
Chen, Z, et al. 2019 pydiffusion: A Python Library for Diffusion
Simulation and Data Analysis. Journal of Open Research
Software, 7: 13. DOI: https://doi.org/10.5334/jors.255

Journal of
open research software

SOFTWARE METAPAPER

pydiffusion: A Python Library for Diffusion Simulation
and Data Analysis
Zhangqi Chen, Qiaofu Zhang and Ji-Cheng Zhao
Department of Materials Science and Engineering, The Ohio State University, College Road, Columbus, OH, US
Corresponding author: Ji-Cheng Zhao (zhao.199@osu.edu)

pydiffusion is a free and open-source Python library designed to solve diffusion problems for both single-
phase and multi-phase binary systems. The key features of pydiffusion include fast simulation of multi-
phase diffusion and extraction of diffusion coefficients from experimental concentration profiles using
forward simulation analysis. pydiffusion also provides various mathematical models for diffusion profile
smoothing, diffusion coefficient evaluation, and data optimization. In pydiffusion, diffusion profiles and
various phases are easy to define or read from the experimental datasets. Visualization tools based on
Matplotlib are also provided to help users present or refine their simulations and analysis.

Keywords: diffusion; simulation; Python; diffusion coefficients
Funding statement: The development of pydiffusion is supported by the US National Science Foundation
(NSF) under Grant number CMMI-1333999, and it is part of an NSF Designing Materials to Revolutionize
and Engineer our Future (DMREF) project.

(1) Overview
Introduction
Diffusion is the transport of matter from one point to
another by thermal motion of atoms or molecules [1]. It
is one of the fundamental processes in nature. Diffusion
in solids was firstly discovered by Roberts Austen in the
late 19th century. Since then, various theories and models
have been established to describe solid-state diffusion.
Tremendous amount of diffusion data has been collected
to better understand and predict diffusion associated
phenomena such as precipitation, homogenization,
solidification and creep deformation. In the past decades,
many computational tools [2, 3] are powerful enough to
handle complex simulation problems. A fast and stable
simulation tool can help researchers understand and
optimize diffusion processes in materials.

As one of the fundamental properties in materials, diffu-
sion coefficients are essential inputs for the establishment of
mobility database and Integrated Computational Materials
Engineering (ICME) [4] based material design and process
optimization. Many high-throughput approaches [5] have
been developed to establish various materials databases and
accelerate materials design. Forward simulation analysis
(FSA) is a powerful approach to extract diffusion coefficient
data from diffusion couple experiments [6, 7]. It has been
applied to various diffusion systems and has demonstrated
its robustness over the last several years [8–13].

The pydiffusion software package is an open-source
Python library designed to simulate diffusion and analyse

diffusion data using various mathematical and simulation
models. Compared to commercialized simulation software
like DICTRA [2] and PanDiffusion [3], pydiffusion focuses
on simulation with diffusion coefficients data instead of
mobility databases. The key feature of pydiffusion includes
fast simulation of multi-phase systems and extraction
of diffusion coefficients from experimental profiles.
pydiffusion also provides easy constructors for diffusion
systems and profile objects, which makes it easy to learn
and perform diffusion simulations and data analysis quickly.

Implementation and architecture
The general architecture of pydiffusion is depicted in
Figure 1. Diffusion profile and diffusion coefficients
are the two basic objects in diffusion studies. They
are represented as DiffProfile and DiffSystem
object respectively in pydiffusion. The process from
DiffSystem to DiffProfile is a diffusion simulation,
the reversed process is diffusion coefficient (D̃) extraction.
Users can read/save DiffProfile and DiffSystem
from/to csv files or plot them directly.

DiffProfile
The DiffProfile object is the fundamental represen
tation of diffusion concentration profile data in pydiffusion.
It includes the information of 1-dimensional (1D) grids with
distance and composition data. For multi-phase diffusion
profile, the positions of phase boundaries/interfaces are
also included.

https://doi.org/10.5334/jors.255
mailto:zhao.199@osu.edu

Chen et al: pydiffusionArt. 13, page 2 of 7

There are many types of profile data in diffusion
analysis. For experimental raw data, DiffProfile can
be constructed by providing composition and distance
data. For the initial profile data used for a simulation,
step() method is usually used to construct a step
profile based on pre-constructed grids. 1D grids can be
constructed using the mesh() function, which provides
nonlinear/linear meshing of 1-dimensional grids. For
convenience, pydiffusion also provides save_csv()
and read_csv() methods to save/read DiffProfile
to/from csv format files.

