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ABSTRACT
Cross-cultural models are a useful tool to generate hypotheses about the past using 
ethnographic data, especially when they can be validated against the archaeological 
record. In this paper, we propose the use of computer modelling techniques to gain 
insights into the agricultural history in the northern Horn of Africa of two key staple 
crops, i.e. finger millet (Eleusine coracana) and sorghum (Sorghum bicolor). To date, 
our understanding of the role of these cereals in the past economies of the region 
has been hindered by preservation issues and the limited number of systematic 
archaeobotanical research programs. By building predictive models that combine 
published ethnographic literature and environmental datasets on a global level, we can 
generate hypotheses about past agricultural systems in the northern Horn. The ability 
of the models to predict local agricultural practices in the area was tested against 
ethnoarchaeological observations in Gulo Makeda (Tigrai, Ethiopia). Archaeobotanical 
data from an archaeological site in the area, i.e. Ona Adi (ca. 750 BCE – CE 700), was 
used to assess the model’s predictions when applied to the archaeological record. 
According to our results, the rainfed agriculture of finger millet and sorghum was 
already in place during the Aksumite period (ca. 50 BCE – CE 800) around the main 
centres of settlement articulation. These results are supported by the phytolith 
assemblage from Ona Adi, which records the presence of water-stressed Chloridoideae 
and Panicoideae grasses throughout the occupation of the site.
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INTRODUCTION

Over 500 million people are thought to be fed globally by 
sorghum (Sorghum bicolor (L.) Moench) and finger millet 
(Eleusine coracana Gaertn.). These are drought-resistant 
crops that can grow in a variety of environmental 
conditions, including regions with poor soils and erratic 
rainfall (Ruiz-Giralt et al. 2023a). In the northern Horn of 
Africa, finger millet and sorghum have been cultivated 
since at least the Aksumite period, ca. 1,500 years 
ago, and represent a significant component of local 
agricultural economies, as they are well-suited to the 
semi-arid climate of the region (Figure 1). Despite their 
long presence in the northern Horn, little is known about 
the beginnings of the agricultural history of these crops 
in the region, even though mentions of finger millet and 
sorghum as indigenous to the Horn of Africa are present in 
the literature of the 20th century (e.g., Vavilov 1926, 1951, 
Harlan 1969, 1971, Doggett 1991) and the specific area in 
which they were first domesticated has been extensively 
debated (e.g., Harlan and Stemler 1976, Hilu and de Wet 
1976, and references therein). Recent evidence has built 
some consensus around eastern Sudan as the area of 
domestication of sorghum (see Fuller and Stevens 2018, 
Winchell et al. 2018), whereas the domestication locale 
of finger millet remains unclear – although most authors 
recognize the highlands of eastern Africa, including the 
Ethiopian and Eritrean highlands as the most likely area 

of domestication (see Fuller and Hildebrand 2013, Fuller 
2014). The earliest available archaeological evidence of 
finger millet and sorghum in the highlands of northern 
Ethiopia and Eritrea dates to the 1st and 3rd centuries 
CE respectively. On the one hand, carpological evidence 
of finger millet has been documented at Ona Nagast 
(D’Andrea 2008), where one grain has been identified 
in deposits from the Early Aksumite phase (ca. 50 BCE-
CE 150). Sorghum, on the other hand, has only been 
documented after the 3rd century CE at Aksum: one grain 
was found at the Tomb of the Brick Arches (dated from cal. 
CE 239–561) and, it has been interpreted by Boardman 
(2000) to date to the Classic Aksumite period (ca. CE 
150–330). Another seed was found in the Late Aksumite 
deposits from the D-site in Aksum (ca. CE 500–700). 
Despite the limited number of macrobotanical remains, 
isotopic analysis on human remains of one individual from 
Etchmare East (dated from cal. 465–197 cal. BCE) have 
shown C4 plants to represent 20% of their diet (D’Andrea 
et al. 2011). More recently, phytoliths of Panicoideae (C4 
grass subfamily including sorghum) and Chloridoideae (C4 
grass subfamily including finger millet), as well as starch 
grains associated with the Andropogoneae (Panicoideae 
tribe including sorghum) and Eragrostideae (Chloridoideae 
tribe including finger millet and t’ef) tribes have been 
found in the microbotanical records from Mezber and Ona 
Adi, demonstrating that these grasses were continuously 
exploited from the Initial Pre-Aksumite phase at Mezber 

Figure 1 Elevation map of the study area showing the location of the sites included in the model.



98Ruiz-Giralt et al. Journal of Computer Applications in Archaeology DOI: 10.5334/jcaa.132

(ca. 1600–900 BCE) to the abandonment of Ona Adi (ca. 
CE 700) and the subsequent Post Aksumite occupation 
of the site (Beldados et al. 2023, Ruiz-Giralt et al. 2023b). 
These proxies, however, cannot generally identify plants 
to the species level, and more research is needed on the 
phytolith and starch production of the C4 wild members 
of these subclades to securely identify specimens to the 
genus level (however, see Liu et al. 2019, Lucarini and 
Radini 2020).

The scarcity of carpological evidence of C4 small-
seeded cereals, as well as recurrent inconsistencies 
in the presence of these crops between macro- and 
microbotanical assemblages in different parts of the 
world (e.g., Liu et al. 2014, Madella et al. 2014, Lucarini et 
al. 2016, Out et al. 2016, Laugier et al. 2022), have shown 
the importance of developing alternative approaches to 
study the history of these cereals in the archaeological 
record (see Madella et al. 2016). The preservation 
issues of finger millet and sorghum except in extreme 
conditions (e.g., desert environments, see Mercuri et al. 
2018, Beldados 2019) have long been recognized (see 
Young and Thompson 1999). Indeed, experimental 
studies have shown that finger millet seeds rarely survive 
temperatures over 250–300°C (Terefe and Beldados 
2021, Mueller et al. 2022), while the identification of 
sorghum remains is significantly hindered after being 
exposed to 300–350°C (Varalli et al. 2023, Beldados and 
Ruiz-Giralt 2023). Even when they survive, the degree 
of charring and the moisture content of the grains can 
greatly impact their preservation (Wright 2003, 2014). 
Other authors have highlighted the importance of 
cereal processing activities in the survival of these crops: 
for example, Young and Thompson (1999) noted that 
cereals such as sorghum and finger millet are generally 
underrepresented in archaeological deposits, as they 
do not need to be parched before pounding to release 
the grain from the chaff because they are dried under 
sunlight rather than over a fire. In this regard, Lyons 
and D’Andrea (2003) were told by local informants 
from Tigrai (northern Ethiopia) that only wheat, barley 
and chickpeas are commonly roasted for consumption. 
Sorghum is sometimes roasted, but finger millet grains 
are never exposed to fire (Lyons and D’Andrea 2003). 
Further, both cereals are commonly used in traditional 
brewing, which involves the baking of flour but never of 
grains (see Lee et al. 2015, Wayessa et al. 2015). Fuller 
and Stevens (2018) note that the biggest challenge for 
the study of the history of sorghum in Africa has been the 
small number of systematic archaeobotanical sampling 
programs as well as poor preservation at some African 
sites, the latter worsened by the effect of bioturbation 
in tropical soils. These same considerations can be 
extended to finger millet.

