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ABSTRACT
Automated age estimation of archaeological artifacts is crucial for categorization and 
dating, yet challenging due to variations in characteristics, degradation, and limited 
chronological information. This study investigates the performance of Convolutional 
Neural Network (CNN) architectures and loss functions for accurate age estimation. 
Using a dataset of about 10,000 labeled images from distinct archaeological sites, 
spanning 16 periods ranged from the Paleolithic to the Late Islamic periods, our results 
demonstrate top-5 accuracy above 90%. Notably, our empirical results revealed that 
InceptionV3, while known for its strong performance in object recognition tasks, 
outperformed other architectures in this classification task. Additionally, we found 
that conventional cross-entropy loss functions can, in some architectures, outperform 
ordinal cross-entropy, challenging conventional wisdom. Our findings not only advance 
the computational methodologies available for artifact dating but also provide critical 
insights into the nuanced selection of neural network architectures and loss functions, 
thereby opening new avenues for research in computational archaeology.
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1. INTRODUCTION

Accurately dating archaeological findings is a challenging 
task that, beyond its importance for archaeology itself, 
can have significant impacts on the conclusions drawn 
by historians. Reliable dating enables archaeologists to 
construct precise chronologies, which allow historians to 
better understand migration patterns, cultural changes 
over time, influences between civilizations, and other 
anthropological questions. For example, accurately 
dated artifacts help track the spread of technologies and 
ideas between groups.

Artifacts often exhibit variations in their characteristics, 
such as material composition, preservation state, and 
stylistic changes over time. All these cause difficulty in 
the establishment of precise chronological relationships. 
Moreover, artifacts can undergo degradation and 
alteration over time, further complicating the estimation 
of their age. The skill of classifying artifacts according to 
their age requires prior knowledge and expertise in a certain 
archeological period. Additionally, limited availability of 
reliable chronological information, particularly for lesser 
known or poorly documented archaeological sites, adds 
to the complexity. Methodological limitations also pose 
a significant hurdle. Traditional dating methods, such 
as radiocarbon dating, come with their own sets of 
limitations, including a range of errors and constraints 
related to the type of material that can be dated. These 
limitations can make precise dating a challenging 
endeavor. Furthermore, the complexity of accurate dating 
often requires a multidisciplinary approach. Incorporating 
methods from physics, chemistry and geology is often 
necessary for more accurate results. However, this can 
be both logistically and financially challenging, requiring 
specialized equipment and expertise that may not be 
readily available.

This is where the necessity of computational 
methods in archaeology becomes evident. Casini et 
al. 2021 highlight the increasing availability of data 
in archaeology, emphasizing the growing need for 
computational methods to deepen our understanding of 
archaeological issues.

Computer Vision (CV) and Machine Learning (ML) 
technologies offer a promising avenue for overcoming 
these challenges by enabling efficient and systematic 
analysis of large volumes of archaeological data. 
Specifically, CV algorithms can automatically extract 
valuable features from artifacts, capturing key details 
such as shape, texture, and pattern (Itkin et al. 2019, Wu 
2021, Zhou 2022). ML models can then be trained using 
these features to recognize and classify artifacts based 
on their age. Utilizing this computational approach not 
only reduces the subjectivity and bias inherent in human 
interpretation but also provides a more objective data-
driven method for age estimation. Moreover, ML models 
have the ability to identify subtle patterns and correlations 

within the data that may not be immediately apparent 
to human observers, thereby enhancing the accuracy 
and precision of age estimation. The authors (Itkin et 
al. 2019, Wu 2021, Zhou 2022) highlight the concept of 
‘barrier of meaning’, which refers to the gap between 
the knowledge in the expert’s mind and the knowledge 
grasped by the machine underscoring the complexities 
involved in fully automating the interpretation of 
archaeological data. Moreover, computational methods 
can integrate diverse types of data, from radiocarbon 
dating results to stratigraphic information, to produce 
more reliable age estimates. They can also adapt to new 
findings, continuously refining their models for greater 
accuracy (Parisotto et al. 2022, Xu et al. 2023).

