
Volume 2 Issue 1 Article 2

2019

All Advanced Placement (AP) Computer Science is Not Created All Advanced Placement (AP) Computer Science is Not Created

Equal: A Comparison of AP Computer Science A and Computer Equal: A Comparison of AP Computer Science A and Computer

Science Principles Science Principles

Douglas D. Havard
Chapman University

Keith E. Howard
Chapman University

Follow this and additional works at: https://inspire.redlands.edu/jcsi

 Part of the Curriculum and Instruction Commons, and the Secondary Education Commons

Recommended Citation Recommended Citation
Havard, D. D., & Howard, K. E. (2019). All Advanced Placement (AP) Computer Science is Not Created
Equal: A Comparison of AP Computer Science A and Computer Science Principles. Journal of Computer
Science Integration, 2 (1), 16-34. https://doi.org/10.26716/jcsi.2019.02.1.2

This work is licensed under a Creative Commons Attribution-No Derivative Works 4.0 License.
This material may be protected by copyright law (Title 17 U.S. Code).
This Article is brought to you for free and open access by InSPIRe @ Redlands. It has been accepted for inclusion in
Journal of Computer Science Integration by an authorized editor of InSPIRe @ Redlands. This work is licensed
under a Creative Commons Attribution 4.0 (CC-BY 4.0) License, and readers are licensed to copy, distribute, display,
and perform this work, provided that the original work is properly cited.

https://inspire.redlands.edu/jcsi/
https://inspire.redlands.edu/jcsi/
https://inspire.redlands.edu/jcsi/vol2
https://inspire.redlands.edu/jcsi/vol2/iss1
https://inspire.redlands.edu/jcsi/vol2/iss1/2
https://inspire.redlands.edu/jcsi?utm_source=inspire.redlands.edu%2Fjcsi%2Fvol2%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/786?utm_source=inspire.redlands.edu%2Fjcsi%2Fvol2%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1382?utm_source=inspire.redlands.edu%2Fjcsi%2Fvol2%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.26716/jcsi.2019.02.1.2
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

All Advanced Placement (AP) Computer Science is Not Created Equal: A All Advanced Placement (AP) Computer Science is Not Created Equal: A
Comparison of AP Computer Science A and Computer Science Principles Comparison of AP Computer Science A and Computer Science Principles

Abstract Abstract
This article compares the two most prominent courses of Advanced Placement (AP) computer science
study offered throughout 9-12 grades in the U.S. The structure, guidelines, components, and exam
formats of the traditional AP Computer Science A course and the relatively newer AP Computer Science
Principles course were compared to examine differences in content and emphases. A depth-of-learning
analysis was conducted employing Bloom’s Revised Taxonomy to examine potential differences in rigor
and challenge represented by the two options, particularly as it relates to acquiring computer
programming proficiency. Analyses suggest structural differences in both course content and end-of-
course exam components likely result in less depth and rigor in the new Computer Science Principles
course as compared to the Computer Science A course. A lower minimum standard for learning
programming skills in the Computer Science Principles course was observed, making it a less viable
option for students looking to acquire skills transferable to future computer science study or employment.
The potential implications for students choosing the new course over the traditional offering, as well as
for schools opting for the new course as its sole or primary offering are discussed.

Keywords Keywords
computational thinking, advanced placement programs, computer science education, secondary
education

DOI
10.26716/jcsi.2019.02.1.2

Corresponding Author
Douglas D. Havard
Chapman University
Attallah College of Educational Studies
One University Drive
Orange, CA 92866

Cover Page Footnote Cover Page Footnote
Footnote 1: The Turtle Geometry project began as a physical computing device (a robot) before
transitioning to a virtual (on-screen) turtle. LOGO programming was developed and used by children to
manipulate the motion of a two-dimensional turtle to draw figures in a way different from Euclid (logical
style) and Descartes (algebraic style). The method is described as a “computational style” – the basis of
a new way of thinking and learning (Papert, 1980, p. 55).

This article is available in Journal of Computer Science Integration: https://inspire.redlands.edu/jcsi/vol2/iss1/2

https://inspire.redlands.edu/jcsi/vol2/iss1/2

All Advanced Placement (AP) Computer Science is Not Created Equal: A Comparison of AP

Computer Science A and Computer Science Principles

 In December 2014 the College Board made a seminal announcement, declaring their

intention to launch a new Advanced Placement computer science course developed in

collaboration with the National Science Foundation (NSF) and designed to be “rigorous,

engaging and accessible for all students” (National Science Foundation, 2014). The official

launch of AP Computer Science Principles prior to the 2016 academic year marked, for the first

time since 2003, a decision by the College Board to either revise or modify their model of

computer science preparation for higher education. The reasons for the revision included recent

paradigmatic shifts in the methods for, and approaches to, teaching computer science (Cuny,

2015). Computer science as a discipline has a long history of national importance (i.e., as a

grounded field for emergent ideas and technologies) and potential for engaging career

opportunities. The field, however, has been marked recently by a growing discontinuity in

connecting a large population of students with the future careers that are believed to materialize

from learning both the foundational and creative aspects of computer science. According to the

Bureau of Labor Statistics (2018), computer and information technology occupations are

expected to grow by 13% from 2016-2026, 7% faster than the average growth rate of all other

occupations.

Careers such as computer and information research science, network architecture,

information security analysis, and software development require skills related to both applied

programming fundamentals and creative design practices. In step with the Bureau of Labor

Statistics, the National Economic Council, Council of Economic Advisors, and the Office of

Science and Technology Policy (National Economic Council and Office of Science and

Technology Policy, 2015) have suggested that high-quality STEM education and access to

STEM programs are the “building blocks of the American innovation ecosystem.” Providing

access to computer science curriculum for traditionally underrepresented students engages a

larger and more sustainable workforce who might not have otherwise had the opportunity for

access to these careers. Although the participation rate of AP Computer Science course exams

had steadily increased since 2003, including a rate of increase of 22.1% per year on average

between 2009-2016 (Howard & Havard, 2019), an ongoing participation gap by race and gender

became a concerning trend.

