
COLLECTION:  

REPRESENTING THE 

ANCIENT WORLD 

THROUGH DATA

DATA PAPER

CORRESPONDING AUTHOR:
Danlu Chen

Computer Science and 
Engineering, UC San Diego, 
La Jolla, US

dac013@ucsd.edu

KEYWORDS:
cuneiform; machine learning; 
computational paleography; 
image processing

TO CITE THIS ARTICLE:
Chen, D., Agarwal, A., Berg-
Kirkpatrick, T., & Myerston, J. 
(2023). CuneiML: A Cuneiform 
Dataset for Machine Learning. 
Journal of Open Humanities 
Data, 9: 30, pp. 1–9. DOI: 
https://doi.org/10.5334/
johd.151

CuneiML: A Cuneiform 
Dataset for Machine 
Learning

DANLU CHEN 

ADITI AGARWAL 

TAYLOR BERG-KIRKPATRICK 

JACOBO MYERSTON 

*Author affiliations can be found in the back matter of this article

ABSTRACT
The cuneiform writing system holds a vast reservoir of ancient literature, encompassing 
over 3000 years of history. Originating around the mid-fourth millennium BCE and 
enduring until the late first millennium BCE, cuneiform writing spans various genres 
such as administrative, legal, medical, and scientific documents, among others. This 
article introduces a curated dataset, CuneiML, featuring 38,947 high-resolution 2D 
photos of Sumerian and Akkadian cuneiform tablets, accompanied by their cuneiform 
Unicode transcriptions, transliterations, lineart, and metadata. This dataset aims to 
support the development of machine learning tools for processing and analyzing 
Sumerian and Akkadian cuneiform artifacts – e.g. for automatically classifying genre, 
provenance, or period from unannotated tablet images. Thus, CuneiML is designed 
with consistency of format as a primary concern. Specifically, CuneiML is a result of 
meticulously preprocessing, segmenting, filtering, and re-transliterating data that is 
available online in the Cuneiform Digital Library Initiative (CDLI) collection.
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1 INTRODUCTION
In this article we present a curated dataset of 38,947 2D photographs of Sumerian and Akkadian 
cuneiform tablets with their accompanying transcriptions in cuneiform Unicode – as well as 
lineart, transliterations, and metadata specifying attributes like period and genre. In contrast to 
the data provided by digital libraries which offer general access to cuneiform texts, our dataset 
was envisioned from the very beginning for machine learning with an emphasis on consistency 
of format. Therefore, we developed our dataset with strict preprocessing and filtering criteria 
and present preliminary baseline experiments for three classification tasks supported by our 
data: period, provenance, and genre prediction, conditioned on major face cutouts from tablet 
photographs.

The CuneiML dataset was produced by processing photographs and transliterations available 
online in the Cuneiform Digital Library Initiative (CDLI) (Englund et al., 2023). This library gives 
access to 56,694 photographs of inscribed objects classified by time period, genre, provenance, 
and museum collection. Current digitized cuneiform archives like CDLI were designed as portals 
where experts can consult photographs of inscribed objects (tablets, seals, inscriptions, etc.), 
transliterations, dictionaries, and other working tools. Although the CDLI is an extraordinary 
resource which has proven to be of invaluable use for Assyriologists, it offers its data in a format 
not suitable for machine learning experiments. CDLI photographs are of varied quality: some 
are high-resolution while others do not meet the minimum requirements for machine learning 
tasks. In addition, CDLI images are composite; this means they contain multiple perspectives 
of the same object: front, back and sides of tablets (see Figure 1). Another issue is that the 
transliterations of Sumerian and Akkadian that accompany CDLI images are missing their 
rendering into cuneiform Unicode. These aspects make the CDLI data unsuitable for machine 
learning. Thus, with machine learning in mind, we have meticulously filtered and processed 
the CDLI corpus, isolating the most salient fragments of 38,947 high resolution composite 
images and have tokenized and converted the Latin transliterations of Sumerian and Akkadian 
into cuneiform Unicode. This latter part of the dataset retains the original polysemy of the 
cuneiform sign, a feature that neural network architectures like transformers are capable of 
capturing (Garí Soler & Apidianaki, 2021).

