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Abstract

Background: Understanding the relative importance of signaling pathway components which
regulate a specific cellular response is a major focus of current efforts in biology. This interest, along
with the inherit complexity of these systems, is driving the development of approaches capable of
providing both quantitative predictions as well as guiding the design of future experiments. Of
particular interest is the establishment of methods for the analysis of cellular-level input-output
signaling relationships that have been characterized over time.

Results: Work by the Alliance for Cellular Signaling (AfCS) has provided an extensive profile of
ligand-induced changes in protein phosphorylation state and cytokine output response in
macrophage-like RAW 264.7 cells. Using model averaging with partial least squares (PLS) or
principal components regression (PCR), we compared multivariate models quantitatively predicting
cytokine release and identifying key regulatory components of the underlying signaling pathways.
We paid particular attention to the effect of metrics extracted from the experimentally derived
signaling time courses so as to determine whether the inclusion of such temporal information
improved model predictions. Results indicate that we were able to determine the key biological
predictors responsible for generating a specific cytokine response, with model R? values ranging
from 0.48 to 0.93. Furthermore, for this data set, the use of time metrics was found to be of mixed
value, with increased and/or more appropriate sampling likely being required to improve predictive
performance.

Conclusion: The use of multivariate approaches and model averaging provides a valuable
predictive framework for quantitative studies of these complex biological processes. Results of this
work also point to several issues for consideration in the design of similar large-scale
interrogations.

Introduction titative and testable descriptions of system behavior. Such
A continuing challenge in biology today is the need to  a challenge is particularly relevant at the cellular level,
integrate large quantities of experimental data into quan-  where recent technological advancements have made the
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generation of large-scale and comprehensive data sets fea-
sible. Given such data, the opportunity arises to greatly
improve our understanding of the overall dynamics of cel-
lular behavior and its relevance to cellular dysfunction.
Due to their size and complexity, it is generally recognized
that the data generated through large-scale interrogations
are largely uninterpretable without the use of computa-
tional methods for data reduction, analysis and modeling.
As a result, a number of methods have been adopted from
fields such as engineering, computer science and statistics,
which are particularly well suited for dealing with such
systems-scale biological data [1,2]. For example, recent
work by Sachs and colleagues [3] used Bayesian networks
to predict causal network relationships between proteins
involved in T cell signaling, while multivariate approaches
such as partial least squares (PLS) regression have been
used for identifying and modeling key components of
cytokine-induced apoptosis [4-6].

Recent work by the Alliance for Cellular Signaling (AfCS)
has led to the generation of an extensive, openly accessi-
ble, profile of the system-wide response of macrophage-
like RAW 264.7 cells to over 200 input stimuli. These
stimuli were applied to cells either alone or simultane-
ously as a paired combination, with the resulting changes
in cytokine output responses quantified over time. In
addition to the cytokine outputs, the phosphorylation
states of 21 signaling proteins were also characterized over
time. Overall, such data presents a large-scale picture of
cell system dynamics that is still relatively rare in the liter-
ature. Herein, we model the input/output response of
RAW 264.7 cells based on the studies performed by the
AfCS. Due to possible advantages of the method
(described below), we use partial least squares regression
for modeling input/output responses, and compare these
results with identical analyses using principal compo-
nents regression (PCR). We were particularly interested in
the temporal aspects of the data as recent work by Janes
and colleagues [4,5] has shown that the use of parameters
derived from temporal response curves, such as time
derivatives, peak value, and area under the curve (AUC),
were typically more informative than time-averaged data.
This question is especially relevant here as the AfCS data
is composed of cytokine response curves and phosphor-
ylation state measurements consisting of only 4 time
points (typically sampled at 0, 2, 3, and 4 hours for
cytokines and 1, 3, 10 and 30 minutes for phosphoryla-
tion). These are relatively sparsely sampled time curves
and it is not obvious if this amount of sampling is suffi-
cient to generate reliable results or relative improvements
when compared to time-averaged data.

Here we show that for this data, the predictive capability
of PLS and PCR were generally equivalent. However, there
was a significant benefit of PLS over PCR in the significant
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reduction in the number of variables that must be used
within the models to accurately describe variation within
the data. In addition, the ability to generate variable
importance in projection (VIP) scores with PLS provides
the ability to readily determine important variables (e.g.
specific signaling molecules) that drive cellular output
response. The generation and interpretation of these VIP
scores is much simpler than methods developed to adapt
PCR to this task [7]. We found that the use of time-derived
metrics was of marginal utility here, most likely due to the
low sampling of the signaling response curves. Finally, in
the course of this analysis we identified several issues in
the design of the experiments that generated this data. We
suggest possible changes for future studies that can
improve the quality of analyses and interpretation of the
experimental results in such large-scale interrogations.