Following the introduction of AP Computer Science Principles in 2016, access to

computer science appeared to improve considerably, addressing the intended design goal of

accessibility for all students. Comparing the two-year periods before the launch of the new

course (2014/15 – 2015/16) and after the launch (2016/17 – 2017/18), there was a 124% increase

in the total numbers of students participating in AP computer science course exams. Over that

same period, participation increased for females by 150.2%, Hispanics by 171.9%, Blacks by

109.3%, Whites by 99.7%, and Asians by 94.6% (College Board, 2018a, 2018b). Howard and

Havard (2019) illustrate that females, Hispanics and Blacks participated in the new Computer

16

Havard and Howard: All Advanced Placement (AP) Computer Science is Not Created Equal

Published by InSPIRe @ Redlands, 2019

Science Principles exam in far greater numbers than they did in the traditional Computer Science

A exam, whereas more White and Asian students opted for the traditional exam over the new

offering. The comparison between AP Computer Science A and Computer Science Principles

exams reveals not only differential levels of diversity in participation, but also an increase in

passing scores (3 or above) amongst traditionally underrepresented participants. To fully

understand the scope and depth to which these results represent a move forward in the computer

science educational landscape at the secondary level, it is worth taking pause before labeling

Computer Science Principles as a sweeping success and assessing the second design goal

expressed by the NSF. With both courses identified as the equivalent to an introductory

computer science course at the post-secondary level, there is value in examining the following

question through a historical and structural lens: What is the extent to which both courses

compare on a spectrum of “rigor”?

The Influence of “Computational Thinking”

 The curriculum framework for the new Computer Science Principles course was built

around “the concepts and computational thinking practices central to the discipline of computer

science…” (College Board, 2017b, p. 6). This paradigmatic approach to computer science

education – the practices of computational thinking - has been around for over 50 years, but

given its heavy influence on current approaches to computer science instruction in K-12, a brief

discussion of its origins will provide some historical context to its recent application. The

disciplinary practices and interdisciplinary ways of thinking within the field of computer science

first began to enter mainstream academic discourses in the late 1950s. Attributable to spawning a

cognitive revolution in the following decade (Miller, 2003, pp. 142-143), computing pioneers

such as Alan Perlis sold the wider academic community on the idea that computing could be

applied uniquely as a tool in solving many different types of problems from multiple fields.

Central to this perspective was viewing computing as a methodology rather than a physical tool

(i.e., a practice or approach for performing many different tasks rather than a tool to accomplish

one specific task). Perlis used the term algorithmizing to explain a larger “theory of

computation” by which a problem is generalized into an ordered set of steps (a procedure) for

finding its solution (Tedre & Denning, 2016, p. 121). As it began to evolve, this way of thinking

was discussed and debated on its merit as a “general-purpose mental tool” and its potential

ability to develop higher-order knowledge transfer skills within students (Minsky, 1974). It

wasn’t until Seymour Papert (1980) conducted a series of seminal studies examining the effects

of computers and computer programming on the problem-solving practices of K-12 students that

breakthroughs in computing and learning began to evolve into classroom instructional practices.

Papert (1980) bridged theoretical perspectives, educational research, cognitive science,

and computer science. In so doing, Papert tapped into more than just a cursory understanding of

how students interact with technology through the delivery of information and instruction as a

tool. By synthesizing problem solving in mathematics, he sought to understand how students

learn through computers. The idea that these students had much to gain, through procedural

17

Journal of Computer Science Integration, Vol. 2 [2019], Iss. 1, Art. 2

https://inspire.redlands.edu/jcsi/vol2/iss1/2
DOI: 10.26716/jcsi.2019.02.1.2

thinking (i.e., logically in sequences) and by applying heuristic approaches thoughtfully to

programming the computer, energized this promising subfield of educational research due to its

far-reaching implications. Of the major ideas resulting from this line of research (Papert, 1980,

1996; Papert & Harel, 1991) and observations of student-computer interactions through the

“Turtle Geometry” project1, a reified set of practices emerged which have played a significant

part in the current description of computational thinking.

More recently, the concept of computational thinking reemerged through the highly

influential work of Jeanette Wing (2006), spurring a renewed attention to the potential benefits

of computer science concepts across other disciplines. In her position paper, Wing explored the

current state of the field of computer science and considered what the field could become,

providing a retrospective on “what it is” versus “what it could achieve.” Wing firmly planted a

claim for a set of global practices used by computer scientists to solve problems fundamental to

all other subject areas. Similar to the application of the Turtle Geometry project by Papert (1980)

to cognition and learning through new perspectives of drawing, Wing envisioned computational

thinking as an approach to designing problem solutions which transcended geometry and

movement. In the process, Wing redirected the scope of the field to reconsider computational

thinking as a “universally applicable attitude and skill set everyone, not just computer scientists,

would be eager to learn and use.” She posited that, as a field of study “[o]ne can major in

computer science and go on to a career in medicine, law, business, politics, any type of science

or engineering, and even the arts” (p. 35).

Since its re-emergence, computational thinking has become pervasively adopted and

employed throughout K-12 education, though not without challenges. Riding alongside the large-

scale push for prolific Science, Technology, Engineering, and Mathematics (STEM) initiatives,

activities, and training opportunities, its popularity had seemingly overreached its operational

understanding. Misuses and misunderstandings remain throughout K-12 curricula, particularly

because of the loosely defined “habits of mind” stemming from an inconsistent operational

definition (Denning, 2017). Since computational thinking was not explicitly defined by Wing

(2006), its interpretation varied wildly until undergoing refinement years later (Aho, 2012; Royal

Society, 2012; Wing, 2011). As an accepted operational definition, Wing (2011) later clarified,

“Computational thinking is the thought process involved in formulating problems and their

solutions so that the solutions are represented in a form that can be effectively carried out by an

information-processing agent” (p. 1). Although computational thinking remains far reaching, the

limits on which this problem-solving approach can be applied to educational contexts is bounded

by research in the cognitive sciences. There currently exists no evidence to support prior debates

within the field which propose an ability of computational thinking to predict student transfer of

learning to new content and between learning contexts (Guzdial, 2008). Denning (2017) posits

that computational thinking’s primary benefit is to those who “design computations,” but asserts

that claims of benefits to non-designers have yet to be substantiated (p. 38).