Although 3D scans are preferable to 2D photographs, to our knowledge there is only one 
existing Open Access 3D dataset of cuneiform tablets, which is limited in size and the historical 
periods. The Hilprecht – Heidelberg Cuneiform Benchmark Dataset for the Hilprecht Collection 
(HeiCuBeDa), contains 3D scans of only 1,977 tablets, which are limited to merely four historical 
periods, namely, Ed IIIb (ca. 2500-2340 BCE), UR III (2100-2000 BCE), Old Assyrian (ca. 1950-
1850 BCE), and Old Babylonian (1900-1600 BCE) (Bogacz & Mara, 2020). In an ideal world, all 
cuneiform tablets in museums would be 3D scanned, but such a scenario is not foreseeable 
in the near future. Based on existing photographs that have been collected by museums and 
scholars, our data provide a 20 times larger number of tablets covering almost the entire history 

Figure 1 An overview of 
CuneiML. An example tablet of 

ID 453248 with multi-modal 
data: (1) Metadata consist 
of time period, provenience, 
genre and measurement. 
(2) High-resolution 2d 
photograph of 6 faces. (3) 
Lineart from paleographers. 
(4) Latin transliteration 
directly downloaded 
from CDLI. (5) Cuneiform 
Unicode transcription we 
automatically converted 
from the Latin transliteration. 
(6) Major face cutouts 
automatically processed from 
the 2d photograph.
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of cuneiform writing, as well as richer metadata information, linearts (hand drawings made by 
modern scholars), and transcriptions into cuneiform Unicode.

Our dataset supports the development of a variety of machine learning tools – for example, the 
training and evaluation of automatic classifiers for predicting period, genre, or provenance from 
an artifact’s photograph, its Unicode transcription, or a transliteration of that transcription; but 
also, development of – for example – end-to-end automatic transcription systems from lineart 
or photograph (Gutherz, Gordin, Sáenz, Levy, & Berant, 2023). Next, we provide summary info 
for our dataset, followed by a description of how it was collected and processed. Finally, we 
include initial experiments with baseline classifiers on three classification tasks supported by 
our dataset.

2 DATASET DESCRIPTION
As we stated in the introduction, our aim is to curate a dataset that can support the development 
of novel machine learning tools for cuneiform. Our data consist of composite 2d photographs of 
tablets, as well as their major face cutouts, lineart, transliteration, transcription into cuneiform 
Unicode, and metadata. An example is shown in Figure 1. We also plot the histograms for time 
period (Figure 2), genre and provenience.

Figure 2 Number of tablets 
by metadata attributes: time 
period, genre, and provenance.
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2.1 SUMMARY

Below, we provide a brief summary of metadata for CuneiML:

Object name CuneiML_v1.0.tar.gz, tran.

Format names and versions JPEG and JSON.

Creation dates 2023-09-01

Dataset creators Danlu Chen, Aditi Agarwal, Taylor Berg-Kirkpatrick, Jacobo Myerston.

Language Sumerian and Akkadian.

License CC BY-NC 4.0.

Repository name https://doi.org/10.5281/zenodo.8307503

Publication date 2023-09-01

3 METHODS
Our processing methods for dataset creation break down into several phases. First, we 
systematically scrape composite 2D photographs, transliterations, and artifact metadata for all 
artifacts represented in CDLI. Next, we process the composite 2D photographs in order to split 
them into images of individual tablet faces. Finally, we develop a set of de-transliteration rules 
for converting each transliteration into Unicode. Throughout this process, we automatically 
filter out unusual and rare forms of artifacts that could introduce spurious correlations into the 
prediction tasks supported by our dataset. In the next sections, we describe each phase of the 
pipeline in more detail. For implementation details, please checkout the code repository https://
github.com/taineleau/CuneiML.

3.1 DOWNLOADING THE METADATA FROM CDLI

We used the CDLI Github repository1 to get the public catalog data containing a list of 
P-numbers for all tablets. “P-number” is a 6 digit unique identifier prefixed with the letter P, 
used to uniquely identify a tablet by the CDLI initiative. Using the P-number for every tablet we 
then crawl 2D images,2 lineart images3 and metadata4 including transliteration from CDLI. We 
gathered a total of 133,923 tablets from CDLI, of which 56,694 come with a 2D scan image and 
52,637 come with a lineart image.