Recently, Deep Learning (DL) has shown a particular 
promise in addressing the complexities of archaeological 
research. DL algorithms can automatically learn to 
identify intricate patterns in data, making them well-
suited for tasks that require a high level of detail and 
precision. For instance, in the paper of Parisotto et al. 
2022, a Variational Autoencoder (VAE) is employed to 
cluster Roman potsherds based on visual similarities. 
This VAE-based approach outperforms other methods in 
terms of clustering quality, demonstrating the potential of 
deep learning in archaeological artifact studies. Similarly, 
research by Reese 2021 has successfully applied neural 
networks for the dating of residential site occupations, 
further showcasing the versatility of DL in archaeological 
analysis. This approach, which predicts annual residential 
occupation with high accuracy, exemplifies the potential 
of DL in historical reconstruction and demographic 
analysis.

In addition to these advancements, Sakai et al. 
2023 also utilized DL, specifically in object detection on 
aerial photographs, to discover new Nasca geoglyphs, 
demonstrating the potential of AI in enhancing the 
efficiency and scope of archaeological surveys. Expanding 
the scope of CNN applications in archaeology, Lu et al. 
2018 utilize a CNN to segment curve structures from 
depth maps of pottery sherds. This method excels in 
capturing the nuanced features of the artifacts, thereby 
aiding in their analysis and potentially their dating (Zhou 
2022). Following this, Pawlowicz and Downum 2021, 
applied CNN to classify digital images of decorated 
pottery sherds, specifically Tusayan White Ware from 
the American Southwest. Their study, which achieved 
accuracy levels comparable to or exceeding that of expert 
archaeologists, demonstrates the potential of CNN in 
artifact classification and typology. Such applications of 
DL are not limited to ceramics; they have also been applied 
to tasks like periodic discrimination of lithic assemblages 
and differentiation of bone surface modifications (Siozos 
et al. 2021). Additionally, DL is making strides in the age 
estimation of archaeological artifacts. While some efforts 
have been made to manually extract predefined features 
for age classification, achieving moderate accuracy 
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(Cifuentes-Alcobendas and Domínguez-Rodrigo 2019, 
Domínguez-Rodrigo et al. 2020), the trend is increasingly 
moving toward automated feature extraction. For 
example, a study combines Raman spectroscopy with 
ML algorithms to quantitatively estimate different 
degrees of thermal alteration on Flint artifacts (Agam et 
al. 2020). This approach not only automates the feature 
extraction process but also enhances the accuracy of 
age estimation, further underscoring the versatility and 
efficiency of DL methods in archaeological research.

Building on these advancements in automated 
feature extraction and the growing body of work that 
leverages deep learning for archaeological applications, 
our research takes a slightly different yet complementary 
approach. In the present study, an alternative 
methodology is employed, which involves the utilization 
of an advanced, deep CNN. This network performs two 
functions: it extracts pertinent features from the data 
and subsequently executes the classification task.

The remainder of this paper is organized as follows: 
Section 2 outlines the problem and proposed solution. 
Section 3 summarizes our key contributions. Section 4 
describes the methodology including CNN architectures, 
loss functions, and evaluation metrics used. Section 5 
details the dataset. Section 6 presents and discusses 
results. Finally, Section 7 provides concluding remarks 
and implications.

2. PROBLEM SCOPE AND OUR 
SOLUTION APPROACH

This research is grounded in the work of Resler et 
al. 2021, which initially framed the age estimation 
of archaeological artifacts as a multi-class image 
classification problem. Utilizing a CNN, Resler’s model 
was trained on the archeology dataset published by the 
Israeli Archeology Authority and achieved an accuracy 
level on par with human experts. Inspired by this work, 
our study seeks to refine the age estimation process in 
archaeology. To address the limitations of our dataset, 
we employ transfer learning techniques across multiple 
pre-trained CNN architectures. This strategy allows us 
to capitalize on the feature extraction capabilities of 
established models, thereby enhancing the robustness 
and generalization of our own model. In line with the 
findings of M. Lyons 2021, who emphasized the critical 
role of selecting the appropriate CNN architecture and 
hyperparameters in the task of fabric classification of 
archaeological artifacts, we also experiment with various 
configurations to optimize our model’s performance. By 
leveraging different CNN architectures and fine-tuning 
hyperparameters, we aim to offer a more nuanced, 
data-driven method for age estimation that can adapt 
to new archaeological findings and continuously refine 
its accuracy and reliability. To enhance the model’s 

performance, we explore the use of different loss 
functions, including both regular and ordinal types.