DiffSystem
The DiffSystem is a representation of diffusion
coefficients data of a binary system. For each phase within
the binary diffusion system, the DiffSystem includes
its solubility range and a function representing its
compositional dependence of interdiffusion coefficients,
where spline functions are usually used. The DiffSystem
can be constructed with a given spline function for each
phase. User can also construct the DiffSystem with
solubilities and diffusion coefficient data.

Like DiffProfile, save_csv() and read_csv()
can save/read DiffSystem as well. Users can choose
to either save DiffProfile and its corresponding
DiffSystem together within one csv file or save them
separately.

mphSim()
mphSim() is the core diffusion simulation method within
pydiffusion. Its functionality is to use given diffusion
coefficients to simulate diffusion process for a certain
amount of time. The keyword arguments of mphSim() are
def mphSim(profile, diffsys, time, liquid=0,
output=True, name=’’)

profile is the initial DiffProfile before simulation,
diffsys is the DiffSystem during simulation, time
is the diffusion time in seconds and liquid gives the
position of liquid phase in the current geometry. By
default, liquid=0 means there is no liquid phase during
simulation. liquid=1/-1 is corresponding to liquid
phase attached to left/right of the current geometry. The
mphSim() method returns the simulation result as a
DiffProfile object.

Within a single phase, diffusion can be simulated using
the finite difference method based on Fick’s two diffusion
laws:

	 ,
dC dC dJ

J D
dx dt dx

=− =− � Eq. 1

For a binary diffusion system with multiple phases, phase
boundary/interface is controlled by moving boundary
condition:

	 If
J Jdx

v
dt C C

a b
ab

a b

-
= =

-
� Eq. 2

In mphSim(), phase boundaries/interfaces are
independent from simulation grids, i.e. not attached
to any grids, the geometry nearby a phase interface is
illustrated in Figure 2. The sharp interface model is used
so a phase interface is a point with no width. There are two
composition values Cα and Cβ assigned to each interface,
which corresponds to the solubility limits of two adjacent
phases α and β. The phase interface can move across any
simulation grids following Eq. 2. Once a simulation grid is
passed by an interface, it will be assigned to the adjacent
phase.

Figure 1: General architecture of the pydiffusion package.

Chen et al: pydiffusion Art. 13, page 3 of 7

To ensure stability, the simulation time step Δt must
be strictly under control. In every simulation loop within
mphSim(), time step Δt is limited by the following three
rules:

1.	 Within every phase, von Neumann analysis [14] gives
the upper limit of simulation time step to prevent
simulation instability.

		
2

2
d

t
D

Δ < � Eq. 3

	 In which d is the grid size, D̃ is the interdiffusion
coefficient.

2.	� Each phase interface can pass by one grid at most
after each loop. The purpose of this rule is to help
arrange grids easier by the end of each simulation
loop.

3.	� For the grids nearby phase boundaries, the two rules
above cannot keep their composition values within
their solubility limits. An additional rule must be
assigned. In Figure 2, CA < Cα and CB < Cβ must be
ensured after applying Fick’s 2nd law, which is:

	

A
A A A

B
B B B

J J
C C C t C

d
J J

C C C t C
d

α
α

β
β

Δ Δ

Δ Δ

−
+ = − ⋅ <

−
+ = − ⋅ > � Eq. 4

So Δt must satisfy:

	

()

()

 only if

 only if

A
A

A

B
B

B

C C d
t J J

J J

C C d
t J J

J J

α
α

α

β
β

β

Δ

Δ
−

<
−

>
−

>

−
<

� Eq. 5

In diffusion with a liquid phase attached, diffusion
coefficients in liquid phase (~5 × 10–9m2/s) is extremely
high in comparison with a solid phase. Therefore,
liquid can only be attached to the end of the geometry
in mphSim(), which is controlled by the liquid
parameter. During simulation, the liquid phase only
provides a diffusion flux at the phase boundary/interface.