3.2 DATA SAMPLING AND FILTERING

Most 2D photographs from CDLI are high-resolution color images showing six faces of a single 
tablet. Since our goal is to create a dataset for training and evaluating machine learning 
systems, consistency is paramount: if non-standard examples are included (e.g. black and 
white images when the majority of the dataset is in full color), machine learning systems may 
learn to leverage these features as false predictors (e.g. if most black and white images tend 
to come from the same period due to how they were collected, a classifier will learn to depend 
on this spurious correlation). Thus, we filtered out non-standard and low-quality and images 
according to several conditions:

•	 The image is black-and-white.

•	 The resolution of image is lower than 100*100 px.

•	 The tablet is in poor condition, e.g. too many fragments or barely readable cuneiform.

•	 The image does not contain a well-defined major face.

1 https://github.com/cdli-gh/data.

2 https://cdli.mpiwg-berlin.mpg.de/dl/photo/P000001.jpg.

3 https://cdli.mpiwg-berlin.mpg.de/dl/lineart/P000001_l.jpg.

4 https://cdli.mpiwg-berlin.mpg.de/artifacts/1/json.

https://doi.org/10.5281/zenodo.8307503
https://github.com/taineleau/CuneiML
https://github.com/taineleau/CuneiML
https://github.com/cdli-gh/data
https://cdli.mpiwg-berlin.mpg.de/dl/photo/P000001.jpg
https://cdli.mpiwg-berlin.mpg.de/dl/lineart/P000001_l.jpg
https://cdli.mpiwg-berlin.mpg.de/artifacts/1/json
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We also filtered out artifact type such as cone, cylinder and prism and only keep entries 
whose artifact type is tablet. After this processing, we eventually have 38, 947 tablets with 
high quality 2D images.

3.3 CUTTING OUT THE MAJOR FACES

An additional issue for machine learning development arises from the variability of the imaging 
setup used to capture the raw composite photographs from CDLI. While the majority of 
composite photographs consist of six tablet faces, arranged in a fixed layout from a consistent 
camera angle, these properties vary to some extent based on when and where imaging was 
performed. In order to increase consistency, and therefore reduce the danger of overfitting to 
false correlations that are dependent on the imaging process itself, we systematically extract 
cutouts of the major tablet face in each composite and include this as an additional, more 
consistent, photographic representation for machine learning systems. Specifically, we build 
and test three different computer vision methods to segment and obtain individual faces of 
each tablet. As a way of validating and producing final extractions, we reconcile differences 
between the bounding boxes each system produces by computing the area of their overlap. 
When the area is large, the methods are in agreement and our output is reliably high-quality. 
The three methods are described briefly as follows.

1. Connected component segmentation. We first convert the images into black and 
white where the background is black. This is a classical rule-based segmentation that 
clusters the adjacent pixels with the same color. TWe use OpenCV’s implementation 
cv.connenctedComponents().

2. Watershed segmentation. We first convert the images to grayscale. The watershed 
algorithm views a greyscale image as a topographic surface where high intensities 
denote hills while low intensities denote a valleys. Each valley is labelled with a different 
color of water. As the water rises, unknown pixels will be colored and therefore clustered. 
We use OpenCV’s implementation cv.watershed().

3. SegmentAnything. This is the state-of-the-art general segmentation algorithm using 
neural networks. We uses the official toolkit5 (Kirillov et al., 2023) with default model 
weights to obtain cutouts.

Quality checking We automatically cut the images using three methods and only keep tablet 
cutouts whose overlapping area is larger than 90%. We sampled 100 images randomly to 
validate the cutouts; 97% met our quality requirements. Figure 3 shows a sample of 20 major 
cutouts produced by our algorithm.

3.4 CONVERTING TRANSLITERATION TO CUNEIFORM UNICODE

CDLI and ORACC offer transliterations of cuneiform tablets, which are sometimes but not 
always accompanied by their photographs and linearts. The transliteration standard used in 
both projects is called ATF and is explained in detail in the ORACC’s website.6 Transliteration 
is the process of transcribing cuneiform signs into the Latin alphabet, using conventions 
which have varied over time and can take particular shapes according to various 
Assyriological projects. But, despite its possible inconsistencies, transliteration has played 

5 https://github.com/facebookresearch/segment-anything.