Results

Data overview

As discussed in greater detail in Materials and Methods,
the AfCS data was derived from RAW 264.7 macrophage-
like cells and consisted of phosphorylation state time
courses for 21 signaling proteins and the resulting release
of seven cytokines including G-CSF, IL-1¢, IL-6, IL-10,
MIP-1 ¢, RANTES and TNFe. In the process of our analysis
of the data, we became cognizant of several important
issues. In total there were 253 stimulating conditions, 22
single and an additional 231 applied to cells as a pair (see
Materials and Methods). As both the phosphorylation
state of intracellular proteins and the cytokine output
response were measured, the stimulatory inputs were per-
formed twice; once to generate the phosphorylation data
and once to generate the cytokine data. Unfortunately, for
the majority of cases the input stimuli were not matched
across experiments - i.e. the concentration(s) of stimu-
lants was not the same across both the phosphorylation
and cytokine response experiments. Differences were sig-
nificant (e.g. commonly 3-5 fold). Of the initial 253 sets
of experiments, only 55 had appropriately matched input
conditions. While we decided that 55 conditions were suf-
ficient for the work addressed here, this finding severely
limited the greater utility of the larger data set.

PLS and PCR

A method common in the field of chemometrics, PLS is an
extension to the multiple linear regression model and
thus related to other methods including principal compo-
nents regression [8]. The main goal of these methods is to
describe a linear model, Y = X B + E, where Y is a n object
by m variable response/output matrix, X is a n by p varia-
ble predictor matrix, B is a p by m regression coefficient
matrix and E is a noise term. Here, X and Y are the inde-
pendent and dependent blocks respectively. In this work,
Y includes measurements of the cytokine output response,
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while the X block consists of measurements of signaling
protein phosphorylation state.

Both PLS and PCR produce factor scores T (T = XW; W is
a weight matrix), which are linear combinations of the
original predictor variables and are thus uncorrelated with
each other. These components also encapsulate correlated
observed variables within a single new constructed com-
ponent (i.e. the so called "latent variable" in PLS and
"principal component" in PCR) and thus help to reduce
issues common to high-dimensional data sets. Regression
is performed on these components, thus Y = TQ + E,
where Q is a matrix of regression coefficients (loadings)
for T. Once the coefficients are calculated, this model is
equivalent to the original and can be used in prediction.
An important aspect is that PCR uses components that
maximally describe variation in X alone. PLS differs from
PCR in that it tries to find components that are the best
compromise between both fitting X and predicting Y (the
independent and dependent blocks respectively). Thus
PLS tries to find factors that both capture variance and
achieve correlation with both predictor and predicted var-
iables. While highly data-dependent, in general one
would expect PLS to outperform PCR if the data have a
large amount of variance that is nonlinear and/or unre-
lated to the dependent variables. In addition, the fact that
PLS uses both independent and dependent blocks X and
Y, one would generally expect PLS to perform better than
PCR with the input/output data collected in the AfCS
study. As described below, we found that this is not neces-
sarily the case for this data.

Modeling of cytokine output response

We first wanted to look at what effect using temporal
information had on prediction accuracy for both PLS and
PCR. In this case, we extracted time-dependent signaling
metrics from the time curves that describe the phosphor-
ylation state of the 21 intracellular signaling proteins (see
Table 1). These 11 metrics provide a potentially greater
capability to identify more physically relevant variables in
the signaling process. For instance, it is likely that time-
related properties of a signaling protein, such as its peak
activity level, the rate of change in activation, or the total
amount of activity is/are the critical factors in deciding
whether or not a given cytokine response is triggered.
With 11 metrics extracted from the phosphorylation
curves of each of the 21 signaling proteins, there can be a
maximum of 231 variables represented within a PLS or
PCR model. For comparison purposes we also consider
models developed using time-averaged signaling meas-
urements. Note that while the inclusion of time-depend-
ent metrics would seem to be the most appropriate
methodology, insufficient experimental sampling of these
time curves can lead to models with low predictive accu-
racy, in which case models derived from time-averaged
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data may be more appropriate. We used 10-fold cross-val-
idation to develop the PLS and PCR models (see Materials
and Methods).

Briefly, the data was split into ten equally sized contigu-
ous blocks. All but one of the blocks were used to train the
model (calibration stage), with the resulting model then
being used to predict the withheld block (test stage). To
choose an optimized number of latent variables (LVs) or
principal components (PCs), we examined the root-
mean-square error (RMSE) between the measured and the
predicted responses with increasing numbers of LVs or
PCs for each cytokine. As LVs or PCs, which describe large
amounts of systematic variance (i.e. variables of predictive
value), are added to the model, the cross-validation RMSE
(RMSECV) should decrease. On the other hand, when LVs
or PCs describing only small noise variance are added (i.e.
variables that are largely noise), the RMSECV should
increase. For example, when time-dependent signaling
metrics were used to predict the output response of TNFa
secretion, the calibrated RMSE decreased monotonically,
while the RMSECV was minimized with just 6 LVs for the
PLS model and with 22 PCs for the PCR model (Figure 1).
However, as can be seen in the figure, the decrease of
RMSECV in the PCR model after 15 PCs was relatively
modest, which suggests that we can use 15 PCs rather than
22 and still achieve good prediction accuracy. This
emphasizes a significant benefit of multivariate
approaches such as PLS and PCR which is their ability to
accurately model system behavior with a reduced set of
critical variables. These critical variables then represent
the most important factors driving system behavior and
output response.