In this paper, we focus on the agriculture of finger 
millet and sorghum during the Aksumite period in the 
northern Horn of Africa. We aim to explore whether the 

cultivation of these crops was feasible around the main 
Aksumite archaeological sites identified to date (Figure 
1), and to investigate potential agricultural practices, 
including cultivation intensity and watering regimes, 
that might have been in place based on the surrounding 
environmental conditions. We approach these 
issues using a combined methodology that includes 
ethnoarchaeological modelling and phytolith analysis. To 
do so, we have developed the following workflow (Figure 
2): 1) creation of models on traditional agricultural 
systems using available ethnographic literature, 2) cross-
validation of the models using first-hand ethnographic 
data from the study area, 3) application of the model 
to archaeological sites from the Aksumite period, and 
4) evaluation of the results by comparison with the 
phytolith data from one of the analysed sites. This 
approach is based on the theoretical consideration 
that, by examining the main environmental factors 
influencing modern-day traditional agricultural systems, 
we can improve our understanding of past agricultural 
practices. This is because traditional agricultural systems 
are often the result of very long-term processes of 
ecological adaptation that have resulted in highly 
resilient socio-ecological systems known to have been in 
place for hundreds or thousands of years. Even though 
it is true that sociocultural phenomena often play a 
role in shaping traditional agriculture, we argue that 
human communities can only adopt a finite number of 
agricultural solutions under specific ecological conditions 
and with a specific set of technological implementations, 
regardless of culturally imbued preferences (Ruiz-Giralt 
et al. 2023a).

STUDY AREA

ENVIRONMENTAL SETTING OF THE HIGHLANDS
The highlands of northern Ethiopia and Eritrea are 
nowadays characterised by an arid to semi-arid climate 
(Aridity Index ranges from 0.098 to 0.652, Hagos et al. 
2019) and strong seasonality, with a primary rainy season 
from mid-June to mid-September. The landscape of the 
area is dominated by an irregular plateau ranging from 
1,000 to 3,500 metres above sea level (masl) resulting 
from the volcanic activity associated with the East African 
Rift. These topographic variations have produced a mosaic 
of microclimates within very short distances, which show 
significant variation in temperature (annual means 
vary between 15 and 25°C) and rainfall (annual means 
ranging between 500 and 750 mm per year). The region 
is known to have experienced significant environmental 
changes during the Late Pleistocene, showing a general 
tendency towards aridification that extended until the 
East African Humid Period (ca. 9000–3600 BCE), when 
a climatic optimum was reached (Hoelzmann et al. 
2004, Nyssen et al. 2004). Despite the prevalence of wet 
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conditions during these moister millennia, dry events 
also occurred (e.g., Marshall et al. 2011), eventually 
leading to a period of landscape instability and reduced 
precipitation that extended until ca. 2200 BCE (Lanckriet 
et al. 2017). It was during this time that the present-
day climatic conditions were established, following a 
last abrupt change in the region’s ecological conditions 
between 5,000–4,000 years ago (Tierney and de Menocal 
2013). Since then, climate conditions remained relatively 
stable, showing alternating periods of landscape 
degradation and recovery occurring at the local level 
(see Bard et al. 2000, Darbyshire et al. 2003, Sulas et al. 
2009, Ruiz-Giralt et al. 2021). Although Machado et al. 
(1998) considered that these fluctuations were the result 
of increased aridity, more recent studies by French et al. 
(2009, 2017) have argued that significant landscape 
degradation did not uniformly occur until the 15th or 
16th centuries. Indeed, analysis of stable isotopes have 
shown no indication of widespread, major alterations in 
climate in the region during the Pre-Aksumite (1600–50 
BCE) and Aksumite (50 BCE-CE 700) periods (Terwilliger et 
al. 2011, 2013). Instead, landscape modification during 
these centuries appears to be related to land clearing 
practices associated with agricultural activity (Terwilliger 
et al. 2011, 2013, French et al. 2017, Blond et al. 2021, 
Ruiz-Giralt et al. 2021).

HUMAN OCCUPATION AND SUBSISTENCE 
ECONOMIES DURING THE AKSUMITE PERIOD 
(50 BCE-CE 700)
The Kingdom of Aksum originated during the late-1st 
millennium BCE in the Aksum area, specifically on Bieta 
Giyorgis hill, which was the centre of a polity known as 
“Proto-Aksumite” (400–50 BCE) (Fattovich and Bard 2001). 
By 50 BCE, the focus of political power shifted from the 
hilltop to the plain in the south, marking the beginning of 
the Aksumite Kingdom (Fattovich 2010, 2019, Phillipson 
2012). Despite being a small kingdom at the beginning of 
the Common Era, its regional and interregional influences 
were rapidly consolidated, extending its political and 
economic control towards the Red Sea, the Eastern Desert, 
and possibly the Upper Nile Valley, and incorporating 
previously distinct populations (Phillipson 2012). Further 
territorial expansion occurred during the 3rd century CE 
and following periods, when various Aksumite kings 
annexed surrounding regions as far as the Red Sea coastal 
plain and extended to the Middle Nile region and South 
Arabia. Aksum developed into an increasingly centralised 
state which adopted Christianity in the early-4th century CE 
(Fattovich 2019). In this regard, several systematic surveys 
during the last 20 years (Michels 2005, Schmidt et al. 
2008a, Sernicola 2008, D’Andrea et al. 2008, Sernicola and 
Phillipson 2011, Harrower and D’Andrea 2014, Gaudiello 

Figure 2 Workflow used in this study. Grey boxes represent previously published data. Yellow boxes contain new data. Blue shapes 
represent datasets. Processing data steps in R software 4.2.2 (R Core Team 2021) are red rectangles. Green shapes represent the 
results of R processing.
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and Yule 2017, Benoist et al. 2020, Harrower et al. 2022) 
have identified the presence of Aksumite sites over much 
of present-day region of northern Ethiopia and Eritrea, 
suggesting that the Aksumite territory comprised the 
entire highlands of the northern Horn of Africa, from the 
Red Sea coast and the edge of the Rift Valley in the East, 
to the Rora Laba mountain in northern Eritrea, the Tekeze 
River in western Tigrai and the Amba Alagi mountain in 
southern Tigrai (Fattovich 2010, 2019).

The territory controlled by the Aksumite kingdom 
was exceedingly diverse. The results of intensive 
archaeological surveys and excavations demonstrate a 
pattern of occupation characterised by the absence of a 
strong political centre of settlement articulation (Schmidt 
2009, Curtis 2010, Harrower and D’Andrea 2014, Graniglia 
et al. 2015, Harrower et al. 2022). Geospatial analysis of 
Aksumite settlement patterns points to a general lack of 
spatial clustering and site-size hierarchies, suggesting a 
heterarchical rather than hierarchical pattern of political 
organisation (Harrower and D’Andrea 2014, Harrower 
et al. 2022). In this regard, Harrower et al. (2022) have 
shown that, besides the capital city of Aksum, other 
large urban sites such as Ona Adi, Matara, Wakarida, and 
Beta Samati also acted as local centres of settlement 
organisation during the Aksumite period, surrounded by 
an increasing number of hamlets and villages as a result 
of significant population growth (Harrower et al. 2022). A 
similar situation was probably extended to the city port 
of Adulis (Peacock et al. 2007, Zazzaro et al. 2014), as well 
as to other important Aksumite sites such as Adi Ahoune 
(Anfray 1973, Godet 1977, D’Andrea et al. 2008), Qohaito 
(Wenig and Curtis 2008, Wenig 2010), Qwiha (Breton and 
Ayele 2019), Enda Sellassie (Finneran and Phillips 2003, 
Moy 2019), Hawelti-Melazo (Menn 2020), Emba Derho 
(Schmidt et al. 2008b), Agoula (Anfray 1970), Debarwa 
(Littmann et al. 1913 cited in de Contenson 1961), Daqqa 
Mahare (Littmann 1907) and Edaga Hamus.1 Further GIS-
based settlement pattern analyses in eastern Tigrai have 
shown statically significant associations between sites 
and their surrounding environment, including preferential 
selection of sediment slope and valley bottom landform 
classes as well as water-rich areas with greater 
agricultural potential (Harrower and D’Andrea 2014). An 
analogous situation has been recorded in central Tigrai 
by Sernicola (2008, Sernicola and Sulas 2012), where a 
settlement preference for altitudes over 2,000 masl has 
been recorded. According to Harrower and D’Andrea 
(2014) such conditions offered increased agricultural 
productivity for cultivation and grazing, but they would 
have also mitigated the risks of periodic drought.