Grover and Pea (2013) mostly acknowledge an agreement between computer science

educators and researchers on the following elements of computational thinking as supporting

18

Havard and Howard: All Advanced Placement (AP) Computer Science is Not Created Equal

Published by InSPIRe @ Redlands, 2019

student learning and understanding of computational thinking practices or habits of mind: (a)

abstractions and pattern generalizations; (b) systematic processing of information; (c) symbol

systems and representations; (d) algorithmic notations of flow of control; (e) structured problem

decomposition (modularizing); (f) iterative, recursive, and parallel thinking; (g) conditional

logic; (h) efficiency and performance constraints; and (i) debugging and systematic error

detection (pp. 39-40). What is often confused today when designing curricula that address

computational thinking practices is the dissolution of computer programming from

computational thinking. Computer programming skills, although distinctive from the general

computer science aims, are inseparable from any application of computational thinking. Grover

and Pea (2013) challenge the notion that programming is simply a utility in support of computer

science when they posit “Programming is not only a fundamental skill of [computer science] and

a key tool for supporting the cognitive tasks involved in [computational thinking] but a

demonstration of the computational competencies as well” (p. 40).

Since Wing’s (2006) article reviving computational thinking, the National Science

Foundation and the College Board partnered to develop a course built around a framework

supporting new computing methodologies and computational thinking practices. Abstraction and

algorithmic thinking, with roots in the seminal discoveries of Papert and Perlis, are central

computational thinking practices within this new course – AP Computer Science Principles.

Designed using a Universal Design for Learning framework, the course was created around

seven “big ideas” in computing which the curriculum framers believed students should be able to

articulate and apply to real-world scenarios. These big ideas are (a) creativity, (b) abstraction, (c)

data and information, (d) algorithms, (e) programming, (f) the Internet, and (g) global impact.

The release of the Computer Science Principles course in 2016 for general offering contrasted

with the traditional AP Computer Science A course, which focused primarily on the

interpretation and development of programs (logically-situated) using an object-oriented

programming framework. The Computer Science A course had been the sole AP computer

science course offering since the 2009-10 academic year.

Contrasting Computer Science A and Computer Science Principles

 The AP Computer Science courses represent the only broadly adopted computer science

framework or curriculum in U.S. high schools (Nager & Atkinson, 2016), which are offered

throughout grades 9-12 for advanced study of post-secondary computer science concepts and

principles. Although both courses are considered the equivalent of an introductory level college

computer science course, they vary significantly in their design, scope, and sequence. The

traditional Computer Science A course is structured around the paradigm of object-oriented

programming in a subset of the Java programming language, teaching students how to solve

problems through the development of computational solutions in and around multiple disciplines.

This course requires all students to attain some level of proficiency in a designated, high level

programming language (Java). Conversely, the Computer Science Principles course was

designed to provide flexibility for the educator in choosing between several approaches (e.g.,

project-based, integrated, or inquiry-focused) for organizing instruction around a programming

19

Journal of Computer Science Integration, Vol. 2 [2019], Iss. 1, Art. 2

https://inspire.redlands.edu/jcsi/vol2/iss1/2
DOI: 10.26716/jcsi.2019.02.1.2

language-agnostic set of computational thinking practices and major areas of study (seven big

ideas). This course encourages teachers to “select a programming language(s) that is most

appropriate for their classroom and that will provide students opportunities to successfully

engage with the course content” (College Board, 2017b, p. 38). The Computer Science Principles

framework provides a list of 13 different programming languages/platforms that can be

considered for use in the course, which include some low-level block-based coding platforms

often used in elementary and middle schools (e.g., Scratch, Snap!, and Alice) as well as the

object-oriented Java programming language (p. 39).

The overarching goals of the two courses are described differently as well. Computer

Science A is described as “intended to serve both as an introductory course for computer science

majors and as a course for people who will major in other disciplines and want to be informed

citizens in today’s technological society” (College Board, 2014, p. 6). By contrast, the Computer

Science Principles curriculum is designed such that “students will develop computational

thinking skills vital for success across all disciplines…[and] will also develop effective

communication and collaboration skills by working individually and collaboratively to solve

problems, and will discuss and write about the impacts these solutions could have on their

community, society, and the world” (College Board, 2017b, p. 4). These divergent philosophies,

a problem-solving (pragmatic) versus human-computing (holistic) foci, have situated the

Computer Science Principles course to become one which “aims to broaden participation in the

study of computer science” (College Board, 2017a). An overview comparison of the two courses

is provided in Table 1.

AP Exam Components. Fundamental to both courses is their multi-dimensional approach to

assessing student understanding of the curriculum. With a problem-solving focus, Computer

Science A uses a more traditional AP assessment format containing multiple-choice and free

response sections, an hour and a half dedicated to each, with each part representing 50% of the

final assessment and the end-of-course score. These scores are summed and normalized to a

value between 1 (no recommendation) and 5 (extremely well qualified), and recorded as an

assessment of the individual students’ ability to master the content material of the course. The

multiple-choice section contains 40 questions based on the course learning objectives assessing

the ability to understand, interpret (trace), and debug code segments. The free response section

contains 4 questions focused on the application of the content material to a set of problem

preconditions, propelling students to design, synthesize, and apply programming concepts to

these problem spaces. Although student scores are determined exclusively through their

performance on a three-hour proctored exam, a recently amended laboratory requirement

provides students the opportunity to apply and synthesize programming concepts to real-world

problem tasks, which is intended to prepare them for similar mental tasks on the free response

section of the exam.