Numerous pre-trained CNNs, each with unique 
structure, have been developed for general classification 
tasks. These structural differences lead to varying 
performance levels. Current research is primarily aimed 
at determining the most effective network structure and 
settings for specific classification problems.

In this research we conduct a comparative analysis of 
three different pre-trained CNN architectures, with two 
different configurations for each. The goal of this research 
is to elucidate the influence of CNN architecture and loss 
function choices on various metrics used to evaluate the 
quality of classification. It is noteworthy that each metric 
responds differently to changes in the architecture.

Furthermore, the choice of the loss function, which 
forms the basis for the backpropagation process, 
significantly impacts the outcome of the image 
classification task.

In the context of multi-class classification tasks, the 
conventional cross-entropy loss function is frequently 
employed. This function measures the performance of a 
classification model whose output is a probability value 
between 0 and 1. Cross-entropy loss increases as the 
predicted probability diverges from the actual label, thus 
leading the model to make more accurate predictions 
over time. However, when the class labels have a natural 
ordering, an ordered or ordinal variant of the cross-
entropy loss function may be more appropriate. This 
function takes into account the order of the classes, 
and it penalizes predictions based not only on their 
correctness but also on their distance from the true class 
in the ordered sequence of classes.

The selection of an appropriate loss function is a 
critical step in the design of machine learning models 
and can significantly influence the model’s performance. 
While it may seem intuitive to use an ordered variant of 
the cross-entropy loss function in such scenarios, this is 
not always the optimal choice.

The performance of different loss functions can 
be influenced by various factors, such as the specific 
characteristics of the data, the complexity of the 
model, and the training procedure. Therefore, it is often 
beneficial to experiment with different loss functions and 
to perform rigorous model validation to determine the 
most suitable choice for a given task.

3. OUR CONTRIBUTION

Our research focuses on the exploration and comparison 
of various pre-trained CNN architectures and loss functions 
for automated age estimation of archaeological artifacts. 
We conduct a comprehensive comparison of three 
distinct pre-trained CNN architectures: EfficientNetB3, 
ResNet50, and InceptionV3. Then, we explore the effects 
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of two different loss functions, cross-entropy (CE) and 
ordinal cross-entropy (OCE), on the performance of the 
CNN architectures.

Our findings highlight the importance of selecting 
the appropriate loss function for a given task and 
demonstrate that the optimal choice can vary depending 
on the specific architecture used. We provide empirical 
evidence that, in some cases, conventional CE can 
outperform the intuitive choice of OCE, contributing 
to the ongoing discussion on loss function selection in 
machine learning research.

By leveraging different CNN architectures and fine-
tuning hyperparameters, we aim to offer a more nuanced, 
data-driven method for age estimation that can adapt 
to new archaeological findings and continuously refine 
its accuracy and reliability. Our study underscores the 
importance of careful selection of CNN architecture, its 
configuration, and the choice of loss functions, providing 
a framework for further investigation in this domain.

4. METHODOLOGY

In this section, we elaborate on the methodology 
adopted for our study, specifically focusing on the choice 
of CNN architectures, loss functions, and evaluation 
metrics. We utilize three pre-trained CNN architectures: 
EfficientNetB3, ResNet50, and InceptionV3. These 
architectures were selected based on their proven efficacy 
in various image classification tasks. EfficientNetB3 is 
known for its balance between model size and accuracy, 
ResNet50 for its deep residual networks that solve the 
vanishing gradient problem, and InceptionV3 for its 
inception modules that capture multi-scale features.

The advantage of using pre-trained networks lies in the 
application of transfer learning, a technique that allows 
us to capitalize on the feature extraction capabilities of 
models initially trained on large datasets like ImageNet 
(Chatterjee et al. 2021). This is particularly beneficial for 
our specific task of archaeological age estimation, where 
the available training data is limited (Janković Babić 2023).

Our training process incorporates two distinct loss 
functions: CE and OCE. These loss functions were chosen 
to examine their impact on the model’s performance in 
multi-class classification tasks.