Subsistence was based on the agriculture of Near 
Eastern C3 cereals (including emmer wheat (Triticum 
dicoccum L.), free-threshing wheat (Triticum durum L. and 
T. aestivum L.), barley (Hordeum vulgare L.), linseed/flax 
(Linum usitatissimum L.) and lentil (Lens culinaris Medik.), 
which were combined with indigenous crops, including 
finger millet and sorghum, as well as t’ef (Eragrostis tef 

(Zucc.) Trotter), noog (Guizotia abyssinica (L.f.) Cass.), 
and possibly the semidomesticated Ethiopian oat (Avena 
abyssinica Hochst.) (Boardman 2000, D’Andrea 2008, 
Meresa 2017, Delle Donne 2021, Ruiz-Giralt et al. 2023b). 
It is worth noting that the Pre-Aksumite emphasis on 
cereal agriculture shifted during the Aksumite period as 
an important range of pulses – namely, chickpeas (Cicer 
arietinum L.), horse bean (Vicia faba L.), grass pea (Lathyrus 
sativus L.), and pea (Pisum sativum L.) – and geophytes 
– including members of the Brassicaeae, Zingiberaceae 
and possibly Dioscoreaceae families – as well as other 
economic crops such as cress (Lepidium sativum L.), 
gourds (Cucurbitaceae), cotton (Gossypium sp.) and 
grapes (Vitis sp.) were introduced (Boardman 2000, 
D’Andrea 2008, Meresa 2017, Ruiz-Giralt et al. 2023b). 
Regarding agricultural practices, woodland clearance was 
carried out to open new agricultural crop fields (Terwilliger 
et al. 2011, Ruiz-Giralt et al. 2021), although the extent of 
such activity remains unknown. According to Sulas et al. 
(2009, Sulas 2014, 2018), Aksumite farmers engaged in 
a cultivation cycle governed by a bi-modal climate with 
long dry seasons and short rainy periods that allowed 
farmers to engage in other productive activities during 
several months each year. In this sense, some scholars 
have speculated that such labour cycles might have 
been controlled by the central state (Sulas et al. 2009, 
Sulas 2014), in relation to long-distance trade based on 
the exploitation of natural resources over a wide area, 
together with control of labour on an unprecedented 
scale (Phillipson 2012). Regarding animal husbandry 
and herding activities, the zooarchaeological record is 
dominated by domesticated bovids (including cattle, 
sheep and goat) and chicken (Cain 2000). Information 
derived from inscriptions and rock art highlight the 
importance of cattle in Aksumite agriculture as work 
animals (Finneran 2007: 93). It is noteworthy that recent 
studies have found no indication that large-scale irrigation 
was in practice during the Aksumite period (Sulas et al. 
2009, Sulas 2014, 2018, Harrower et al. 2020), contrary 
to earlier hypothesis (Kobishchanov 1979, Butzer 1981, 
Bard et al. 2000, Michels 2005). As noted by Harrower et 
al. (2020), the available archaeological evidence indicates 
that irrigation played a supplemental role (if any) rather 
than a central role in Aksumite agriculture. Instead, 
authors argue that Aksumite populations were able to 
thrive by utilising rainfed agriculture, terraces, and small-
scale irrigation techniques (mostly used for horticulture) 
that are similar to the ones still in use in the region today 
(Harrower et al. 2020, see also Biagetti et al. 2022).

CASE STUDY: ONA ADI

The site of Ona Adi is situated close to the modern villages 
of Menabeity and Etchmare, in Tabia Shewit Lemlem, at 
an altitude of 2,452 masl. The pottery recovered from 
the site reveals five phases of occupation: 1) Middle/Late 
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Pre-Aksumite (ca. 750/600–400 BCE), 2) Pre-Aksumite to 
Aksumite (PA-A) transition (ca. 400 BCE-CE 1), 3) Early 
Aksumite (ca. CE 1–330), 4) Middle Aksumite (ca. CE 330–
500), and 5) Late Aksumite (ca. CE 500–700) (Mekonnen 
2019: 339). Ona Adi is one of a few sites known to 
have been occupied during the PA-A transition, a time 
of cultural transformation that witnessed leadership 
changes and the abandonment of settlements in the 
regional centres of Yeha and Aksum (D’Andrea et al. 
2008). Archaeological excavations by the Eastern Tigrai 
Archaeological Project (ETAP) (D’Andrea et al. 2008) have 
identified Ona Adi as an Aksumite urban centre, covering 
a total area of approximately 10 hectares (Harrower 
and D’Andrea 2014). The site has buildings with stepped 
wall constructions and ceremonial pottery that suggest 
the presence of elite residences. The ceramics, lithics, 
and grinding stones recovered at the site demonstrate 
the advanced technical knowledge of artisans who had 
honed their craft. Two coins depicting Aksumite kings 
were also discovered, possibly indicating the presence 
of one or more leaders of the heterarchical polities that 
appeared during the Aksumite period.

Carpological analyses by Meresa (2017) have shown 
a diverse assemblage that included both domestic and 
wild plant species: the domesticated fraction comprises 
wheat, barley, lentil, flax, noog, t’ef, and finger millet, 
whereas the weeds and wild species assemblage was 
dominated by indeterminate Poaceae and Lolium sp., 
(Meresa 2017). It is worth noting that the presence of t’ef 
and finger millet was only attested after the Early and Late 
Aksumite periods respectively. By contrast, the results of 
phytolith analysis from grinding stones have recorded 
a clear predominance of C4 morphotypes (30 to 40%) 
over C3-related morphotypes (1 to 5%) – note that 60% 
were classified as herbaceous indeterminate (Poaceae/
Cyperaceae) (see Ruiz-Giralt et al. 2023b for further 
details). Microbotanical analysis have also recorded the 
presence of starch grains associated to grasses from the 
subfamilies Panicoideae (including Andropogoneae and 

Paniceae types), Pooideae and Chloridoideae (including 
an Eragrostideae type), as well as legumes and various 
geophytes, which were being consistently processed at 
Ona Adi throughout the entire occupational sequence of 
the site (Ruiz-Giralt et al. 2023b).