20

Havard and Howard: All Advanced Placement (AP) Computer Science is Not Created Equal

Published by InSPIRe @ Redlands, 2019

Table 1

Crosswalk of AP Computer Science Curriculum (Overview)

Course Computer

 Language

Prerequisites Lab

Requirement
1

Computational

Thinking (CT)

Practices2

Computing

Principles

Assessments Assessment

(%/hrs)3

CS Program4

AP

Computer

Science

Principles

Agnostic Completed

Algebra

(algebraic

functions &

problem-

solving

strategies)

None (see

assessments –

20 hrs of

performance

tasks)

• Abstraction

• Algorithms

• Analyze Data

• Represent Data

• Decomposition

• Testing

• Creativity

• Abstraction

• Data and

Information

• Algorithms

• Programming

• The Internet

• Global Impact

Explore -

Impact of

Computing

Innovations

16/8 “…complements

AP Computer

Science A as it

aims to broaden

participation in

computer

science.”

Create –

Application to

Ideas

24/12

AP CSP Exam 60/2

(MC only)

AP

Computer

Science A

Java Basic

English and

Algebra

(algebraic

functions)

20 hours

(hands-on,

structured)

• Abstraction

• Algorithms

• Decomposition

• Testing

• Parallelization

• Simulation

• Object oriented

programming

• Program

Analysis

• Data Structures

• Operations and

Algorithms

• Computing in

Context

AP CSA Exam 100/3

(MC and

FR)

“…focus on

computing skills

related to

programming in

Java”

Note.
1 Three labs as applications of the content material: Magpie (string methods), Picture (arrays), and Elevens (object-oriented programming)
2 Computational Thinking practices are assessed using the ISTE Framework (collect data, analyze data, represent data, decomposition, abstraction, algorithms,

 automation, testing, parallelization, and simulation).
3 Percentage of the overall CS course AP score (1-5) and the number of in-class/proctored hours to complete the assessment.
4 AP Computer Science courses may be taken in any order, each course is stand-alone (College Board, 2014; College Board, 2017a).

21

Journal of Computer Science Integration, Vol. 2 [2019], Iss. 1, Art. 2

https://inspire.redlands.edu/jcsi/vol2/iss1/2
DOI: 10.26716/jcsi.2019.02.1.2

By contrast, the Computer Science Principles scoring structure is determined through a

combination of in-class performance assessments, totaling 40% of the final score, and a

proctored multiple-choice exam (75 questions) representing the final 60% of the score. The

multiple-choice exam is focused on the understanding, interpretation, and application of

Computer Science Principles concepts. Attributing 40% of the exam’s final AP score to a pair of

extended in-classroom tasks represents a significant departure from the traditional exam, which

bases its final AP score entirely upon performance on the proctored exam. The assessment of

programming in the Computer Science Principles course occurs in one of the in-class

performance assessments, completed over several days, creating an assessment environment that

is less controlled in terms of potential external influences on assessment results. Allowing

students to collaborate on the programming task also raises questions as to the level of individual

programming proficiency acquired by students who rely too heavily on classmates.

The content assessed on the two AP exams also represents a major potential difference in

how performance results may be interpreted. Computer Science A requires students to take an

assessment on their understanding of a specific, high level, object-oriented programming

language (Java), in a proctored setting. Figure 1 depicts a short snippet of Java code syntax,

illustrating the format of the kind of syntax students would need to understand. The Java code

represents exactly the same syntax that is used to create commercial software, providing the

students with highly transferable technical knowledge should they decide to further pursue

programming academically or professionally. Conversely, Computer Science Principles is

programming language-agnostic, allowing teachers to decide which language is appropriate for

their students. One of the acceptable options teachers may consider, Scratch, is depicted in

Figure 2, displaying the same “programming” functionality shown in the Java snippet in Figure

1. A Scratch program can be created by dragging the colored blocks shown in the figure to a

linear stack in the order the user wants the actions performed. Students are allowed to “create” a

program using the selected platform over several days, and they are encouraged to collaborate on

parts of this task.

Figure 1. Example of Java code developed using

repl.it.
Figure 2. Example of coding in the block coding platform

Scratch.

22

Havard and Howard: All Advanced Placement (AP) Computer Science is Not Created Equal

Published by InSPIRe @ Redlands, 2019

This block-coding platform, and others listed as acceptable in Computer Science

Principles, are far less transferable due to their simplification and insulation of syntax to

facilitate ease of use. Encouraging teachers to use platforms they believe appropriate for their

students potentially introduces teacher bias into curriculum design in classrooms where teacher

expectations are not high. It also allows minimal investment from teachers in becoming

proficient in more complex (and more transferable) object-oriented programming options such as

Java.

The in-class tasks scored as part of the AP Computer Science Principles exam are

comprised of more than just the programming task. There are two in-class tasks: The “Explore”

task (8 class hours) and the “Create” task (12 class hours). Overall, these performance tasks are

designed to have students analyze an innovation, describe its impact on people and society, and

create a computer program explaining the most “significant aspects” which allow it to run

(College Board, 2017b). Through the “Explore” performance task, students choose an innovation

(physical computing or non-physical computing) to evaluate by creating a “computational

artifact” such as a digital poster and written responses to prompts. Students are “expected to

complete the task with minimal assistance from anyone” (p. 108). Within the “Create”

performance task, students are required to create a software program around a topic of interest.