Finally, we discuss the evaluation metrics employed 
to assess the effectiveness of our models in accurately 
estimating the age of archaeological artifacts. These 
metrics serve as a quantitative measure of our models’ 
performance and guide future refinements.

4.1. CNN ARCHITECTURES
ResNet, or Residual Network, is a type of CNN that was 
introduced in He et al. 2016A. The key innovation of 
ResNet is the introduction of “skip connections” or 
“shortcut connections”, which allow the gradient to be 

directly backpropagated to earlier layers. Its advantage 
is the fast training relative to other CNNs. It uses residual 
blocks which allow the propagation of the gradients 
effectively through very deep networks He et al. 2016B.

The specific architecture we use in this study is 
ResNet50, a 50-layer CNN. It starts with an initial 
convolutional layer and a max pooling layer. The core of 
the network consists of four sets of convolutional blocks, 
each containing multiple layers. Each block starts with 
a “bottleneck” layer that reduces and then expands 
the dimensionality of the input, helping to reduce 
computational complexity. The number of layers in each 
block is 3, 4, 6, and 3, respectively, totaling 16 blocks or 
48 layers. Each block also includes a shortcut connection, 
which helps mitigate the problem of vanishing gradients 
during training. After the convolutional blocks, the 
network includes an average pooling layer followed 
by a fully connected layer, which outputs the final 
classification results. Due to its depth, sometimes it 
tends to be overfitted. We used the pre-trained model as 
was implemented in the Keras library (Rosebrock 2017).

The second model is based on the EfficientNetB3 
[16] as is implemented in the Keras library. This CNN 
architecture uniformly scales depth, width and resolution 
dimensions. This CNN consists of 29 layers where 27 of 
them are convolutional, one is fully connected layer 
and the last one is a classification layer. It is considered 
to achieve improved accuracy, but its training takes a 
long time. EfficientNetB3 is newer than ResNet50, more 
efficient and achieves competitive accuracy in image 
classification tasks. It uses mobile inverted bottleneck 
convolutions (MBConv), an efficient version of traditional 
convolutional layers, and squeeze-and-excitation (SE) 
blocks, which recalibrate feature maps to focus on 
informative features. The ‘B3’ signifies the level of scaling 
applied to the base model, encompassing depth (number 
of layers), width (number of neurons), and resolution of 
the input image. This compound scaling method, unique 
to the EfficientNet family, enhances performance.

InceptionV3 (Szegedy et al. 2016, Agrawal 2021) is a 
CNN from the Inception family, known for its efficiency 
and performance in image classification. It was 
designed by Google researchers to improve accuracy and 
performance of image recognition. The ‘V3’ indicates 
it is the third version of CNN architecture, with several 
enhancements over its predecessors. InceptionV3 uses 
‘inception modules’ with parallel branches of different 
operations, enabling the network to learn a wider variety 
of features. It also employs factorized convolutions, 
batch normalization, and label smoothing for improved 
computational efficiency and model generalization. In 
the context of our study, the ability of InceptionV3 to 
learn a broad range of features and its computational 
efficiency position it as a good option for the task 
of archaeological artifacts’ age estimation. While 
InceptionV3 was designed to be highly versatile and 
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efficient, it also makes the architecture more complex 
and potentially harder to interpret and optimize and less 
intuitive choice for our task.

InceptionV3 uses 48 layers that are a combination of 
convolutional, pooling and fully connected layers. Also, it 
uses ‘inception modules’, which are a series of layers that 
perform multiple convolutions of varied sizes and pooling 
operations in parallel. This model has approximately 23 
million parameters and it was trained on the ImageNet 
dataset. The network has multiple auxiliary classifiers. 
The advantage of the InceptionV3 is that it is not sensitive 
to image scaling.

4.2. LOSS FUNCTIONS
In this study, we explore the effects of two different loss 
functions on the performance of the CNN architectures: 
Cross Entropy (CE) and Ordinal Cross Entropy (OCE). The 
choice of loss function is a critical step in the design of 
machine learning models and can significantly influence 
the model’s performance.