Prediction accuracy

After selecting the optimized number of LVs or PCs for
each model of cytokine output response, we examined the
squared Pearson correlation coefficient, R2, between

Table I: Metrics extracted from protein phosphorylation state
time courses.

Metric class Metrics generated

| min
3 min
10 min
30 min

Temporal measurements

I min
3 min
10 min
30 min

Instantaneous derivatives

Summary metrics area under the curve (AUC)
Maximum signal

Mean signal
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Figure |

Root-mean-square errors of calibration and cross-validation of TNF o response with both PCR and PLS analy-
sis. Time-dependent signaling metrics were used. Arrows indicate minimum errors and hence the number of components used

for the regression models.

measured cytokine outputs and the cross-validated pre-
dictions (Table 2). Overall, high correlation could be
achieved in all predictions. Specifically, high R2 values
were found for G-CSF and TNF« (R2 ranging from 0.72 to
0.93), while moderate R? values were found for IL-6, IL-
10, MIP-1« and RANTES (R? ranging from 0.48 to 0.65)
using either regression method with time-dependent sign-

aling metrics. PLS or PCR predictions with time-depend-
ent signaling metrics were weakest for the IL-1 response
with R2 values ranging from 0.49 to 0.51. On the other
hand, PLS or PCR predictions with time averages were
much better for this particular cytokine response (0.83
and 0.85 respectively).

Table 2: Prediction accuracy as measured by squared Pearson correlation coefficient R2

G-CSF IL-1 IL-6 IL-10 MIP-1 & RANTES TNFa
PLS (time-derived metrics) 0.93 (5) 0.49 (1) 0.63 (5) 0.62 (4) 0.49 (6) 0.65 (2) 0.75 (6)
PCR (time-derived metrics) 0.92 (2) 0.51 (2) 0.64 (21) 0.62 (16) 0.48 (10) 0.64 (2) 0.72 (15)
PLS (time-averaged data) 0.88 (5) 0.83 (6) 0.58 (6) 0.64 (5) 0.62 (5) 0.73 (5) 0.83 (5)
PCR (time-averaged data) 0.89 (10) 0.85 (10) 0.58 (13) 0.68 (10) 0.59 (9) 0.77 (9) 0.84 (13)
Number of principal components (for PCR) or latent variables (for PLS) are listed in parentheses.
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Table 3: Top 10% and 20% most significant time-dependent signaling metrics as identified via PLS

Cytokine Top 10% metrics Top 20% metrics (not including those in top 10%)
G-CSF JNK lg: AUC, maximum JNK Ig: mean, @ 30 min, derivative @ 10 min, @ 10 min
JNK sh: AUC JNK sh: derivative @ 10 min, maximum, mean, @ 30 min, @ 10
min
P38: @ 30 min, @ 10 min
ERKI: derivative @ 10 min
ERK2: derivative @ 10 min
RSK: derivative @ 10 min, @ 30 min
NF-xB p65: @ 10 min, AUC, @ 30 min, maximum
PKCM: derivative @ 30 min
IL-l JNK Ig: maximum JNK Ig: AUC, @ 30 min, mean, derivative @ 10 min, @ 10 min
JNK sh: AUC JNK sh: maximum, mean, derivative @ 10 min, @ 30 min, @ 10
min
ERK: derivative @ 10 min
ERK2: derivative @ 10 min
P38: @ 30 min
RSK: derivative @ 10 min
PKCM: derivative @ 30 min
NF-xB p65: @ 10 min, AUC, maximum, @ 30 min
IL-6 STAT3: mean, AUC, derivative @ 3 min, @ 3 min, maximum, @ | min, derivative @ | min,

STAT3: @ 30 min
@ 10 min

STAT | ¢ derivative @ 10 min

STAT I S derivative @ 10 min
IL-10 RSK: derivative @ 10 min
ERK2: derivative @ 10 min
ERK: derivative @ 10 min
JNK sh: derivative @ 10 min, @ 30 min, AUC, @ 10 min JNKsh: maximum, mean
JNK Ig: @ 30 min, @ 10 min, derivative @ 10 min JNK lg: AUC, maximum, mean
P38: derivative @ 10 min P38: @ 30 min
NF-xB p65: AUC NF-xB p65: maximum, @ 30 min, @ 10 min, mean
GSK3A: derivative @ 10 min
MIP-1 o JNK Ig: mean, maximum, AUC
NF-xB p65: @ 30 min, derivative @ 30 min NF-xB p65: @ 10 min
JNK sh: maximum, AUC JNK sh: mean, derivative @ 10 min
STATS: | min, derivative @ | min
ERK2: derivative @ 10 min
ERK: derivative @ 10 min
PKCM: maximum, derivative @ 30 min
P38 @ 30 min, maximum, @ 10 min
STAT | ¢ derivative @ 30 min
RANTES JNK Ig: maximum, AUC, mean JNK lg: derivative @ 10 min, @ 30 min, @ 10 min
JNK sh: maximum, AUC, derivative @ |0 min JNK sh: mean, @ 10 min, @ 30 min
ERK2: derivative @ 10 min
ERK: derivative @ 10 min
RSK: derivative @ 10 min
PKCM: derivative @ 30 min, maximum
P38: derivative @ 10 min, @ 30 min
NF-xB p65: @ 10 min
TNFa