For diffusion simulations with thin films, users can
setup the initial profile with a very thin phase on the
left/right. mphSim() will delete such phase once it is
consumed during simulation.
mphSim() can handle most of diffusion simulation for

complex systems with multiple phases. For easy simulation of
single-phase systems, users can also use sphSim() method,
in which moving boundary condition is not considered.

datasmooth()
The datasmooth() function is responsible for
smoothing experimental diffusion profile data. Better
quality of diffusion coefficients can be extracted using

Figure 2: Configuration nearby an interface on simulation grids. The dash line denotes the interface at location xIf.
The height of each dot represents the concentration value (C) at each grid and the interface. Connecting those dots,
yielding the solid curve, is the concentration profile during simulation. The arrows represent the mass flux J between
adjacent grids.

Chen et al: pydiffusionArt. 13, page 4 of 7

Sauer-Freise equation [15] afterwards. datasmooth()
uses moving average method to smooth diffusion profiles.
For multi-phase systems, data within different phases are
smoothed separately. Then sharp phase interfaces will
be created between two adjacent phases to obtain more
accurate solubility information of the multiple phases.
This step is very important especially for diffusion systems
in which diffusion coefficients change dramatically among
the various phases [8, 9, 16]. datasmooth() function
returns smoothed data as a DiffProfile object with
much more grids compared with original one, which is
done by interpolation after data smoothing.

Dmodel()
The Dmodel() function is used to create a DiffSystem
object based on smoothed profile by the datasmooth()
function. The output of DiffSystem will be used as the
initial diffusion coefficients of upcoming FSA. Dmodel()
will ask users to model each phase consequently. There
are two interpolation methods to choose to represent
the composition dependence of diffusion coefficients:
splrep() and UnivariateSpline(), both of
which belongs to the scipy.interpolate module.
UnivariateSpline() is useful for smoothed data,
while splrep() is suitable for more scattering data.

FSA()
FSA() represents the forward simulation analysis, which
can extract interdiffusion coefficients from raw diffusion
profile data [6, 7]. Its keyword arguments are
def FSA(profile_exp, profile_sm, diffsys, time,
Xlim=[], n=[400, 500], w=None, name=’’)

in which, profile_exp is the DiffProfile contains
raw experimental data, profile_sm is the output of
datasmooth() on profile_exp, diffsys is a
DiffSystem object represents initial guess of diffusion
coefficients, which is usually the output of Dmodel(),
and time is diffusion time in seconds. A step profile is
used as initial profile for every simulation, Xlim is used as
the composition values of the two ends if provided.

In FSA, diffsys is used to simulate a diffusion
process through mphSim() method and compared
with profile_exp repeatedly. After each simulation,
diffsys is modified using Dadjust() method. The
difference between simulation and profile_exp will
be calculated through comparing their concentration
values at all grids. Once the difference is small enough,
the simulation will stop. The final diffsys after several
modifications will be output as FSA result.

Because mphSim() will be applied several times within
FSA(), an accurate and efficient simulation is required
for the FSA() method. Before the first simulation, grids
will be arranged efficiently to accelerate all simulation
runs. Based on Eq. 3, lower D̃ requires smaller grid size
while higher D̃ affords larger grid size, so that higher
time step Δt can be assigned to each simulation loop.
Therefore, the simulation grid size d follows d ∝ Dα based
on profile_sm, in which α is a constant with a default
value of 0.3 which has been tested well in various systems.
This meshing process can be done by automesh()

method. In FSA’s keyword arguments, n is an integer
list with length 2 which indicates the minimum and
maximum number of grids produced by automesh().
More grids will help perform simulation with more details
but at the expense of lower speed.

Parameter w is a list whose length equals to the number
of phases. It provides the weights used to calculate
differences between simulation and experimental profile
profile_exp. By default, all phases have the same
weight. This parameter is useful when diffusion data of
multiple phases have different accuracy.
FSA()uses Dadjust() function to adjust diffsys

after each simulation run. Users may select from Phase
Mode and Point Mode to adjust diffusion coefficients
during FSA. Phase Mode only increases or decreases all
diffusion coefficients D̃ together within one phase, and
the shape of D̃ doesn’t change after adjustment. The Point
Mode adjusts selected points across the solubility range
individually; In other words, both the magnitude and
shape of D̃ curve changes. Compared to the Point Mode,
the Phase Mode has less degree of freedom but higher
stability.