This program can be created using the language/platform selected as appropriate for the class by

the instructor. The program guidelines indicate “You are strongly encouraged to work with

another student in your class…It is strongly recommended that a portion of the program involve

some form of collaboration with another student in your class, for example, in the planning,

designing, or testing (debugging) part of the development process” (p. 113). At the end of the

course, the tasks are submitted to the College Board for external scoring. Since the Computer

Science Principles performance tasks are completed internally (within the classroom) and

assessed for creativity (one of the seven big ideas), it affords a level of flexibility to the educator

and student in selecting material that is relevant to the individual; such relevancy is perceived to

have previously been a significant barrier to ensuring broad access to the curriculum.

Course-Specific Curriculum. A more detailed look at the differences between the two courses

can be seen in Table 2, comparing the big ideas of Computer Science Principles with those of

Computer Science A. This qualitative comparison reveals some side-by-side similarities in

computational thinking topics such as abstraction, decomposition, and algorithmic thinking.

There is a notable disparity in programming content, depth, and application in Computer Science

Principles compared with Computer Science A across the big ideas. Much of the Computer

Science Principles curriculum is observed to occur outside of the programming space and to a

much shallower depth than that of Computer Science A. Computer Science Principles provides a

more generalized, conceptual curriculum, situating the big ideas in context but with less

programming application. Computer Science A provides an applied approach, with content

material almost entirely devoted to its programming application to solving multi-disciplinary

problems. It does not advance, nor in some cases cover, the more holistic components of the

Computer Science Principles course (i.e., those learning objectives in and around the human-

23

Journal of Computer Science Integration, Vol. 2 [2019], Iss. 1, Art. 2

https://inspire.redlands.edu/jcsi/vol2/iss1/2
DOI: 10.26716/jcsi.2019.02.1.2

Table 2

Comparison of Big Idea Applications to Programming (AP CSP and AP CSA)

Big Ideas1 AP CSP In-Programming2 AP CSA In-Programming
Creativity Focus on the creative development process,

tools, and techniques for the creation of digital

artifacts (not limited to a program, image,

audio, video, presentation, or Web page file).

Not assessed in the AP CSA curriculum.

Abstraction In-programming abstraction is limited in

scope and depth, not to include a discussion of

reference parameters. Multiple levels of

abstractions are suggested including constants,

expressions, statements, procedures, and

libraries.

✓

In-programming abstraction is rigorously

applied through an object-orientated

programming approach. Students design a

class, understand and implement inheritance

and composition relationships in the creation of

program.

✓

Data and Information Methods of information processing and data

visualization outside the programming space,

extraction of information from data using

software (conceptually limited, does not

include specific formulas), and analyze the

manipulation of data.

 In-programming primarily situated within

standard data structures seeking the

understanding and application of Java class

methods, and managing data with 1-D, 2-D

arrays and the ArrayList class.

✓

Algorithms Through the expression and development of

an algorithm in a programming language, in-

programming learning objectives support

solutions to computational problems.

Limitations to their uses are also discussed.

✓ Focused on operations on data structures,

knowledge of the two-standard searching

(sequential, binary) and three sorting algorithms

(selection, insertion, merge) and how to

implement them into a program.

✓

Programming A focus on programming for creative

expression (human-computer perspective) is

mirrored through the “Create” performance

assessment. Develop a program (through

collaboration) to solve a problem, explain how

programs implement algorithms, use

abstraction to effectively manage complexity

in programs, employ mathematical and logical

concepts (basic arithmetic and logic

operations), and evaluate program correctness.

✓ A focus on designing a program which can

solve a problem (pragmatic perspective) given a

set of preconditions or constraints. An

extensive overview of object-oriented (and

procedural) programming extending beyond

basic algorithms and logical operations to their

application in data (in multi-dimensional

arrays), programming abstractions (inheritance

and abstract classes), and evaluation (search

and sort algorithms).

✓

The Internet Characteristics of the internet, its systems, and

analysis of concerns such as cybersecurity.
 Not assessed in the AP CSA curriculum.

Global Impact The impact of computing on innovations in

other fields, how people participate in the

problem-solving process, and the benefits and

harmful effects of computing.

 The impacts of computing to the Internet,

economic and legal impacts of viruses, life-

critical applications, and intellectual property.

Note.
1 The seven big ideas from the AP Computer Science Principles curriculum is adopted and applied to AP Computer Science A.
2 In-programming acknowledges the inclusion of programming tasks/instruction within a big idea.

24

Havard and Howard: All Advanced Placement (AP) Computer Science is Not Created Equal

Published by InSPIRe @ Redlands, 2019

computer interface). This dichotomy compels a deeper study into the overall depth of knowledge

obtained by students embarking on either Computer Science A or Computer Science Principles.

Method

Depth of Learning

Exploring the course curricula in greater detail, Bloom’s Revised Taxonomy was

employed to evaluate the learning objectives of Computer Science Principles as compared to

those of the Computer Science A course. The goal for employing Bloom’s Revised Taxonomy

was to further compare the courses in terms of student potential depth of knowledge through a

well-established cognitive learning tool used prolifically by K-12 educators. As detailed earlier,

this revised taxonomy was applied to the learning objectives in the course descriptions (textual in

the case of Computer Science A and tabular for Computer Science Principles) producing a

“depth of knowledge” score on a cognitive scale of 1 (remember) to 6 (create). For example,

Computer Science Principles learning objective 2.2.3 states students will “[i]dentify multiple

levels of abstractions that are used when writing programs” (College Board, 2017a). This

learning objective, when evaluated using Bloom’s Revised Taxonomy, would receive a depth of

knowledge score of 1 as “identification” asks students to simply retrieve or recall information

stored in long-term memory. Conversely, learning objective 4.2.4 states that students will

“Evaluate algorithms analytically and empirically for efficiency, correctness, and clarity”

(College Board, 2017b). A learning objective which prompts students to “evaluate,” or

cognitively make judgements based on a predetermined set of criteria, would receive a score of

5, a higher cognitive task than recall.