MATERIALS AND METHODS

ETHNOARCHAEOLOGICAL MODELS
Global models on crop selection, finger millet (FM) and 
sorghum (SB) cultivation by Ruiz-Giralt et al. (2023a) were 
applied to assess FM and SB agriculture in the northern 
highlands of Ethiopia and Eritrea. These models were 
constructed using data from ethnographic literature 
on traditional agricultural systems around the world, 
and they study the interaction between environmental 
variables and agricultural practices. Training datasets 
were obtained from Ruiz-Giralt et al. (2023a, S1 
Appendix, Table S3), which extracted physio-climatic 
and edaphic data from published GIS data (Zomer et 
al. 2008, Hiederer and Köchy 2011, Estima et al. 2013, 
Shangguan et al. 2014, EROS 2017, Fick and Hijmans 
2017). All training response datasets were transformed 
using Hellinger’s transformation (Legendre and Gallagher 
2001, Legendre and de Cáceres 2013), whereas the 
explanatory datasets were standardised (by subtracting 
the variable mean to each value and then dividing it for 
the standard deviation) to create comparable scales. 
The crop selection model was used to assess cultivation 
viability of FM and SB. The original models in Ruiz-Giralt 
et al. (2023a) included pearl millet (Pennisetum glaucum 
(L.) R.Br), which was excluded from the response dataset 
as its cultivation has not been recognized in the study 
region. The models on FM and SB agriculture were applied 
to investigate cultivation intensity (casual, extensive, 
or intensive agriculture) and watering regimes (rainfed, 
flood or irrigated agriculture) (Table 1). All models 
were computed following the methodology applied by 

VARIABLE DEFINITION REFERENCES

Casual Agriculture Slight or sporadic cultivation of food or other plants incidental to a primary dependence 
upon other subsistence practice

Murdock 1981: 98

Extensive Agriculture Or shifting cultivation, as where new fields are cleared annually, cultivated for a year or two, 
and then allowed to revert to forest or brush for a long fallow period

Murdock 1981: 98

Intensive Agriculture On permanent fields, utilizing fertilization by compost or animal manure, crop rotation, or other 
techniques so that fallowing is either unnecessary or is confined to relatively short periods

Murdock 1981: 98

Rainfed Agriculture Water is provided by rainfall alone (directly or as run-off), cultivation occurs far from any 
permanent water sources and without any water harvesting

Lancelotti et al. 
2019: 1027

Décrue Agriculture Or floodplain cultivation, as where water is provided by natural inundation, typically from 
major river systems.

Lancelotti et al. 
2019: 1027

Irrigated Agriculture Water is provided to crops at regular intervals throughout the growing season by human 
intervention

Lancelotti et al. 
2019: 1027

Table 1 Definitions of agricultural practices considered in this study.
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Ruiz-Giralt et al. (2023a): Redundancy Analysis (RDA) 
(Legendre and Legendre 2012) with adjusted-R2-based 
forward selection (FS) (Blanchet et al. 2008) was used 
to identify and select significant explanatory variables 
and reduce collinearity. Linear trend (LT) and distance-
based Moran’s eigenvector maps (dbMEM) analyses 
were performed to test for spatially structured variance 
(Borcard et al. 1992, 2004, 2018, Legendre et al. 2012). 
The statistical significance of all models and submodels 
was tested by 1000 permutations.

The reduced models were first evaluated by assessing 
their capacity to blindly predict their own training dataset 
using performance measures: accuracy (correctly classified 
entries/total number of cases), precision (positive samples 
that were correctly classified/total number of positive 
predicted cases), recall (positive entries correctly classified/
total number of positive cases), and F1-score (evaluation 
of the classification performance through calculation 
of the harmonic mean of precision and recall) (Tharwat 
2018). Model fitting predictions were classified as 0 or 1 
using various classification thresholds (CT) calculated 
on the training data, including: 1) sensitivity-specificity 
equality approach (Sens = Spec), 2) sensitivity-specificity 
sum maximisation approach (MaxSens + Spec), 3) overall 
prediction success maximisation approach (MaxPCC), 
4) predicted observed prevalence equality approach 
(PredPrev = Obs), and 5) the ROC plot-based approach 
(MinROCdist) (see Manel et al. 2001, Liu et al. 2005, Nenzén 
and Araújo 2011 for further details). F1-score was used 
to choose between CTs. Second, the models were cross 
validated against ethnographic data from Tigrai (27 semi-
structured interviews conducted during May–June of 2019, 
see Biagetti et al. 2022 for further details) to evaluate the 
model’s performance at a local level in the region. The 
environmental datasets used for the Tigrayan interviewees 
were generated utilising an area of 50-km radius from the 
GPS coordinates of their respective households as noted 
by Ruiz-Giralt et al. (2023a). The selection of this area was 
based upon information provided by the interviewees 
regarding the location of their cultivated fields, which 
ranged from 0 to 40–50 km from their homes (Biagetti et al. 
2022). The testing explanatory dataset was standardised 
before predictions, using the mean and standard deviation 
of the training dataset in order to preserve data structure 
and distribution (Hastie et al. 2009). The same methods 
detailed above were applied to formulate and evaluate the 
predictions on the ethnographic data.

After cross-validation, the three models (crop choice, 
FM cultivation and SB cultivation) were applied to the 
core region of the Aksumite Kingdom, the highlands 
of northern Ethiopia and southern Eritrea, specifically 
to the main Aksumite sites listed by Fattovich (2019) 
complemented by some more recently investigated sites 
such as Qwiha (Breton and Ayele 2019) and Beta Samati 
(Harrower et al. 2019). The studied sites included Ona 

Adi, Aksum, Beta Samati, Matara, Adulis, Wakarida, Adi 
Ahoune, Qohaito, Qwiha, Enda Sellassie, HaweltiMelazo, 
Edaga Hamus, Agoula, Debarwa, Daqqa Mahare and 
Emba Derho (Figure 1). The area of analysis was 
established at 1, 5, 10, 25, 50, 100 and 200 km around 
the geographical position of the archaeological sites to 
evaluate different spatial scales. The same explanatory 
dataset of subactual environmental variables used 
by Ruiz-Giralt et al. (2023a) was employed, as the last 
abrupt change in the region’s ecological conditions 
occurred ca. 4,500 years ago, before the chronology 
considered in this study (see above). The same methods 
detailed above were applied to formulate predictions on 
the archaeological sites. Presence-absence predictions 
were made using the CT with the best performance 
measures when classifying ethnographic cases (MaxPCC, 
see Table 2 below). Statistical analyses were executed 
using R software 4.2.2 (R Core Team 2021). The full code 
and data are available as Supplementary Information at 
https://doi.org/10.5281/zenodo.7859673.

PHYTOLITHS
A total of 46 phytolith samples from Ona Adi were analysed. 
Samples were selected according to stratigraphical 
criteria to cover the entire occupational sequence of the 
site, including contexts characterised as fills, middens, 
floors, and ash accumulations. Phytoliths were extracted 
following the protocol described by Madella et al. (1998), 
adapted to reduce the effect of highly concentrated 
chemicals during long periods of exposure following 
Cabanes et al. (2011) (e.g., concentration of hydrochloric 
acid reduced to 5%), and to calculate the Acid-Insoluble 
Fraction (AIF) (Albert and Weiner 2001). Sonication 
was introduced during the removal of soil organic 
matter and clay with hydrogen peroxide and sodium 
hexametaphosphate, respectively, in order to facilitate 
their separation from the mineral fraction as proposed 
by Lombardo et al. (2016). Phytolith slides were prepared 
with a permanent medium (Entellan®), and they were 
analysed and photographed using a Euromex iScope 
microscope at 400× magnification with an Euromex 
scientific camera sCMEX-6. Phytolith descriptions were 
conducted according to the International Code for 
Phytolith Nomenclature (ICPN) 2.0 (Neumann et al. 2019). 
A minimum of 250 single cell phytoliths were identified 
in each sample and multicell phytoliths (silica skeletons) 
were counted separately. Taxonomical and anatomical 
interpretations follow Ruiz-Giralt et al. (2023b). Pearson’s 
correlation coefficient between phytolith concentration 
and number of morphotypes identified was utilised as an 
indicator for the impact of taphonomic processes on the 
phytolith assemblages (Madella and Lancelotti 2012). 
The Kruskal-Wallis H test was used to analyse differences 
between samples grouped by archaeological phase and 
type of context.