The CE loss function is commonly used in multi-
class classification tasks. It measures the performance 
of a classification model whose output is a probability 
distribution across the classes. The CE loss increases as 
the predicted probability distribution diverges from the 
actual distribution, thus leading the model to make more 
accurate predictions over time. Formally, for a single data 
point, the CE loss is defined as:
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The selection of an appropriate loss function is a critical 
step in the design of machine learning models and can 
significantly influence the model’s performance. While 
it may seem intuitive to use an ordered variant of the 
cross-entropy loss function in such scenarios, this is not 
always the optimal choice. The performance of different 
loss functions can be influenced by various factors, 
such as the specific characteristics of the data, the 
complexity of the model, and the training procedure. 
Therefore, it is often beneficial to experiment with 
different loss functions and to perform rigorous model 
validation to determine the most suitable choice for a 
given task.

4.3. EVALUATION METRICS
In this research, we leveraged four key metrics to evaluate 
our models’ performance in artifact age estimation: 
Accuracy, Precision, Entropy, Top-3 Accuracy, and Top-
5 Accuracy (Nagda 2019). Accuracy and Precision 
provided us with a measure of overall correctness and 
exactness of our predictions. Accuracy is defined as the 
proportion of correct predictions made by the model 
out of all predictions. Precision is a metric that considers 
the number of true positives (i.e., the number of items 
correctly identified as belonging to the positive class) in 
relation to the number of all positive predictions made. 
Given that the exact age of an artifact can often be 
ambiguous, experts typically consider a range of possible 
ages. Recognizing this complexity and uncertainty, we 
also utilized Top-3 and Top-5 Accuracy. These metrics, 
often used in this field, provide a shortlist of most likely 
ages, aligning with the expert practice of considering a 
range of possible ages, and offer insight into the model’s 
confidence in its predictions. Additionally, they offer insight 
into the model’s confidence in its predictions, which can 
be beneficial even when the exact class is not correctly 
predicted. To further understand the model’s predictive 
behavior, we also examined the entropy of the predictions, 
which quantifies the uncertainty and variability in the 
model’s output, providing a deeper understanding of its 
decision-making process under varying conditions.

5. DATA

The goal of this study is to train a CNN on images dataset 
of archeological artifacts in order to classify them according 
to their age. The dataset is publicly accessible on the Israel 
Antiquities Authority (IAA) website (http://www.antiquities.
org.il/t/default_en.aspx). It contains about 10,000 images 
of archeological findings from 120 different Israeli sites 
categorized into 53 historical time periods from the 
Levantine hominin history. The attribution of periods was 
provided by archaeologists working for or within the Israel 
Antiquities Authority (IAA) and available at their website.

The resolution of the images is 600 × 600 pixels. The 
data is labeled with the archeological site and age, so 
that there are 1,262 different classes. In this work the 
site label was ignored, and the archaeological periods 
were categorized into 16 rough classes according to 
IAA and Israeli Institute of Archaeology (https://www.
israeliarchaeology.org) definition as described in Table 1.

The histogram in Figure 1 represents the distribution 
of the training images among these time periods. It is 
clearly seen that the data is imbalanced, which might 
cause bias in the training process.

The data was divided into training and test sets in a ratio 
of 75% and 25%, respectively, so that the distribution of 
the data between classes in both sets is similar. In Figure 2, 
there are sample images from the archeologic repository.

http://www.antiquities.org.il/t/default_en.aspx
http://www.antiquities.org.il/t/default_en.aspx
https://www.israeliarchaeology.org
https://www.israeliarchaeology.org
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In the next step, three different architectures of CNN 
were trained on this classified dataset. The architectures 
are: ResNet50, EfficientB3 and InceptionV3. Each CNN 
was trained twice with two different loss functions: 
log and ordinal log. The trained CNNs were applied to 
the test set to evaluate and compare the performance 

of the different architectures and loss functions. The 
Python code implementing the three CNN architectures 
and applying them to the archaeological artifact 
image data is available in the ArchImgClassifier 
repository on GitHub: https://github.com/robilbiu/
ArchImgClassifier.