NF-xB p65: @ 30 min, @ 10 min
JNK Ig: mean, maximum, AUC

PKCM: derivative @ 30 min, @ 30 min, maximum
P38: @ 30 min, @ 10 min, AUC
JNK sh: maximum, AUC, mean
RSK: @ 30 min
ERKI: @ 30 min
Rpsé: derivative @ 30 min
ERK2: @ 30 min
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AUC

Squared weighted VIP profile for RANTES. Ten PLS models were generated through 10-fold cross validation and then a
weighted VIP score was computed as described in Materials and Methods to select the important signaling metrics. A segment
plot was produced for each protein, with the radial length of each segment indicating the magnitude of the squared weighted
VIP score for individual metrics. VIP scores greater than | (dashed circle) are classified as significant metrics. For example, here
we see that the mean, maximum and AUC for JNKL/S activity are the most informative metrics for RANTES, while proteins
such as EZR do not have predictive value under the conditions studied. see that the mean, maximum and AUC for JNKL/S
activity are the most informative metrics for RANTES, while proteins such as EZR do not have predictive value under the con-

ditions studied.

The results of Table 2 show that, despite having measure-
ments of output response that could be utilized by the PLS
model, PCR was found to marginally outperform PLS in 5
of 7 cytokine output responses. Furthermore, the results
of using time-dependent signaling metrics were generally
poor with prediction accuracy improving for only 2 of 7
cytokine outputs (G-CSF and IL-6). In the remaining 5
outputs, time-averaged models had significantly better
predictive power. When compared to the PCR models,
PLS regression achieved a much smaller model dimen-
sion. While the order of PCR models ranged from 2 to 21,
the order of PLS models ranged from 1 to 6 while still
achieving a similar RMSECV level for all 7 cytokines
(Table 2). Thus in general, the PLS model requires a
smaller number of variables than PCR to achieve nearly

the same level of prediction accuracy, producing the sim-
plest or most "minimal" models as a result.

Vital signaling metric selection

A benefit of the PLS approach is the ability to readily
determine the important/highly predictive variables
within a model. We do this by calculating the weighted
VIP score for each cytokine (see Materials and Methods).
An example of this is shown in Figure 2, which shows the
squared weighted VIP score profile for RANTES. This pro-
file shows the ranking of all 231 variables in the RANTES
PLS model, with the two most influential variables being
the maximum value and area under the curve for the JNK
phosphorylation state time course [profiles for the
remaining 6 cytokines are provided in Additional file 1].
Note that the determination of highly predictive variables
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is a very straightforward process in the PLS methodology
when compared to other approaches with PCR (e.g. [7]).
Figure 3 shows the global squared weighted VIP profile
patterns for all cytokine responses. We note that, in prac-
tice, identified VIPs may span a significant range with
regard to their information content and predictive capac-
ity. As a result, only some smaller fraction of the highest-
ranked VIP scores is kept for use in the model as well as
for further analysis. The top 10% and top 20% signaling
metrics for each cytokine are shown in Table 3 and dis-
cussed further below.

http://www.jmolecularsignaling.com/content/3/1/11

Redundant encoding of signaling metrics

To examine the redundancy in the signaling information
contained within the original 231-metric model, we gen-
erated PLS models using only the reduced set of metrics
with VIP scores greater than 1. We found that for each
cytokine, a PLS model containing from 49 up to 97 most
informative signaling metrics was as predictive as the
complete one that used all 231 metrics (Table 4) implying
that there is significant redundancy in the information
carried by each metric. Similarly, we also assessed the
quality of prediction as a function of the number of vital
metrics used in the regression. Model uncertainty was esti-
mated by randomly shuffling samples 500 times. The
averaged R? increases as the number of the vital metrics

squared weighted
VIP score

GCSF

Figure 3

IL-ta. RANTES TNFa

IL-10  MIP-1a  IL-6

Clustering of squared weighted VIP profiles for all seven cytokines. Two-way average linkage clustering was per-

formed using uncentered Pearson's correlation distances.
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Table 4: Prediction results of PLS regression using all vital signaling metrics

G-CSF IL-1x IL-6 IL-10 MIP-1 RANTES TNFa
number of vital metrics 74 70 49 85 97 76 78
R2 0.90 0.49 0.72 0.66 0.54 0.69 0.76

For each cytokine, a PLS regression model using from 49 to 97 most informative (vital) signaling metrics was as predictive as the complete model

that used all 231 metrics.

included in the regression also increases (data not
shown). As shown in Table 5, we found that for each
cytokine, a PLS model containing from 1 to 46 of the most
informative metrics (as determined by VIP score) can
achieve an averaged R2 greater than 85% of the maximum
averaged R2. Using fewer than those most informative
metrics, however, could not predict the cytokines with the
desired accuracy.