https://doi.org/10.5281/zenodo.7859673
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An adaptation of the experimental model for assessing 
plant water availability on C4 plants by D’Agostini et al. 
(2023) was implemented to assess watering practices 
at Ona Adi. This model was built using the modern 
phytolith assemblages from leaves extracted from five 
traditional landraces each of finger millet, pearl millet 
and sorghum experimentally grown under different 
watering conditions (see D’Agostini et al. 2022 for 
further details). Using stepwise selection in a binomial 
Generalised Linear Model (GLM), D’Agostini et al. (2023) 
identified blockies, stomata and polylobate phytoliths as 
the best explanatory variables (stepwise AIC = 84.51) to 
establish if archaeological phytolith assemblages derive 
from well-watered (WW) or water stressed (WS) crops. 
In the experimental assemblage, blocky phytoliths were 
identified as the phytoliths formed by precipitation of 
silica in bulliform cells of the leaves. In the present study, 
however, the blocky morphotype also included silicified 
cells other than leaf bulliforms (for further discussion see 
Ruiz-Giralt et al. 2023b, Supplementary Information) as 
it is common in archaeological contexts (Neumann et 
al. 2019). Therefore, blockies were excluded from the 
experimental training data. As a result, the stepwise 
selection included saddle, cross and polylobate as the 
best predictors (stepwise AIC = 54.52). When applying the 
model to the archaeological samples, all morphotypes 
uniquely belonging to C3 species and all morphotypes 

exclusively produced in inflorescences were excluded 
from the archaeobotanical dataset to obtain a dataset 
comparable with the experimental one, as recommended 
by D’Agostini et al. (2023). All statistical analyses were 
performed using R software 4.2.2 (R Core Team 2021). 
The full code and data are available as Supplementary 
Information at https://doi.org/10.5281/zenodo.7859673.

RESULTS

MODEL BUILDING AND CROSS-VALIDATION
The results of RDA with adjusted-R2-based FS showed that 
the new crop selection model retains 44.9% of the total 
inertia. The most significant predictors identified included 
mean altitude, mean topsoil pH (0 to 0.3 metres), variance 
of subsoil pH (0.3 to 2.5 metres), mean precipitation 
concentration index and mean topsoil volumetric water 
content at –10 kPa. All variables were found to be 
statistically significant and showed no collinearity. LT 
and dbMEM analyses showed no spatial patterns in the 
training dataset. Regarding FM and SB cultivation models, 
the full results are reported by Ruiz-Giralt et al. (2023a). 
On the one hand, the most important variables for finger 
millet cultivation included mean subsoil sulphur content, 
mean precipitation concentration index and topsoil mean 
phosphorus content (adjusted R2 = 0.61). On the other 

MODEL METHOD MODEL FITTING CROSS-VALIDATION

ACC. PREC. REC. F1 ACC. PREC. REC. F1

Crop choice Sens = Spec 0.77 0.84 0.75 0.80 0.63 0.89 0.93 0.76

MaxSens + Spec 0.81 0.94 0.73 0.82 0.54 0.67 0.52 0.67

MaxPCC 0.85 0.85 0.92 0.88 0.89 0.89 1.00 0.94

PredPrev = Obs 0.82 0.86 0.84 0.85 0.89 0.89 1.00 0.94

ObsPrev 0.76 0.93 0.64 0.76 0.54 0.93 0.52 0.67

MinROCdist 0.81 0.91 0.74 0.82 0.54 0.93 0.52 0.67

FM
cultivation

Sens = Spec 0.95 0.95 0.95 0.95 0.49 0.48 0.49 0.48

MaxSens + Spec 0.95 0.95 0.95 0.95 0.49 0.48 0.49 0.48

MaxPCC 0.95 0.95 0.95 0.95 0.49 0.48 0.49 0.48

 PredPrev = Obs 0.95 0.95 0.95 0.95 0.49 0.48 0.49 0.48

ObsPrev 0.62 0.75 0.35 0.48 0.4 0 0 0

MinROCdist 0.95 0.95 0.95 0.95 0.49 0.48 0.49 0.48

SB 
cultivation

Sens = Spec 0.8 0.67 0.78 0.72 0.73 0.6 0.67 0.63

MaxSens + Spec 0.78 0.63 0.85 0.72 0.71 0.55 0.7 0.62

MaxPCC 0.89 0.85 0.84 0.84 0.98 0.98 0.98 0.98

PredPrev = Obs 0.86 0.79 0.79 0.79 0.93 0.93 0.85 0.89

ObsPrev 0.63 0.44 0.35 0.39 0.41 0.03 0.02 0.02

MinROCdist 0.79 0.64 0.81 0.72 0.67 0.5 0.57 0.53

Table 2 Performance measures of model fitting and cross-validation using different classification thresholds (Acc. = Accuracy, Prec. = 
Precision, Rec. = Recall, F1 = F1-Score).

https://doi.org/10.5281/zenodo.7859673
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hand, sorghum cultivation was found to be determined 
by the mean of growing cycle duration, the variance of 
both topsoil and subsoil cation exchange capacity and 
the mean soil organic carbon (adjusted R2 = 0.24). All 
variables were identified as statistically significant and 
showed no collinearity nor spatial patterns.

At validation, all the reduced models were found to 
be well fitted using different classification thresholds –  
meaning that they could predict their own training 
datasets despite drastically reducing the number of 
explanatory variables. In all cases, the MaxPCC approach 
showed to be the best CT for model fitting (Table 2). Using 
MaxPCC, all models achieved over 85% accuracy and 
showed the highest classification strength (F1-score), 
ranging from 0.84 to 0.95. A similar situation was observed 
during model cross-validation against ethnographic 
data from Tigrai, as all models reached their highest 
accuracy and classification strength with the MaxPCC 
approach. For crop selection, the model was able to 
correctly predict 89% of the ethnographic cases. Despite 
not scoring the highest true positive rate, the model was 
able to identify all the positive cases, hence showing 
the highest classification strength using the MaxPCC 
approach (F1-score = 0.94). In the case of FM cultivation, 
all performance measures scored slightly below 0.5. This 
is because the model failed to predict cultivation intensity 
in all testing cases even though it correctly predicted 96% 
of the watering regimes. Finally, the SB cultivation model 
correctly predicted 98% of the testing cases, also showing 
the highest classification strength (F1-score = 0.98).