Quality control
The core simulation mechanism in pydiffusion was
developed in 2013 by Zhang and Zhao [6]. Diffusion
simulation is hard to perform especially for those
systems with multiple phases or highly composition
dependent diffusion coefficients, such as Ti-(Mo,Nb,Ta),
Cu-Zn and Mg-Al. Compared with the original Matlab
implementation, pydiffusion has much higher stability
and efficiency on simulating those binary systems. Usually,
mphSim() function can complete a diffusion simulation
within 30 seconds using default settings. For systems with
highly composition dependent diffusion coefficients, the
pydiffusion simulation speed is hundreds of times faster
than the original Matlab code. In addition, the diffusion
profiles simulated using pydiffusion also have much
greater details, especially for thin-layer with extremely
slow diffusion. This is due to the advanced meshing
approach implemented in the pydiffusion package.

Sauer-Freise equation [15] is one of the approaches to
extract interdiffusion coefficients from diffusion profiles. It
is also a good validation for simulation reliability. Figure 3
shows this validation using diffusion coefficient data of
the Ni-Mo system at 1100°C [6]. Solid line is the diffusion
coefficients (DiffSystem) used in the simulation,
while crosses represent Sauer-Freise calculation results
based on simulated profile. We can observe that the
original diffusion coefficients and Sauer-Freise results
are almost identical. The deviation at two ends are
unavoidable in simulations with finite difference method.
The reproducible diffusion coefficients demonstrate the
robustness of pydiffusion.

FSA has been applied to many alloy systems for the past
several years [6, 8]. Figure 3 illustrates the comparison
between simulation and experimental data as a testing
result of FSA(). Extracted diffusion coefficients is
shown in Figure 3 for the Ni-Mo diffusion couple that
was annealed at 1100°C for 800 h. Good agreements

Chen et al: pydiffusion Art. 13, page 5 of 7

between simulation and raw data in Figure 3 validates
the robustness of FSA in pydiffusion. pydiffusion has
utilized FSA to extract reliable diffusion coefficients from
various types of experiments, such as liquid-solid diffusion
couples [17], two-step annealing diffusion multiples [9],
and thin film diffusion couples [18].

(2) Availability
Operating system
pydiffusion can run on Linux, OSX or Windows with
supported version of Python installed.

Programming language
Python 3.5+

Additional system requirements
None.

Dependencies
NumPy [19]
SciPy [19]
Pandas [20]
Matplotlib [21]

List of contributors
•	 Zhangqi Chen – Development and Testing
•	 Qiaofu Zhang – Development of an FSA matlab code

(precursor of pydiffusion)
•	 Ji-Cheng Zhao – Project supervision

Software location
Archive

Name: Zenodo
�Persistent identifier: https://doi.org/10.5281/
zenodo.1473778

Figure 3: (a) Comparison of the input interdiffusion coefficients (lines) for the Ni-Mo system to mphSim() with those
obtained by applying the Sauer-Freise method to the simulated profile (crosses); (b) Comparison between simulated
diffusion profile (line) and experimental profile (open circles) of a Ni/Mo diffusion couple after being annealed at
1100ºC for 800 h.

https://doi.org/10.5281/zenodo.1473778
https://doi.org/10.5281/zenodo.1473778

Chen et al: pydiffusionArt. 13, page 6 of 7

Licence: MIT
Publisher: Zhangqi Chen
Version published: 0.1.6
Date published: 01/11/18

Code repository
Name: GitHub
�Identifier: https://github.com/zhangqi-chen/pydiffusion
Licence: MIT
Date published: 01/11/18

Language
English

(3) Reuse potential
As the core functionality of pydiffusion, diffusion
simulation and diffusion coefficient evaluation are very
useful in materials research and development, especially
for diffusion (mobility) database establishment and ICME-
based materials design. Because a diffusion system is easy
to define in pydiffusion, researchers can also utilize the
simulation tools in this package to estimate diffusion
length and phase growth for their future experiments.
pydiffusion also provides various functions to help
diffusion analysis, such as Matano plane calculation,
the Hall method [22] to estimate the impurity diffusion
coefficients, et al.