6 http://oracc.museum.upenn.edu/doc/help/editinginatf/cdliatf/index.html.

Figure 3 A random sample of 
20 major face cutouts.

https://github.com/facebookresearch/segment-anything
http://oracc.museum.upenn.edu/doc/help/editinginatf/cdliatf/index.html
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a crucial role in making Akkadian and Sumerian more accessible to the non-specialist; 
it has also facilitated the creation of dictionaries and critical editions. From the point of 
view of data processing, transliteration is also important because it reveals how modern 
scholars read certain signs that allow multiple interpretations. In this sense, transliteration 
is a form of disambiguation. Take for example the sign 𒀭𒀭 that can read as “sky” or “god” 
but can also be interpreted as the syllables an or il. This issue of interpretation occurs 
with many cuneiform signs that need to be disambiguated so that modern editors can 
stabilize what seems to them the most plausible reading of a text. A final example may 
serve to further illustrate this point. In the well-known Epic of Creation or Enūma eliš, the 
mother of the gods’ name is often spelled with the signs TI and GÉME, a combination of 
signs that is usually transliterated as Ti-amat and rendered into English as Tiamat. Now, 
this transliteration somewhat conceals that the goddess is the Sea, something that can 
be expressed more directly if one transliterates TI GÉME as ti-amtu, the “sea” in Akkadian. 
Thus, transliteration implies a reduction of possible choices which were present for an 
ancient audience, but which are concealed to modern readers that use latinized editions 
of cuneiform texts.

One possible issue if we use the transliteration directly for machine learning, is circular 
reasoning. Given that the transliteration itself might exhibit bias towards specific time periods 
and other attributes – e.g., an expert’s approach to transliterating a tablet is already influenced 
by preconceived notions about its time period. Thus, as an additional layer in our dataset, 
we produce and provide cuneiform Unicode conversions of the original Latin transliterations. 
Specifically, we follow the ATF convention to remove some of the editorial marks, tokenize, 
and map the transliteration into machine-readable cuneiform Unicode format. We use 
cuneifyplus7 to map the Latin transliteration to cuneiform Unicode. If a latinized sign is not 
processed, we then query eBL’s sign list8 to obtain the cuneiform Unicode. We briefly describe 
the rules here.

1. Uncertainty. The query (?) placed after a grapheme indicates uncertainty and the 
asterisk (*) indicates a collated reading. We remove the marks but keep the grapheme by 
default.

2. Breakage. The $ sign represents breakage, sometimes also indicating how many lines are 
broken. If the number is recorded, we insert the same number of <LB>. E.g. 2 lines broken 
→ <BREAK><LB><BREAK><LB>. Moreover, the annotation [...] indicates missing signs. We 
also insert a special token <BREAK> to indicate the missing content.

3. Compound words. We remove the markers of compound words. E.g. |SU.KUR| → su-
kur.

4. Reading. sudx(|SU.KUR|) means the reading is sudx, while the signs are su-kur; we 
remove the reading and only keep the actual signs for tokenization.

Quality checking

We downloaded and extracted a dataset with human annotated transliteration-transcription 
pairs from the Akkademia project9 to use as a validation reference for our method. We take 
2,719 lines of the human-labeled Latin transliteration/cuneiform Unicode transcription 
pairs. We run our program to tokenize and convert the transliteration into the Unicode 
transcription and obtain 99% character accuracy against the reference.

4 POTENTIAL USAGE AND TASKS
As described above, each cuneiform tablet in CuneiML comes with multiple layers of information 
across several modalities. The potential usages of this dataset for machine learning development 
can be roughly split into unimodal and multi-modal tasks (the possible inputs and outputs from 

7 https://github.com/tpgillam/cuneifyplus.

8 https://www.ebl.lmu.de/signs.

9 https://github.com/gaigutherz/Akkademia.

https://github.com/tpgillam/cuneifyplus
https://www.ebl.lmu.de/signs
https://github.com/gaigutherz/Akkademia
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cuneiML are summarized in Table 1). Beyond the more standard classification tasks like period, 
genre, and provenance prediction, we suggest several additional examples of potential tasks 
that our dataset can support. This list is not intended to be exhaustive.