MODEL APPLICATION TO THE ARCHAEOLOGICAL 
RECORD
The results of the application of the crop selection model 
showed variation at different spatial scales (Table 3). 
First, the results showed that FM could be cultivated in 
over 80% of all Aksumite sites at 1, 5, 10, 25, 50 and 200 
km scales (Range = 87.5 to 93.75%). At 100 km, however, 
only 62.5% of the sites were positively classified. FM 
appeared to be absent from the port site of Adulis at all 
scales. By contrast, the model showed FM cultivation to 
be possible at all spatial scales only at the sites of Ona 
Adi, Aksum, Matara, Qwiha, Edaga Hamus, Agula, Adi 
Ahoune, Enda Sellassie, and Hawelti-Melazo. Regarding 
SB, the model predictions were 18.75% at a 1 km-radius, 
31.25% at 5 km, 43.75% of the sites at 10- and 25-km, 
87.5% at 50-km and 100% at 100- and 200-km radiuses. 
In this case, three sites were always positively classified, 
including Beta Samati, Adulis, and Agoula, whereas no 
site was always classified as zero. SB is recurrently absent 
under 10 km for Ona Adi, Matara and Adi Ahoune, under 
50 km for Aksum, Debarwa and Daqqa Mahare and under 
100 km at Enda Sellassie and Hawelti-Melazo.

Regarding FM cultivation model, the results showed 
a clear predominance of extensive-rainfed (EXT-RF) over 

intensive-rainfed (INT-RF) and intensive-irrigated (INT-
IRR) agriculture at all spatial scales, encompassing over 
66% of all sites where FM cultivation was recognized 
viable by the first model (Table 3). This situation was 
recorded at the 1, 5, 10 and 25 km scales (>90%), where 
all sites were classified as EXT-RF except for Wakarida, 
predicted to be INT-RF. The lowest percentage of EXT-
RF was encountered at 50 km, where a third of the sites 
were classified as INT-RF (including Wakarida, Qohaito, 
Edaga Hamus, Emba Derho, and Adi Ahoune). After that, 
the EXT-RF predominance was recovered at the 100-km 
and 200-km radius scale, except for Emba Derho. It is 
worth to note that FM cultivation at Ona Adi was always 
predicted as potentially extensive-rainfed, except for 
1-km radius where not enough environmental data were 
available.

The duration of growth cycle was retained as a 
significant variable in the crop model for SB, so the SB 
model was applied using six different growing cycle 
durations, that is 90, 120, 150, 180, 210 and 240 days to 
represent the broad spectrum between the fastest- and 
slowest-growing varieties of sorghum recorded in the 
wider NE African region (Biagetti et al. 2022, Ruiz-Giralt et 
al. 2023a). Overall, the most common predicted practice 
was INT-RF (Table 3). However, there were important 
differences according to the duration of the growing 
cycles: for example, almost all sites were categorised as 
INT-IRR when modelling 90-day sorghum at all spatial 
scales, with the exceptions of Ona Adi at 10 km and 
Enda Sellasie at 100 km, which were not classified under 
any group. A similar situation was observed when using 
the 120-day growing cycle, though in this case INT-IRR 
was less common amongst sites, reaching its highest 
percentage at 5-km radius around the sites (80%), but 
rapidly decreasing when augmenting the radius (28.57% 
at 10- and 0% at 200-km radius). By contrast, when 
using the slowest growing cycles (210 and 240 days), 
most of the sites were classified as EXT-RF. This pattern 
is less clear in the 210-day growing cycle, which shows a 
relatively balanced distribution between EXT-RF and INT-
RF at the scales below 50-km radius, favouring EXT-RF 
predictions after augmenting the site distance to 100-km 
radius. In the case of 240 days, all sites were predicted to 
potentially use EXT-RF agriculture to cultivate sorghum, 
with the additions of Agula at 1 and 5 km and Wakarida 
at 25 km in which both EXT-RF and INT-RF regimes were 
included. Regarding the intermediate growing cycles, 
most sites were classified as INT-RF: whereas at 150 
days, 100% of the sites were classified as INT-RF; at 180 
days, some were considered EXT-RF, gradually decreasing 
in favour of INT-RF as radius area increased. It is worth 
noting that the model did not produce any prediction of 
casual-rainfed (CAS-RF) or intensive-décrue (INT-DEC) 
agriculture. Overall, a general pattern could be identified: 
increasing growing-cycle duration was associated with 
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MODEL 1 KM 5 KM 10 KM 25 KM 50 KM 100 KM 200 KM

Crop choice FM 93.75 93.75 87.5 87.5 93.75 62.5 93.75

SB 18.75 31.25 43.75 43.75 87.5 100 100

FM cultivation EXT-RF 91.67 92.86 92.31 92.86 66.67 90.91 93.33

INT-RF 8.33 7.69 7.69 7.14 33.33 9.09 6.67

INT-IRR 0 0 0 0 0 0 0

SB cultivation (90 days) CAS-RF 0 0 0 0 0 0 0

EXT-RF 0 0 0 0 0 0 0

INT-RF 0 0 0 0 0 0 0

INT-DEC 0 0 0 0 0 0 0

INT-IRR 100 100 85.71 100 100 93.75 100

SB cultivation (120 days) CAS-RF 0 0 0 0 0 0 0

EXT-RF 0 0 0 0 0 0 0

INT-RF 33.33 33.33 71.43 75 64.29 75 100

INT-DEC 0 0 0 0 0 0 0

INT-IRR 66.67 80 28.57 25.0 28.57 12.5 0

SB cultivation (150 days) CAS-RF 0 0 0 0 0 0 0

EXT-RF 0 0 0 0 0 0 0

INT-RF 100 100 100 100 100 100 100

INT-DEC 0 0 0 0 0 0 0

INT-IRR 0 0 0 0 0 0 0

SB cultivation (180 days) CAS-RF 0 0 0 0 0 0 0

EXT-RF 0 0 28.57 25 0 0 0

INT-RF 100 100 71.43 62.5 85.71 93.75 100

INT-DEC 0 0 0 0 0 0 0

INT-IRR 0 0 0 0 0 0 0

SB cultivation (210 days) CAS-RF 0 0 0 0 0 0 0

EXT-RF 33.33 40 71.43 62.5 78.57 100 100

INT-RF 66.67 66.67 28.57 37.5 28.57 18.75 0

INT-DEC 0 0 0 0 0 0 0

INT-IRR 0 0 0 0 0 0 0

SB cultivation (240 days) CAS-RF 0 0 0 0 0 0 0

EXT-RF 100 100 100 100 100 100 100

INT-RF 33.33 20 0 12.5 0 0 0

INT-DEC 0 0 0 0 0 0 0

INT-IRR 0 0 0 0 0 0 0

Table 3 Summary of the results of the model application to 16 archaeological sites in percentage. The full results are available as 
Supplementary Information, Table S1 (FM = Finger millet, SB = Sorghum, CAS = Casual, EXT = Extensive, INT = Intensive, RF = Rainfed 
agriculture, DEC = Décrue/Flood agriculture, IRR = Irrigated agriculture). Note that length of growing cycle was not used for FM as it 
was not retained by the model as a significant explanatory variable.
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decreased cultivation intensity and potential irrigated 
agriculture rate. This tendency was accentuated by the 
extent of the area analysed: the smaller the radius, the 
higher the cultivation intensity and rate of irrigation. In 
the case of Ona Adi, this pattern was clearly identified, 
although no major differences were recorded in 
association to site radius size.

PHYTOLITHS FROM ONA ADI: VALIDATING 
THE RESULTS AGAINST ARCHAEOLOGICAL 
EVIDENCE
During the analysis, 59 single-cell morphotypes were 
identified. Additional taxonomic classification resulted in 
19 groups. For a detailed discussion of each morphotype 
and its taxonomic and anatomic association, see Ruiz-
Giralt et al. (2023b, Supplementary Information: 52–114) 
– also available at https://zenodo.org/record/7731566. 
Phytolith concentration ranged between 0.39 M and 
4.86 M phytoliths per gram of AIF. The Kruskal-Wallis 
H test did not highlight significant differences amongst 
phases or types of contexts. No correlation between 
phytolith concentration and number of morphotypes 
was found (Pearson’s r = –0.02). This indicates that 
taphonomic processes did not have a significant impact 
on the general composition and representativeness of 
the phytolith assemblage.