CLASS 
LABEL

ARCHAEOLOGICAL 
PERIOD 

TIME RANGE CLASS 
LABEL

ARCHAEOLOGICAL 
PERIOD

TIME RANGE

1 Paleolithic 1,400,000–24,000 BP 9 Iron 1200–586 BCE

2 Epi-Paleolithic 24,000–11,800 BP 10 Persian 586–333 BCE

3 Pre-Pottery Neolithic 8500–5500 BCE 11 Hellenistic 333–63 BCE

4 Pottery Neolithic 5500–5000 BCE 12 Roman 63 BCE-330 CE

5 Chalcolithic 5000–3500 BCE 13 Byzantine 330–636 CE

6 Early Bronze 3500–2200 BCE 14 Early Islamic 636–1099 CE

7 Middle Bronze 2000–1550 BCE 15 Crusader 1099–1260 CE

8 Late Bronze 1550–1200 BCE 16 Late Islamic 1260–1918 CE

Table 1 Archaeological Periods.

Figure 1 Number of training images in each time category.

Figure 2 Sample archeological images.

https://github.com/robilbiu/ArchImgClassifier
https://github.com/robilbiu/ArchImgClassifier
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6. RESULTS

Each CNN was trained twice, with two different loss 
functions. The first one is CE that takes into consideration 
the likelihood of the sample, which should be classified 
into its proper class. Any misclassification has the same 
weight, no matter whether the erroneous class is close in 
time to the correct class. The second function that was 
applied to the model training is OCE, which gives larger 
penalty to misclassification of ‘far’ categories, in term of 
archeological age.

The performance of each combination of a model 
and a loss function was measured by the following 
metrics mentioned above. Table 2 summarizes the 
results.

To provide a more detailed analysis of each model’s 
performance across different classes, Figure 3 presents 
the classification confusion matrix resulted from each 
trained model. This matrix offers an in-depth view of 
the model’s accuracy in classifying each archaeological 
period. The correspondence of class labels and 
archaeological periods as presented in Table 1.

MODEL ACCURACY PRECISION TOP-3 TOP-5 ENTROPY

ResNet50 with CE 0.717 0.721 0.871 0.918 1.709

ResNet50 with OCE 0.689 0.692 0.869 0.928 1.747

InceptionV3 with CE 0.721 0.723 0.877 0.926 2.969

InceptionV3 with OCE 0.708 0.714 0.881 0.929 1.618

EfficientNetB3 with CE 0.632 0.654 0.817 0.893 1.995

EfficientNetB3 with OCE 0.694 0.696 0.862 0.912 1.738

Table 2 Accuracy, precision, top-3 and top-5 measurements.

Figure 3 Confusion matrices of the 6 trained models.
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Analysis of the confusion matrices reveals differences 
in classification patterns between the CE and OCE loss 
functions depending on the CNN architecture. For the 
EfficientNetB3 and InceptionV3 models, the OCE loss 
results in less dispersion of predicted ages across the 
actual age classes compared to the CE loss (for instance, 
see Iron age, class 9, classification results). This indicates 
OCE better preserves the ordinal relationships between 
nearby age ranges. However, ResNet50 displays no 
significant difference in confusion spread between the CE 
and OCE losses.

This analysis also indicates artifacts from the 
Paleolithic and Roman periods were classified with the 
highest accuracy across all models. In contrast, most 
misclassified artifacts across all six models were wrongly 
classified as belonging to the Iron Age and Roman 
periods. A potential explanation is that artifacts from 
certain ages may have more distinct stylistic features 
that enable easier discrimination by the CNN models, 
while artifacts from periods with more subtle differences 
in styles are more easily confused.

InceptionV3 with CE loss function achieved the 
best results in terms of accuracy and precision, while 
grading as the worst model in terms of entropy. This 
result indicates that when the model correctly classifies 
an artifact’s age, it tends to predict the exact correct 
class with high confidence. However, when the models 
misclassify an artifact’s age, the errors are dispersed 
across multiple incorrect classes rather than being 
concentrated systematically into one wrong class.

InceptionV3 with OCE loss function achieved the best 
results in both top-3, top-5 and entropy measures. This 
means that when the model misclassifies an artifact, it 
confuses it with certain classes.