UNIMODAL TASKS

•	 Language modeling. One of the most popular and broadly useful machine learning 
applications is to train a language model on text in a given domain. Language models 
trained on our dataset could be used to encode cuneiform Unicode for further processing 
and analysis, or as a generative prior in related downstream tasks like transcription and 
restoration (Assael et al., 2022; Lazar et al., 2021).

•	 Transliteration. As mentioned above, there are multiple ways to transliterate the same 
cuneiform sign sequence. Gordin et al. (2020) proposed several models, inculding HMMs 
and LSTMs, to automatically transliterate and segment Unicode cuneiform glyphs. Our 
dataset could be used as further training or validation data for this task.

•	 Lineart generation. Analogously, in the image modality, there are potential use cases for 
automatically “translating” photographic representations into lineart, which potentially 
increases the readability of tablets to scholars. This task is structurally similar to image 
generation tasks in the broader field of computer vision. Following similar techniques, 
CuneiML could be used to train neural models (Isola, Zhu, Zhou, & Efros, 2017; Rombach, 
Blattmann, Lorenz, Esser, & Ommer, 2022) capable of accurate lineart generation 
conditioned on a tablet image.

Multi-modal tasks

•	 Attribute prediction. Our dataset supports training and evaluating classifiers for 
predicting metadata based on images or lineart. The attributes in the metadata include 
geographical, genre, and chronological attribution (Bogacz & Mara, 2020).

•	 Sign identification / automatic transcription. A useful, but particularly challenging 
task that our data supports is automatic transcription of tablet images or lineart into 
cuneiform Unicode text. There is very little text line annotation data for cuneiform tablets. 
Even with line-level annotations, the task is much harder than documents written on 
paper. Recently, new page-level end-to-end OCR systems (Coquenet Chatelain, & Paquet, 
2023) have been developed that are capable of high-accuracy transcription of more 
modern languages without line-level annotation. The lineart-cuneiform Unicode parallel 
data presented in our dataset is an ideal testbed for extending these techniques to more 
ancient languages.

In the following section, we present preliminary results on attribute prediction tasks using major 
face images, cuneiform Unicode and Latin transliteration in order to demonstrate a specific use 
case of our dataset for machine learning.

5 PRELIMINARY EXPERIMENTS WITH ATTRIBUTE PREDICTION
We analyze the task of attribute prediction for cuneiform and present the results on an image 
classification baseline using deep neural networks. We take three different types of attributes 
(time period, provenance, and genre) and treat each separately as a target output for an 
automatic classifier. As shown in Figure 2, the distribution of these attributes are imbalanced 

TASK NAME INPUT OUTPUT

Language Modeling (4)(5) (4)(5)

Transliteration (5) (4)

Lineart generation (2)(6) (3)

Attribute prediction (2)(3)(4)(5)(6) (1)

Sign identification (2)(3)(6) (5) 

Table 1 Task summary with 
possible input and output 
pairs. (1) Metadata consist 
of time period, provenience, 
genre and measurement. (2) 
High-resolution 2d photograph 
of 6 faces. (3) Lineart from 
paleographers. (4) Latin 
transliteration (5) Cuneiform 
Unicode transcription. (6) 
Major face cutouts.
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and long-tailed; therefore, we discard classes whose number of examples are less than 50. We 
then split the data randomly into training, validation and testing sets with a ratio of {.9, .05, 
.05}. In all cases, our image classifier is a pretrained version of ResNet-101 that we continue to 
optimize on our training set. For the textual features, we train a two-layer LSTMs from scratch.

RESULT AND ANALYSIS

Table 2 shows the result of attribute prediction using three different type of input as features. 
We can see that the image baseline model achieves reasonable accuracy on all three types 
of attributes. The preliminary results demonstrate the effectiveness of our data for training 
machine learning systems that make predictions based in tablet images and further 
underscore the difficulty of provenience and genre attribution. Note that the major face cutout 
features seem to have the overall best performance, but it is possible that lighting and camera 
configurations influence the classification of a tablet. Furthermore, label imbalance and the 
distribution shift between the training and testing sets remain significant challenges in cuneiML. 

Further research and analysis are necessary to assess the reliability of the predicted results.
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