Results

Following the coding and Bloom’s taxonomic score determination process for each

learning objective, a mean score was codified for each Computer Science course. Table 3

provides an example of this process through a textual analysis of keywords presented in each

learning objective. Using the guidelines of the revised taxonomy to determine an average depth

of knowledge score, Computer Science Principles curricular material was determined, on

average, to fall within a value of 3-4, whereas Computer Science A revealed an average score

between 4-5 (see Appendix A for complete results). These results highlight an emphasis of

Computer Science Principles on applying knowledge and analyzing information, whereas

Computer Science A places a stronger emphasis on analyzing and evaluating. This apparent shift

in perspective (from analyzing to evaluating) may be realized through the distribution of scores

presented in Figure 1. The differing distributions of the analyzed content along the Bloom

continuum highlights a shift in the conceptualized depth of knowledge between the two courses.

25

Journal of Computer Science Integration, Vol. 2 [2019], Iss. 1, Art. 2

https://inspire.redlands.edu/jcsi/vol2/iss1/2
DOI: 10.26716/jcsi.2019.02.1.2

Table 3

Comparison of “Selected” Learning Objectives (AP CSA and AP CSP)

Program Topic

Area

Learning Objective Bloom’s Revised Taxonomy

Score

AP Computer Science

Principles

Algorithms LO 4.2.4. Evaluate algorithms analytically and empirically for efficiency,

correctness, and clarity.

LO 4.2.3. Explain the existence of undecidable problems in computer

science.

5

2

 Abstraction LO 2.2.1. Develop an abstraction when writing a program or creating other

computational artifacts.

LO 2.2.3. Identify multiple level of abstractions that are used when writing

programs.

6

1

AP Computer Science A Program Analysis “Examining and testing programs to determine whether they correctly meet

their specifications.”

III.B. Debugging including error categories, error identification and

correction, and evaluating code using techniques (e.g., debugger, output

statements, or hand-tracing).

III.F. Interpret preconditions and postconditions when provided as pseudo

code.

6

2

 Program

Implementation

“The implementation of solutions in the Java programming language

reinforces concepts, allows potential solutions to be tested, and encourages

discussion of solutions and alternatives.”

II.A. Statement of solutions in a precise form for evaluation using the

following techniques: top-down, bottom-up, object-oriented, encapsulation,

and procedural abstraction.

II.C. Appropriate use of Java library classes and interfaces to solve a

problem.

5

3

 Note. Key words used in the coding of each learning objective (Bloom’s revised taxonomy score of 1-6) is identified by an underline.

26

Havard and Howard: All Advanced Placement (AP) Computer Science is Not Created Equal

Published by InSPIRe @ Redlands, 2019

Figure 3

Discussion

The juxtaposition between both Computer Science Principles and Computer Science A

through a depth of understanding analysis is important when considering how far students’

exposure to computer science ultimately takes them, both academically and professionally.

Given the importance of preparing the next generation of STEM professionals, of particular

importance is the level of STEM content preparation being afforded to students in post-

secondary education. Given the stark differences between the two AP computer science courses,

especially as it relates to how each one approaches the level of depth afforded to learning

programming, the results of our analyses reveal a discernible difference in both the depth and

foci of the two courses, with Computer Science A being more focused on pragmatic aspects of

programming, utilizing a context more easily transferable to more advanced study in computer

programming. The Computer Science Principles course was found to be broader in its coverage

of the field of computer science, while less focused on the specific skillsets and platforms that

could provide the foundation for further and deeper study.

Conclusions

An in-depth analysis of the activities and assessments associated with the two AP

computer science options provides support for the notion of two-tiered preparation, despite both

courses being identified as equivalent to introductory college-level courses. Research on changes

in participation reveal a significant increase in access to Advanced Placement computer science

curricula by traditionally underrepresented groups of students. An in-depth content analysis of

rigor (or depth of assessed knowledge), however, has indicated a much different picture.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

Distribution of Bloom's Revised Taxonometric Scores for CSP and CSA

Computer Science A Computer Science Principles

27

Journal of Computer Science Integration, Vol. 2 [2019], Iss. 1, Art. 2

https://inspire.redlands.edu/jcsi/vol2/iss1/2
DOI: 10.26716/jcsi.2019.02.1.2

Differences in the assessment methods, including the attribution of 40% of the Computer Science

Principles score to two tasks completed in the classroom over several days, has resulted in

marked differences in the distribution of scores between the two exams (as reported in Howard

& Harvard, 2019). Although the in-class assignments are scored by the same subject-matter

experts as the traditional exam, allowing students to complete them over several days

relinquishes some control over whether the students seek external help between class meetings.

The encouragement of collaboration on these tasks further distinguishes Computer Science

Principles as computer science “light” in terms of its level of challenge and preparation for

students. Furthermore, the content of the two exams is very different in emphases as well.

Whereas the Computer Science A course assesses students’ ability to design, write, and analyze

programs using Java programming language, the Computer Science principles course only

requires students to write a program in one of the two in-classroom tasks, completed

collaboratively, using a teacher-chosen platform from among a wide range of options in terms of

complexity. This raises questions as to how prepared students taking Computer Science

Principles are to later succeed in postsecondary STEM majors that lean on programming

proficiency, as well as to how much credence postsecondary institutions should place in passing

scores on the Computer Science Principles exam.

Given the increasing importance of computer science, and in particular, computer

programming as a high-demand and highly technical field, it is imperative that school counselors

are aware of the substantive differences in the two AP Computer Science course offerings as

they advise their students. For the increasing number of students with prior coding or computer

science experience through elementary or middle school curricula, Computer Science A may be

the most beneficial option. For students with minimal prior exposure to the field, perhaps both

courses in sequence is advisable, provided that both are offered at their schools. It is likewise

important for schools and school districts to carefully consider the potential limiting effect of

selecting Computer Science Principles as their sole AP Computer Science course offering. In

order to ensure equitable opportunities for students to excel in this important field in higher

education and in the workplace, having the opportunity to choose the best option for their

respective academic and professional paths is critical.