7. DISCUSSION AND CONCLUSIONS

In this research, we tackled the complex task of 
automating archaeological artifact age estimation using 
pre-trained CNN architectures, addressing challenges like 
artifact quality, period duration discrepancies, and dating 
uncertainties. We compared three CNN architectures: 
EfficientNetB3, ResNet50, and InceptionV3, and found 
that InceptionV3, typically used for object recognition, 
outperformed others in classification tasks. This 
emphasizes the need for empirical testing in architecture 
selection. Additionally, we evaluated the impact of 
cross entropy (CE) and ordinal cross entropy (OCE) 
loss functions, discovering that CE often matched or 
exceeded OCE’s performance, thereby contributing to 
the broader discourse on loss function effectiveness in 
machine learning.

Among the various CNN architectures and loss 
functions compared, the combination of InceptionV3 
model paired with the CE loss emerged as the most 

effective for the age estimation of archaeological 
artifacts, based on accuracy and precision evaluation 
metrics. Specifically, the InceptionV3 + CE model attained 
an accuracy rate of 72.1% and a precision rate of 72.3%.

While the InceptionV3 with CE loss model achieved 
the highest accuracy, it is notable that precision slightly 
exceeded accuracy across all six evaluated models with 
a margin ranging from 0.2% to 2.2%. This indicates some 
artifacts were misclassified, but models successfully 
categorized artifacts into the correct age range. The 
minor accuracy-precision gap highlights room for 
improvement by modifying the classification threshold, 
balancing training data, utilizing ensembles, and 
other techniques to further increase precision without 
sacrificing accuracy. Still, strong precision demonstrates 
feasibility of using CNNs to broadly categorize artifacts 
into age ranges, although refinements are needed for 
year-level estimation.

For Top-3 and Top-5 metrics, the InceptionV3 model 
paired with OCE loss performed best, attaining 88.1% 
Top-3 and 92.9% Top-5 accuracy. Inception V3’s multi-
scale processing likely enabled flexibility in identifying 
age-indicative visual patterns for ranking predictions. 
Additionally, Top-5 exceeded Top-3 accuracy by 4.7–7.6% 
across models, and both substantially outperformed 
overall accuracy and precision. This shows CNN reliability 
for categorizing artifacts into general age groups, if not 
precisely estimating age in years. Results indicate age 
estimation within a tolerance would achieve greater 
success.

A potential explanation for the impact of the loss 
function on the entropy of the model is that ResNet’s 
residual learning approach may internally represent 
age in a continuous manner, reducing the benefits of 
enforcing inter-class ordinal relationships. Overall, choice 
of loss function significantly impacts some architectures’ 
abilities to discriminate between neighboring age classes 
without confusion, while others show slight difference. 
Further investigation into model internals could provide 
more insight into these architectural dependencies in 
confusion patterns.

The choice of loss function depended on model 
architecture and complexity. InceptionV3 benefited 
more from OCE loss, as their multi-scale processing 
better captured relative age relationships between 
classes rewarded by OCE. In contrast, EfficientNetB3 
achieved top performance with CE loss, likely because 
its scaling approach and parameter efficiency provided 
strong baseline accuracy that CE loss further enhanced 
by heavily penalizing each age error.

InceptionV3 slightly outperformed ResNet50 and 
EfficientNetB3, potentially due to Inception’s multi-
scale processing identifying subtle age differences, its 
dimensional reduction and concatenation enabling 
specialized feature extraction, and its balance of depth, 
width and computational cost. However, performance 
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differences were not highly significant, suggesting 
process of selecting appropriate architectures and 
hyperparameters is important for maximizing results, but 
not crucial for assessing application potential.

The observed algorithm behaviors prompt questions 
on the influence of dataset characteristics. Follow-on 
work could investigate whether modifications to the 
dataset composition and structure, like more balanced 
chronological distribution or larger image sizes, can 
reduce these effects and further improve classification 
accuracy.

In summary, this research advances our 
understanding of the application of machine learning 
techniques in computational archaeology. It highlights 
the importance of careful selection and empirical 
testing of both the architecture and the loss function 
in deep learning models. Furthermore, it underscores 
the potential of these techniques in providing practical 
tools for archaeologists and opens up avenues for future 
research in this field. Despite the challenges encountered, 
our approach and findings provide a promising direction 
for further exploration and application of deep learning in 
the field of archaeology.
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