Single-celled phytoliths
Table 4 includes the results of the analysis of the single-
celled phytolith assemblage from Ona Adi (raw data 
available as Supplementary Information, Dataset 5 at 
https://doi.org/10.5281/zenodo.7859673). Morphotypes 
associated with indeterminate herbaceous plants 
(Poaceae/Cyperaceae and Poaceae) encompassed 
between 56.1% and 59.8% of all the assemblage. C4 grass 
subfamilies (Panicoideae and Chloridoideae) represented 
18.1 to 19.7% of all phases, whereas C3 Pooideae ranged 
between 3.4 and 4.4%. Palms, herbs, and other plants 
represented 0.9 to 2.1%, and dicotyledonous ranged 
between 1.2 and 2.6%. The remaining 14.8 to 16.9% 
of the assemblage was associated with non-diagnostic 
morphotypes.

C4 water availability model
The results of the application of the stepwise model using 
saddle, cross and polylobate as explanatory variables 
are shown in Figure 3, where 0 indicates water-stressed 
conditions and 1 indicates well-watered conditions (full 
results available as Supplementary Information, Dataset 
6 at https://doi.org/10.5281/zenodo.7859673). Most 
samples ranged between 0 and 0.25, meaning that 
the assemblage was likely derived from plants growing 
in water-stressed conditions. There were four outliers, 
including samples #961, #228, #1621 and #2509. These 
fell between 0.409 and 0.585 and therefore were difficult 
to consider as either well-watered or water stressed.

DISCUSSION

BUILDING ETHNOARCHAEOLOGICAL MODELS
The results of the model on finger millet and sorghum 
agriculture show that the most determining factors for 
the selection of these crops are altitude, precipitation 
concentration, soil acidity and soil water retention 
capacity. Our model shows that modern rural 
communities preferentially cultivate sorghum in regions 
characterised by relatively higher soil water pH, whereas 
finger millet is more commonly selected in highland 
areas with higher soil water-retention. Altitude is known 
to be a factor in crop choice in modern Tigrai, as farmers 
change to barley as the main cereal crop as fields 
approach 3,000 metres above sea level. Further, finger 
millet and sorghum appear to be preferred in areas with 
moderate to irregular precipitation distribution. As noted 
by Ruiz-Giralt et al. (2023a, and references therein), the 
importance of these variables in the cultivation of finger 
millet and sorghum have been already recognized by 
agronomists hence highlighting the scientific value of 
traditional agricultural systems. Moreover, the absence 
of spatial patterns indicates that cultural transmission 
was not the main factor in shaping the studied 
traditional agricultural systems, but that local processes 
of adaptation were likely more important. This is an 
important point regarding the applicability of the models 
to the archaeological record, as past agricultural systems 
were most likely also the result of long processes of 
ecological adaptation at the local to regional levels.

The validation of the models produced consistent 
comparable results to the original study (Ruiz-Giralt et 
al. 2023a). More importantly, they showed an overall 
better performance when cross-validated against the 
ethnographic data solely from Tigrai, with the unique 
exception of the cultivation intensity of finger millet 
agriculture. This situation can be attributed to the 
current national land management strategies in relation 
to demographic growth, which have prompted an 
intensification of agricultural systems in order to sustain 
the increasing population. Apart from this specific case, 
the models were able to correctly predict over 90% of the 
validation cases –including crop preferences and sorghum 
cultivation intensity and watering practices, but also 
the watering regimes used in finger millet agriculture– 
showing an outstanding performance when working at the 
regional and local levels. Indeed, such capability enables 
us to confidently apply the models to archaeological sites 
in the highlands of the northern Horn, especially given the 
fact that environmental conditions have not significantly 
changed for over 4000 years.

MODELLING AGRICULTURAL PRACTICES IN 
THE PAST
The application of the crop choice model to the main 
Aksumite sites in the highlands of the northern Horn 

https://zenodo.org/record/7731566
https://doi.org/10.5281/zenodo.7859673
https://doi.org/10.5281/zenodo.7859673
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of Africa shows that the agriculture of finger millet and 
sorghum was generally viable around these locations, 
especially in the case of finger millet. The results of this 
first model show that finger millet agriculture was possible 
at different spatial scales around most of the studied 
archaeological sites, including Ona Adi. Indeed, previous 
studies have shown Aksumite populations to preferentially 
located their settlement in highland water-rich valleys 
(Sernicola 2008, Sernicola and Sulas 2012, Harrower and 
D’Andrea 2014). Altitude and soil water-retention are also 
the main factors determining the choice of finger millet 
as identified by our crop choice model, hence explaining 
the generalised predicted presence of finger millet in the 
studied sites. Regarding cultivation intensity and watering 
practices, the ethnoarchaeological models indicate that 
most sites would have had to opt for extensive-rainfed 
regimes if cultivating finger millet. The model shows that 
this type of agriculture is presently the most common 
practice in areas with erratic rainfall like the highlands of 
the northern Horn. By contrast, more intensive regimes, 
including irrigated agriculture, not only need more 
concentrated precipitation but also agricultural fields with 
more fertile soils to sustain recurring cultivation. These 
fields are nowadays used in Tigrai for the cultivation of 
crops with higher input requirements, mainly barley and 
wheat, but also t’ef. In the past, similar land management 
practices were likely to have been in place, as Near 
Eastern C3 cereals were very important staples during 
Aksumite times as well (Boardman 2000, D’Andrea 2008). 
Nonetheless, at this moment it is difficult to evaluate 
past land cultivation intensity, especially given the poor 
results of the model when predicting modern-day cases. 
Overall, our data highlight the potential economic value 
of finger millet agriculture in the past. The low water and 
soil-nutrient requirements of finger millet when cultivated 
under extensive-rainfed regimes means that Aksumite 
people might have cultivated it in fields unfit for barley and 

wheat agriculture, but also during the aforementioned 
episodes of landscape degradation.

In the case of sorghum, the first model shows an 
interesting pattern: the wider the radius around the sites, 
the more sites are classified as potentially cultivating 
sorghum. This would indicate that Aksumite communities 
were less likely to cultivate sorghum in their immediate 
surroundings, but that the agriculture of sorghum was 
viable in the wider region. The results of the crop choice 
model indicate that sorghum was likely preferred in the 
coastal lowlands, as exemplified by the site port of Adulis 
(Zazzaro et al. 2014), as well as in areas located away 
from the main settlements, often with less agricultural 
potential (Harrower and D’Andrea 2014). When cultivated 
in the near vicinity of the sites, we argue that sorghum 
would have played a similar role as finger millet within 
Aksumite economy, and that the use of one or the other 
likely depended on more local, specific factors such as 
soil pH, as well as cultural preferences of the different 
local communities – for example in association with beer 
making activities. In relation to the intensity of cultivation 
and watering practices, the length of the growing cycles 
seems to be the most important factor in determining 
sorghum agriculture. According to our model, fast-growing 
sorghum varieties grown in traditional agricultural systems 
demand more intensive agricultural regimes and even the 
use of irrigation. These types of landraces, which mature 
in 120 days or less, are often the result of long processes 
of human selection and they are unlikely to have been 
available to farmers during the Aksumite period. Instead, 
slower maturing types comparable with the traditional 
landraces observed today (over 180 days, see Biagetti et 
al. 2022) were much more likely to be present. According 
to the sorghum cultivation model, these varieties could 
have been cultivated under extensive-rainfed conditions 
in a manner similar to what the ethnoarchaeological 
models predict about finger millet agriculture.