28

Havard and Howard: All Advanced Placement (AP) Computer Science is Not Created Equal

Published by InSPIRe @ Redlands, 2019

References

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832-

835. https://doi.org/10.1093/comjnl/bxs074

Bureau of Labor Statistics. (2018). Occupational Outlook Handbook: Computer and Information

Technology Occupations. Retrieved from https://www.bls.gov/ooh/computer-and-

information-technology/home.htm

College Board. (2014). AP Computer Science A course description. Retrieved from

https://apcentral.collegeboard.org/pdf/ap-computer-science-a-course-

description.pdf?course=ap-computer-science-a

College Board. (2017a). AP® computer science principles. Retrieved from

https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-

overview.pdf?course=ap-computer-science-principles

College Board. (2017b). Course and exam description: AP computer science principles.

Retrieved from https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-

course-and-exam-description.pdf?course=ap-computer-science-principles

College Board. (2018a). AP Archived Data. Retrieved from

https://research.collegeboard.org/programs/ap/data/archived

College Board. (2018b). AP Program Participation and Performance Data 2018. Retrieved

from: https://research.collegeboard.org/programs/ap/data/participation/ap-2018

Cuny, J. (2015). Transforming K-12 computing education: AP® computer science principles.

ACM Inroads, 6(4), 58-59. https://doi.org/10.1145/2832916

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of

the ACM, 60(6), 33-39. https://doi.org/10.1145/2998438

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field.

Educational Researcher, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051

Guzdial, M. (2008). Education: Paving the Way for Computational Thinking. Communications

of the ACM, 51(8), 25-27. https://doi.org/10.1145/1378704.1378713

Howard, K. E., & Havard, D. D. (2019). Advanced Placement (AP) Computer Science

Principles: Searching for Equity in a Two-Tiered Solution to Underrepresentation.

Journal of Computer Science Integration, 2(1), 1-15.

https://doi.org/10.26716/jcsi.2019.02.1.1

Miller, G. A. (2003). The cognitive revolution: A historical perspective. Trends in Cognitive

Sciences, 7(3), 141-144. https://doi.org/10.1016/S1364-6613(03)00029-9

29

Journal of Computer Science Integration, Vol. 2 [2019], Iss. 1, Art. 2

https://inspire.redlands.edu/jcsi/vol2/iss1/2
DOI: 10.26716/jcsi.2019.02.1.2

Minsky, M. (1974). A Framework for Representing Knowledge. Retrieved from

https://dspace.mit.edu/bitstream/handle/1721.1/6089/AIM-306.pdf?sequence=2

Nager, A., & Atkinson, D. R. (2016). The Case for Improving U.S. Computer Science Education.

Information Technology & Innovation Foundation, 1-38.

National Economic Council and Office of Science and Technology Policy. (2015). A strategy for

American Innovation. Retrieved from

https://obamawhitehouse.archives.gov/sites/default/files/strategy_for_american_innovatio

n_october_2015.pdf

National Science Foundation. (2014). College Board launches new AP Computer Science

Principles course. Retrieved from

https://www.nsf.gov/news/news_summ.jsp?cntn_id=133571

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic

Books, Inc.

Papert, S. (1996). An exploration in the space of mathematics educations. International Journal

of Computers for Mathematical Learning, 1(1), 95-123.

https://doi.org/10.1007/BF00191473

Papert, S., & Harel, I. (Eds.). (1991). Constructionism. Norwood, NJ: Ablex Publishing Corp.

Royal Society. (2012). Shut down or restart: The way forward for computing in UK schools.

Retrieved from http://royalsociety.org/education/policy/computing-in-schools/report/

Tedre, M., & Denning, P. J. (2016). The long quest for computational thinking. Paper presented

at the Proceedings of the 16th Koli Calling International Conference on Computing

Education Research, Koli, Finland. https://doi.org/10.1145/2999541.2999542

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2011). Research notebook: Computational thinking—What and why? Retrieved

from https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-

why

30

Havard and Howard: All Advanced Placement (AP) Computer Science is Not Created Equal

Published by InSPIRe @ Redlands, 2019

Appendix A

Depth of Knowledge Course Comparison

A Bloom’s Revised Taxonomy was utilized to compare the cognitive depth of knowledge

addressed by the course learning objectives for AP Computer Science Principles and AP

Computer Science A. Tables A.1 and A.2 detail the course learning objectives with a cognitive

score following the revised taxonomy between 1 (remember) and 6 (create).

Table A1. Computer Science Principles Framework and Depth of Knowledge
Big Idea Learning Objective Bloom’s Revised

Taxonomy Score

1. Creativity LO 1.1.1. Apply a creative development process when

creating computational artifacts.
3

 LO 1.2.1. Create a computational artifact for creative

expression.
6

 LO 1.2.2. Create a computational artifact using computing

tools and techniques to solve a problem.
6

 LO 1.2.3. Create a new computational artifact by combining

or modifying existing artifacts.
6

 LO 1.2.4. Collaborate in the creation of computational

artifacts.
5

 LO 1.2.5. Analyze the correctness, usability, functionality,

and suitability of computational artifacts.
4

 LO 1.3.1. Use computing tools and techniques for creative

expression.
3

2. Abstraction LO 2.1.1. Describe the variety of abstractions used to

represent data.
2

 LO 2.1.2. Explain how binary sequences are used to

represent digital data.
2

 LO 2.2.1. Develop an abstraction when writing a program or

creating other computational artifacts.
6

 LO 2.2.2. Use multiple levels of abstraction to write

programs.
3

 LO 2.2.3. Identify multiple level of abstractions that are used

when writing programs.
1

 LO 2.3.1. Use models and simulations to represent

phenomena.
3

 LO 2.3.2. Use models and simulations to formulate, refine,

and test hypotheses.
3

3. Data and

Information
LO 3.1.1. Find patters and test hypothesis about digitally

processed information to gain insight and knowledge.
4

 LO 3.1.2. Collaborate when processing information to gain

insight and knowledge.
2

 LO 3.1.3. Explain the insight and knowledge gained from

digitally processed data by using appropriate visualizations,

notations, and precise language.