Identification of primary signaling network components

A benefit of dimension reduction and regression models
such as PLS is that they provide the capability to identify
key modulators behind a specific signaling response. For
example, model predictions for G-CSF were the most
accurate of all cytokines, with R2 values ranging as high as
0.93 for the PLS model using time-derived metrics (Table
2). G-CSF, which is secreted by T cells, macrophages,
endothelial cells, and bone marrow stroma, acts on bone
marrow progenitor cells, inducing the differentiation of
myeloid precursors into mature granulocytes as well as
having other immune function [9,10]. For this system, we
found that the key modulator of the G-CSF response (i.e.
within the top 10% most informative metrics) was the
overall total activity level of JNK (considered here to be
represented by the AUC and maximum properties, see
Table 3). G-CSF is induced by nuclear factor «B (NF-«B)
and activation protein-1 (AP1), and the CCAAT enhancer-
binding protein, C/EBPS, (NF-IL6 in humans) has also
been shown to bind to the G-CSF promoter site [11-13].
C/EBPg in turn is activated via a JNK-dependent mecha-
nism [14]. A second example is TNFa. Tumor necrosis fac-
tor is a primary mediator of the acute inflammatory
response, with macrophages and T cells being the main
biological sources [9,11]. Physiologically, TNFa stimu-
lates the recruitment of leukocytes to sites of infection
and/or inflammation and also promotes their activation.
The most potent stimulus for eliciting a TNF response

from macrophages is LPS, which is a stimulus condition
that was an appropriately matched set within the AfCS
data, and thus was used within these models. Binding of
TNFa to appropriate receptors leads to recruitment of TNF
receptor-associated factors (TRAFs) followed by activation
of transcription factors including AP-1 and NF-«B.

Our analysis found that we were able to predict TNFe out-
put with high accuracy, being able to predict 75% of its
variance, second only to G-CSF. With this PLS model, we
required only 6 latent variables to achieve this level of
accuracy. Although the PCR model with time-averaged
metrics required the use of 13 principal components, this
model was able to achieve the highest predictive accuracy
with an R2value of 0.84. Identification of key regulators of
TNFa response with PLS agreed with those found in the
literature [15,16]. Specifically, the PLS model identified
the activity level of NF-xB at 10 and 30 minutes and the
total activity of JNK (considered here to be represented by
the mean, maximum and AUC metrics extracted from the
activation time course) as being the key predictive factors
in this response, with both being in the top 10% of VIP
variables (see Table 3).

As a final example, model predictions for the chemokine
RANTES (‘Regulated upon Activation, Normal T-cell
Expressed and Secreted' or CCL5) were analyzed. RANTES
is chemotactic for T cells, eosinophils and basophils, and
is needed for the maintenance of allergic inflammation
[17]. Model predictions for RANTES had R2? values of 0.65
with 2 LVs/PCs when using time-dependent signaling
metrics (Table 2). Furthermore, model predictions indi-
cated that metrics associated with the activity of JNK and
ERK1/2 to be in the top 10% of explanatory variables,
which is supported in the literature [18,19].

Table 5: Prediction results of PLS regression using top vital signaling metrics.

G-CSF IL-1x IL-6 IL-10 MIP-1 RANTES TNFa
Numb. of metrics | | 14 34 46 | 38
R2 88.0 + 0.27% 51.4 £ 0.55% 642 +2.41% 56.6 +2.61% 49.4 £ 2.42% 75.0 + 0.60% 66.3 + 1.84%

For each cytokine, a PLS regression model using from | to 46 of the most informative signaling metrics can achieve an average R? greater than 85%
of the maximum averaged R2. Values are means # standard deviation. Numb. of metrics = Number of most informative metrics used in the

regression.
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106 & LPS

IFA&LPS

2MA & LPS ISO & LPS
LPS LPA & LPS
LPS & PAF
LPS & PGE
LPS & S1P

RANTES
Figure 4

Signaling network topology for RANTES based on
the top ten signaling metrics. The kinases JNK and

ERK /2 were found to play an important role in regulating
RANTES from the PLS analysis. Legends shown in the top
row were identified directly from the data (i.e. not a model
output) as the top activators of either [NK or ERK /2. Also
see Table 3.