Figure 3 Plot of the probability of Ona Adi’s archaeological phytolith samples to be derived from a wellwatered crop-phytolith 
assemblage.
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PHYTOLITH ANALYSIS AS A TOOL FOR 
HYPOTHESIS EVALUATION
The very limited presence of sorghum and finger millet 
in the macrobotanical remains found in archaeological 
contexts of the northern Horn of Africa, seem to 
contradict the prediction of the ethnographic models. 
However, the general scarcity of macro-remains of these 
grass species and other member of the Panicoideae and 
Chloridoideae families has been attributed to the limited 
number of systematic archaeobotanical programs on the 
continent (Fuller and Stevens 2018) and the preservation 
issues faced by their seeds in the archaeological record 
(Young and Thompson 1999), especially t’ef (D’Andrea 
2008) and finger millet (Terefe and Beldados 2021, 
Mueller et al. 2022) but also sorghum (Beldados and 
Ruiz-Giralt 2023, Varalli et al. 2023). Recent studies have 
turned to the analysis of microbotanical remains as an 
alternative to explore the agricultural history of these 
crops around the world (e.g., Liu et al. 2014, Lucarini et al. 
2016, Out et al. 2016, Lucarini and Radini 2020, Goldstein 
et al. 2021, Cagnato et al. 2022, González-Rabanal et 
al. 2022, Laugier et al. 2022, Le Moyne et al. 2023, Ruiz--
Giralt et al. 2023b).

The phytolith assemblage from Ona Adi shows 
an important presence of the Panicoideae and 
Chloridoideae C4 grass subfamilies in the site. Today, 
the most important species of these subfamilies in the 
northern Horn agriculture are sorghum (Andropogoneae, 
Panicoideae), t’ef and finger millet (both Eragrostideae, 
Chloridoideae). Even though phytoliths do not allow for 
taxonomic classification to the species level, these crops 
– and their wild and semi-domesticated relatives – are 
the most likely taxa represented at Ona Adi. Indeed, 
similar results have been obtained from microbotanical 
residues (both phytoliths and starch grains) from grinding 
stones at Ona Adi (Ruiz-Giralt et al. 2023b) indicating 
that C4 plants were processed and consumed at the 
site, and that the presented assemblage is not only a 
result of the surrounding vegetation. It is worth noting 
that recent studies have found that C4 plants were an 
important part of the region’s economy since the mid-
2nd millennium BCE (Ruiz-Giralt et al. 2023b, Beldados 
et al. 2023), showing an extended period of interaction 
with local communities who eventually would have 
incorporated them as agricultural products. In this 
regard, the phytolith results from Ona Adi confirm the 
significant presence of C4 plants during Aksumite times, 
and thereby lend some support for the results of the 
ethnoarchaeological models, which indicate that both 
finger millet and sorghum agriculture was viable in the 
surrounding area of the main Aksumite sites, including 
Ona Adi.

The results of the application of the C4 water availability 
model by D’Agostini et al. (2023) to Ona Adi’s phytolith 
sample indicate that the C4 plants found at the site grew 
in water-stressed conditions. This was rather consistent 

throughout the occupational phases of the site, and 
outlier samples only appeared after the beginning of 
the Aksumite period. As such, the phytolith data support 
the hypothesis produced by the ethnoarchaeological 
models, which consistently classified watering practices 
at Ona Adi as rainfed regimes, both for finger millet and 
sorghum –with the sole exception of the 90-day-sorghum 
variety. Since phytoliths are a direct proxy of plant water 
availability, our results reinforce the previous hypothesis 
that C4 crops would have been cultivated in rainfed 
conditions during the Aksumite period in the highlands of 
northern Ethiopia and Eritrea. Indeed, recent studies that 
have argued that large-scale, intensive irrigation was not 
necessary to ensure food security during the Kingdom of 
Aksum (Sulas et al. 2009, Sulas 2014, 2018, Harrower et 
al. 2020) contrary to previous theories that considered it 
to be an indispensable factor in the establishment and 
development of the Aksumite polity (e.g., Kobishchanov 
1979, Butzer 1981, Bard et al. 2000, Michels 2005). 
Indeed, it was believed that crop irrigation was necessary 
to sustain increasing Aksumite populations, and that the 
technology was likely introduced from Yemen, where 
large-scale hydraulic infrastructures have been identified 
(see Harrower 2009 for a review). To date, the only 
evidence of Aksumite water management is the presence 
of water reservoirs at sites such as Aksum or Qohaito, 
which have been recently reinterpreted as sources of 
water supply for people, animals and other domestic 
activities, including the watering of house-level gardens 
and plots (see Sulas 2014, 2018 for further details). A 
similar structure has been identified immediately to the 
south of Ona Adi, although in this case it is impossible 
to determine its age or if it existed during the Aksumite 
occupation of the site. In any case, archaeological 
evidence of large-scale irrigation structures has not yet 
been found in the region, despite the increasing number 
of systematic archaeological surveys (e.g., Michels 
2005, Schmidt et al. 2008a, Sernicola 2008, D’Andrea 
et al. 2008, Sernicola and Phillipson 2011, Harrower and 
D’Andrea 2014, Gaudiello and Yule 2017, Benoist et al. 
2020, Harrower et al. 2020). Altogether, our current 
understanding is that irrigation, if present, was likely used 
in similar fashion to what can be observed in modern-
day Tigrai, where it is rare and generally small-scale 
(Harrower et al. 2020), and mostly limited to horticulture 
and maize cultivation (Biagetti et al. 2022). Overall, the 
data we have presented support the hypothesis of an 
Aksumite agricultural system primarily based on the 
rainfed cultivation of cereals, which would have included 
African C4 crops such as finger millet and sorghum.

CONCLUDING REMARKS

Ethnoarchaeological models are a useful tool to 
generate hypotheses from the present, especially 
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when they can be validated using direct archaeological 
data. In this paper, we have presented a methodology 
that combines ethnography, cross-cultural modelling, 
ethnoarchaeology and archaeobotany to build, test, 
apply and validate a set of models that aim to evaluate 
past agricultural practices related to the cultivation of 
finger millet and sorghum in the northern Horn of Africa. 
The results show that the cultivation of these crops 
was viable in the surroundings of the most important 
Aksumite sites known to date. Furthermore, the models 
demonstrate that, when practised, the cultivation of 
finger millet and sorghum was most likely extensive-
rainfed. The phytolith data from one of these sites, Ona Adi, 
generally agrees with the model predictions, reinforcing 
the scientific potential of the presented approach. At 
the same time, our results underline the importance 
of implementing systematic archaeobotanical research 
programmes that include microbotanical sampling 
and analyses into future archaeological projects in 
the northern Horn. This is related to the preservation 
issues faced by the macrobotanical remains of many 
C4 plants, which have significantly hindered our current 
understanding of Aksumite agricultural economies. 
Overall, the presented results indicate the cultivation 
of finger millet and sorghum during Aksumite times 
might have been much more significant than previously 
considered.
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NOTE
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