2

 LO 3.2.1. Extract information from data to discover and

explain connections or trends.
2

31

Journal of Computer Science Integration, Vol. 2 [2019], Iss. 1, Art. 2

https://inspire.redlands.edu/jcsi/vol2/iss1/2
DOI: 10.26716/jcsi.2019.02.1.2

 LO 3.2.2. Determine how large data sets impact the use of

computational processes to discover information and

knowledge.

2

 LO 3.3.1. Analyze how data representation, storage, security,

and transmission of data involve computational manipulation

of information.

4

4. Algorithms LO 4.1.1. Develop an algorithm for implementation in a

program.
6

 LO 4.1.2. Express an algorithm in a language. 2

 LO 4.2.1. Explain the difference between algorithms that run

in a reasonable time and those that do not run in a reasonable

time.

2

 LO 4.2.2. Explain the difference between solvable and

unsolvable problems in computer science.
2

 LO 4.2.3. Explain the existence of undecidable problems in

computer science.
2

 LO 4.2.4. Evaluate algorithms analytically and empirically

for efficiency, correctness, and clarity.
5

5. Programming LO 5.1.1. Develop a program for creative expression, to

satisfy personal curiosity, or to create new knowledge.
6

 LO 5.1.2. Develop a correct program to solve problems.
LO 5.1.3. Collaborate to develop program.

6

5
 LO 5.2.1. Explain how programs implement algorithms. 2

 LO 5.3.1. Use abstraction to manage complexity in

programs.
3

 LO 5.4.1. Evaluate the correctness of a program. 2

 LO 5.5.1. Employ appropriate mathematical and logical

concepts in programming.
3

6. The Internet LO 6.1.1. Explain the abstractions in the Internet and how

the Internet functions.
2

 LO 6.2.1. Explain characteristics of the internet and the

systems built on it.
2

 LO 6.2.2. Explain how the characteristics of the Internet

influence the systems built on it.
2

 LO 6.3.1. Identify existing cybersecurity concerns and

potential options to address these issues with Internet and the

systems built on it.

1

7. Global Impact LO 7.1.1. Explain how computing innovations affect

communication, interaction, and cognition.
2

 LO 7.1.2. Explain how people participate in a problem-

solving process that 4scales.
2

 LO 7.2.1. Explain how computing has impacted innovation

in other fields.
2

 LO 7.3.1. Analyze the beneficial and harmful effects of

computing.
4

 LO 7.4.1. Explain connections between computing and real-

world contexts, including economic, social, and cultural

contexts.

2

 LO 7.5.1. Access, manage, and attribute information using

effective strategies.
1

32

Havard and Howard: All Advanced Placement (AP) Computer Science is Not Created Equal

Published by InSPIRe @ Redlands, 2019

 LO 7.5.2. Evaluate outline and print sources for

appropriateness and credibility.
5

Table A2. Computer Science A Framework and Depth of Knowledge.
Big Idea Learning Objective Bloom’s Revised

Taxonomy Score

1. Object-Oriented

Program Design
Program and Class Design 6

 Problem analysis 4

 Data abstraction and encapsulation 6

 Class specifications, interface specifications,
 relationships (“is-a”, “has-a”),
 and extension using inheritance

5

 Code reuse 6

 Data representation and algorithms 6

 Functional decomposition 5

2. Program

Implementation
Implementation techniques 5

 Top-down 5

 Bottom-up 5

 Object-oriented 6

 Encapsulation and information hiding 5

 Procedural abstraction 6

 Programming constructs 2

 Primitive Types vs. Reference types 4

 Declaration (constants, variables, methods,
 classes, interfaces)

3

 Text output using System.out.print and
 System.out.println

4

 Control (method call, sequential and

 conditional execution, iteration, and

 recursion)

4

 Expression evaluation (numeric, String,

 Boolean expressions and DeMorgan’s Law)

5

3. Program Analysis Testing 4

 Development of appropriate test cases, boundary
 cases

4

 Unit testing 4

 Integration testing 4

 Debugging 5

 Error categories: compile-time, run-time, logic 5

 Error Identification and correction 5

 Techniques such as using a debugger, hand
 tracing code

5

 Runtime exceptions 2

 Program correctness (pre- and post-conditions,
 assertions)

2

 Algorithm analysis (execution counts and run

 time comparisons)

4

33

Journal of Computer Science Integration, Vol. 2 [2019], Iss. 1, Art. 2

https://inspire.redlands.edu/jcsi/vol2/iss1/2
DOI: 10.26716/jcsi.2019.02.1.2

 Numerical representations of integers 4

4. Standard Data

Structures
Primitive data types (int, boolean, double) 5

 Strings 5

 Classes 6

 Lists 6

 Arrays (1-dimensional and 2-dimensional) 6

5. Standard

Operations and

Algorithms

Operations on data structures 3

 Traversals 3

 Insertions 3

 Deletions 3

 Searching (sequential and binary) 3

 Sorting 3

 Selection 3

 Insertion 3

 Mergesort 3

6. Computing in

Context
System reliability 4

 Privacy 5

 Legal issues and intellectual property 5

 Social and ethical ramifications of computer use 5

34

Havard and Howard: All Advanced Placement (AP) Computer Science is Not Created Equal

Published by InSPIRe @ Redlands, 2019

	All Advanced Placement (AP) Computer Science is Not Created Equal: A Comparison of AP Computer Science A and Computer Science Principles
	Recommended Citation

	All Advanced Placement (AP) Computer Science is Not Created Equal: A Comparison of AP Computer Science A and Computer Science Principles
	Abstract
	Keywords
	DOI
	Corresponding Author

	Cover Page Footnote

	tmp.1551402292.pdf.TKHvt

