique stationary 
probability distribution. That distribution can have multiple peaks, but 
the probability is 0 of the system staying in one peak indefinitely. In 
that sense, the dynamics cannot have multiple basins of attraction.

ADDITIONAL FILE

The additional file for this article can be found as follows:

•	 Supplement File. Supplementary Information for 
The Past as a Stochastic Process. DOI: https://doi.
org/10.5334/jcaa.113.s1
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