Introduced earlier, Figure 2 shows the squared weighted
VIP profile for RANTES. This information is further sum-
marized in a basic network diagram that highlights the
most important input and signaling variables as deter-
mined through the model (Figure 4). Here the top 10%
time-related, activation state properties of JNK and ERK1/
2 are shown in the middle row. Also shown in the net-
work for both JNK and ERK1/2 are the top 5 most signifi-
cant input stimuli (i.e. those stimuli that caused the
greatest increase in JNK or ERK1/2 phosphorylation
state).

Discussion

While significant work lies ahead, continued efforts in sys-
tems approaches to understanding cellular function hold
considerable promise. Key to this success is the develop-
ment and application of computational methods capable
of synthesizing predictive models from large and complex
data sets. Significant progress is being made in this area,
with the application of multivariate approaches such as
the PLS method described here being just one of many.
Part of the usefulness of this approach for such high-level
or "top-down" modeling, lies in its ability to decrease
model complexity by reducing the number of problem
dimensions to the smallest, most informative set. Greater
reduction in model dimensions and the ability to rank
and extract the most important model variables through
VIP scores present tangible advantages over PCR.

http://www.jmolecularsignaling.com/content/3/1/11

It should be noted that these high-level systems models
determine the important modulators of system response
by fitting model variables across all experimental condi-
tions. As a result, some key proteins may be missed under
certain circumstances. For example, protein activities that
are primary drivers of a specific output in only a small
number of experimental conditions may not be character-
ized as "significant." This enforces the concept that these
models must be continually refined so as to address con-
dition-specific details and be used to supplement more
thorough investigations of pathways of interest. As
described earlier, a major aim of this work was to deter-
mine if the addition of temporal information/metrics into
the model would help to improve predictions. This was
especially of interest as this data consisted of relatively few
(4) time points. Results indicate that the use of this lim-
ited temporal information provided generally poor
results, improving predictions in only 2 of 7 cases when
compared to time-averaged data. We found that for many
of the time courses, the response curves appear to have
been just initiated, show relatively little dynamics, and/or
are far from returning to post-stimulus levels. An example
experimental time course is shown in Figure 5.

Previous work using PLS with nearly identical data types
has been shown to be highly effective, with model predic-
tions having 90% correlation with measured outputs [4].
However, in this instance, protein activity curves initiated
by pro-death and pro-survival cytokines were sampled at
13 time points between 0 to 24 hours, providing a more
thorough picture of the temporal dynamics of protein sig-
naling than the AfCS data (e.g. see Figure 6). Is the greater
number of time points responsible for the improved per-
formance? We performed an equivalent analysis of the
data in [4] and focused on the effect of iteratively remov-
ing sampled timepoints, in various numbers and combi-
nations, from the protein activity/signaling curves (data
not shown). We found that, for this data, the initial 3-4
points sampled at the early stages of protein signaling,
along with their associated metrics, were sufficient to give
reliable predictions with over 80% accuracy. Thus it
would appear that, at least in this case, a small number of
properly placed samples can be sufficient to provide basic,
but reliable characterization of signaling dynamics.

Together, these results emphasize that similar, systems-
level studies should carefully consider the minimum
number of time points that must be sampled in order to
appropriately monitor system dynamics. Sampling need
not be uniform and/or the same for all variables, but
should rather be chosen so as to capture the desired
dynamic properties of each variable (e.g. an initial rapid
rise in protein phosphorylation state). Such experimental
design decisions would be expected to significantly
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Protein phosphorylation and cytokine concentration time courses after applying 2MA, UDP, or both. (2) Protein
phosphorylation of P-Ribosomal S6 was measured at O, |, 3, 10 and 30 minutes. (b) TNFo was measured at 0, 2, 3, and 4 hours.
Longer time courses with greater sampling may be required to generate reliable results as many curves appeared to have been

just initiated (source: [20] — see text for more details).

improve prediction accuracy as well as model interpreta-
tion, even with sparsely sampled protein signaling curves.

For systems biology approaches to succeed, modeling and
experimental approaches must be highly integrated, and
for models to provide worthwhile information, experi-
ments must be designed so as to maximize the capabilities
of the computational methods. The RAW 264.7 single and
double-ligand AfCS data used in this study presents two
issues of note in this regard. One issue is the use of com-
pletely different cell cultures for the collection of signaling

protein phosphorylation state and cytokine secretion
data. While the effects of this can presumably be moni-
tored with a sufficient number of samples, this may raise
questions in downstream analysis. Perhaps of even greater
concern is the finding that in approximately 80% of exper-
iments, the concentration of an applied stimulant used for
the induction of protein phosphorylation was not the
same concentration of stimulant used to induce a
cytokine response. Thus stimuli conditions across experi-
ments cannot be matched, leading to a significant reduc-
tion in the total amount of useable data. One would also

Page 10 of 14

(page number not for citation purposes)



Journal of Molecular Signaling 2008, 3:11

Signaling dynamics of MK2 (kinase activity) in cells treated with 100 ng/ml TNF
60 T T T T

W IS
S S
L L

Protein activity

N
S
L

10 1

0 L L |
0 5 10 15 20 25

Time (hour)

Figure 6

Measured activity of protein kinase MK2. Example of a
I3 time point activity curve of the signaling dynamics of MK2
in HT-29 cells treated with 100 ng/ml TNF (Data from [4]).

expect that the lack of matching stimuli concentrations
would generate significant errors in downstream predic-
tions. As evidence of this, when we ignore differences in
input concentrations and the complete set of data is used
to develop a model for the prediction of RANTES output,
we find that the quality of predictions is quite poor with
an RZvalue of 0.31. With time-dependent signaling met-
rics, using the appropriately matched data sets only how-
ever, gives us the ~0.65 value described in this paper. The
set of high-scoring VIP variables would also be expected to
be biased, identifying incorrect variables as being key
modulators of system behavior. While the original design
of experiments may not have had computational analyses
of data in mind, such computation-experiment design
seriously impacts the broader utility of such data. Future
efforts in this area will benefit greatly from building upon
lessons learned in these still relatively new forays into sys-
tems biology.

Materials and methods

Data

RAW 264.7 single and double-ligand screen data were
obtained from the AfCS Data Center. After applying single
or double-ligand stimuli, phosphorylation changes of 21
signaling proteins were measured at 1, 3, 10 and 30 min-
utes, intracellular cAMP concentrations were measured at
20, 40, 90, 300 and 1200 seconds, and extracellular
cytokine concentrations were measured at 2, 3 and 4
hours after initial stimulation [20].

Data pre-processing
Since the concentrations for many ligands were different
between the protein phosphorylation and cytokine secre-

http://www.jmolecularsignaling.com/content/3/1/11

tion experiments, the AfCS data were first filtered to select
matched ligand-stimulus conditions. From a total of 253
stimulant conditions, including both single and double-
ligand stimuli, this filtering resulted in 55 conditions
where the input stimuli concentration was identical for
both the phosphorylation and cytokine experiments.
These 55 conditions were then used in subsequent analy-
ses [see Additional file 2 for details].

Protein phosphorylation data measuring a total of 55
stimulant conditions (including both single and double-
ligand stimulus) was used to construct a predictor matrix
(independent block). Note that cAMP data was not used
in this analysis as it was only measured under a highly
limited set of stimulant conditions (35 out of the original
253 stimulating conditions). For phosphorylation data, a
fold change over baseline was first calculated [20] and the
natural logarithm was subsequently taken. Since most
measurements had at least three replicates, a four time-
point time course defined as the mean signal at each time
point was obtained for each protein. To extract as much
information on the temporal dynamics as possible, we
defined 11 time-dependent signaling metrics (Table 1)
from each protein's time course, resulting in a 231-dimen-
sional signaling space. Each time-dependent metric (for
example, the log-transformed fold change of STAT5 at 1
min) was then divided by its standard deviation calcu-
lated across all stimulant conditions so as to maintain the
relative variation in the data. For comparison purposes, a
time-averaged predictor matrix was constructed for each
protein by averaging across both replicates and time
points. Thus for each protein, a unit-variance scaled single
measurement was obtained under each ligand stimulus
condition.

Seven cytokines (G-CSF, IL-1¢, IL-6, IL-10, MIP-1¢,
RANTES and TNFea) with an average signal-to-noise ratio
higher than five were chosen for further analysis (as in
[7]). A predicted vector (dependent block) was con-
structed for each cytokine as follows. For each cytokine, 1
was added to both the baseline and the measured concen-
trations, and then a fold change over the baseline was cal-
culated prior to the natural logarithm transformation.
Finally, a unit-variance scaled three time-point time
course was obtained for each cytokine.

We also looked at whether the greater number of time
points/metrics was responsible for the improved perform-
ance shown in [4], a work which also used PLS to model
nearly identical data types. To do this, we performed an
equivalent analysis of the data in [4] and focused on the
effect of removing sampled timepoints, in various num-
bers and combinations, from the original protein activity/
signaling curves - e.g., generate a PLS model based on
only the first four time points and associated metrics.
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Note that, during the generation of peak metrics (AUC,
activation slope and decay rate of each peak), we only
consider the two most significant peaks for a given time
course. As in [4], no log transformations of the data were
performed.

Partial least squares regression

PCR models were constructed in Matlab (Mathworks Inc.)
with PLS models being constructed via the SIMPLS algo-
rithm [21] using the PLS toolbox (Eigenvector Research).

Ten-fold cross-validation was performed to select the opti-
mum number of latent variables used in the regression
models. For each cytokine output response, the dataset
was split into ten equally sized folds/subsets. A regression
model was then constructed using all but one of the sub-
sets (calibration-step) using up to 100 model compo-
nents. This model was then used to estimate the samples
in the left-out fold [22]. After iteration through all ten sub-
sets, the RMSEs of both the calibration and the cross-vali-
dation were then plotted as functions of the number of
LVs used. Normally, the calibrated RMSE decreases
monotonically, but the RMSECV should be minimized
with a certain number of latent variables, from which the
optimal number of LVs may be determined for each
cytokine. The squared Pearson correlation coefficients
between the predicted and measured cytokine values, R?,
were also computed for each cytokine to assess the quality
of the prediction. This approach was mirrored in the PCR
analysis where cross-validation was also performed to
determine the ideal number of PCs and the R? value for
each cytokine prediction.

Dimension reduction and model averaging

When assigning significance to each explanatory predictor
(e.g., AUC for STAT3) in the model, the VIP score of each
predictor is usually computed from the PLS regression
model. These VIP scores estimate the importance of each
predictor variable used in the PLS model and are often
used to select those predictors that are most influential in
a given output response [23]. If a predictor has a small VIP
score, it is considered to be a prime candidate for removal
from the final regression model. By removing less impor-
tant variables from the model and keeping those that are
of predictive value, we can obtain sufficient prediction
accuracy while simultaneously minimizing the number of
variables within the model that need to be measured.

To reduce the prediction bias and the likelihood of over-
fitting, we again used cross-validation to obtain test sam-
ples that were different from training samples. By doing
this, a more realistic estimate of the prediction error can
be obtained. In this work, M = 10 PLS models were con-
structed through a 10-fold cross-validation procedure for
each cytokine. Each generated model (derived from a par-

http://www.jmolecularsignaling.com/content/3/1/11

ticular set of test data) has its own level of prediction accu-
racy. In practice, however, often no single candidate
model is obviously superior to the others. More difficult
to reconcile is the case where VIP score profiles differ
markedly across all candidates' models, making it inap-
propriate to select vital predictors based on a single candi-
date model. As a result, in this work we computed a
weighted VIP score to select important signaling metrics
based on all ten PLS models using a simple and efficient
model averaging approach for each cytokine (described
below). By performing model averaging and then select-
ing only the most influential variables, we are able to cre-
ate meaningful "minimal" models that are able to predict
the cytokine output response with good accuracy.

Assuming all models have normally distributed residual
errors with a constant variance, an adjusted small sample
Akaike's Information Criterion (AIC) score was deter-
mined for each model from least squares regression statis-
tics [24,25]:

A

AIC,, = Nlogo, + 2K + N_Ko1

-, M)
where K is the number of estimated regression parame-
ters, N is the number of stimulant conditions and
N 22

2iz1%m,i

G2 = =" and éni(i=1,++,N) are the estimated

residuals for the mth candidate model. For a given
cytokine, since the same number of LVs was assumed for
all candidate models and all ten subsets have the same
size, K is the same for all models. Hence, the adjusted
small sample AIC is proportional to:

AIC,, = Nlogo(m=1,---,M)

To allow a quick comparison and ranking of candidate
models, the difference between AIC scores was computed
over all candidate models and for each cytokine as

A,, = AIC,, — min AIC,(m=1,---,M)
ismsM
To better interpret the relative likelihood of each candi-
date model, the Akaike weight for each model is deter-
mined by [26,27]:

oBm /2

O, =
2%=1 e_Am / 2

(m=1,---, M)

m

where the Akaike weight ®,, represents the evidence in
favor of the mth candidate model being the best Kullback-
Leibler (K-L) model. Note that this assumes that one of
the M models is also the K-L best model.
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For a given PLS regression model, the VIP score for the kth
signaling metric is computed as:

2

we .
m,ik

SSm,i
PyR

1 2
[wm, il
S SSm

VIP,, ), =

where m = 1, U, M; k = 1, U, P, P is the number of total
signaling metrics, w,, ; is the weight of the kth metric for
the ith latent variable in the mth model, R is the number
of LVs, and SS,, ;is the sum of squares explained by the ith
LV in the mth model [28]. The weighted VIP score is then
determined by:

M wpvip?

wVIP, = N m,k (k=1,---,P)
m=1%9m

Since the average of the squared weighted VIP scores
equals one, important metrics were defined as any signal-
ing metric with a weighted VIP score greater than 1.
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Segment diagrams of the squared weighted VIP profile for G-CSF, IL-
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were generated through a 10-fold cross validation and then a weighted
VIP score was computed as described in Materials and Methods to select
important signaling metrics. A segment plot was produced for each pro-
tein, with the radial length of each segment indicating the magnitude of
the squared weighted VIP score for individual metrics. VIP scores greater
than 1 (dashed circle) are classified as significant metrics for each
cytokine.
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Experimental conditions used in model creation. These conditions were
identical for both protein phosphorylation state and cytokine output
response measurements. Abbreviations: 2MA — 2-Methyl-thio-ATP; IFA -
Interferon-alpha; IL-6 — Interleukin-6; ISO — Isoproterenol; LPA — Lyso-
phosphatidic acid; LPS - Lipopolysaccharide; PAF — Platelet Activating
Factor; PGE - Prostaglandin E2; S1P - Sphingosine-1-phosphate; UDP
- Uridine 5'-diphosphate.
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