More features will be added to the pydiffusion package
in the future to provide more simulation and analysis tools.
For example, the functions to implement 2-dimenstional
(2D) numerical simulations will be provided to simulate
diffusion in 2D. Various thermodynamics and kinetics
modelling tools based on CALPHAD approach will also be
included in pydiffusion so that users can perform mobility
assessment using various diffusion datasets. These features
will make pydiffusion a general and convenient tool to
perform efficient and accurate diffusion data analysis and
forward simulations.

New users can find example documentation in the
repository, which illustrates usage of the core functions in
pydiffusion. Example datasets and scripts are also provided.
All methods in pydiffusion provide full explanations in
their documentation strings. Users who are interested in
collaboration or seeking technical support are welcome to
contact authors by email.

Competing Interests
The authors have no competing interests to declare.

References
1.	 Glicksman, M E 2000 Diffusion in Solids: Field Theory,

Solid-State Principles, and Applications, Wiley.
2.	 Borgenstam, A, Höglund, L, Ågren, J and

Engström, A 2000 DICTRA, a tool for simulation
of diffusional transformations in alloys. J. Phase
Equilibria, 21: 269–280. DOI: https://doi.
org/10.1361/105497100770340057

3.	 Chen, S-L, Cao, W-S, Zhang, F, Zhang, C, Zhu, J and
Zhang, J-Y 2013 Development of a computational tool

for materials design. Adv. Manuf., 1: 123–129. DOI:
https://doi.org/10.1007/s40436-013-0021-6

4.	 Allison, J, Backman, D and Christodoulou, L 2006
Integrated computational materials engineering: A
new paradigm for the global materials profession. JOM,
58: 25–27. DOI: https://doi.org/10.1007/s11837-006-
0223-5

5.	 Zhao, J-C 2006 Combinatorial approaches as effective
tools in the study of phase diagrams and composition–
structure–property relationships. Prog. Mater.
Sci., 51: 557–631. DOI: https://doi.org/10.1016/j.
pmatsci.2005.10.001

6.	 Zhang, Q and Zhao, J-C 2013 Extracting interdiffusion
coefficients from binary diffusion couples using
traditional methods and a forward-simulation
method. Intermetallics, 34: 132–141. DOI: https://doi.
org/10.1016/j.intermet.2012.11.012

7.	 Zhang, Q, Chen, Z, Zhong, W and Zhao, J-C 2017
Accurate and efficient measurement of impurity
(dilute) diffusion coefficients without isotope tracer
experiments. Scr. Mater., 128: 32–35. DOI: https://doi.
org/10.1016/j.scriptamat.2016.09.040

8.	 Zhang, Q and Zhao, J-C 2014 Impurity and
interdiffusion coefficients of the Cr–X (X = Co, Fe,
Mo, Nb, Ni, Pd, Pt, Ta) binary systems. J. Alloys Compd.,
604: 142–150. DOI: https://doi.org/10.1016/j.
jallcom.2014.03.092

9.	 Chen, Z, Liu, Z-K and Zhao, J-C 2018 Experimental
determination of impurity and interdiffusion
coefficients in seven Ti and Zr binary systems using
diffusion multiples. Metall. Mater. Trans. A., 49: 3108–
3116. DOI: https://doi.org/10.1007/s11661-018-4645-9

10.	Zhong, W and Zhao, J-C 2017 First reliable diffusion
coefficients for Mg-Y and additional reliable diffusion
coefficients for Mg-Sn and Mg-Zn. Metall. Mater. Trans.
A., 48: 5778–5782. DOI: https://doi.org/10.1007/
s11661-017-4378-1

11.	Vivès, S, Bellanger, P, Gorsse, S, Wei, C, Zhang, Q
and Zhao, J-C 2014 Combinatorial approach based
on interdiffusion experiments for the design of
thermoelectrics: Application to the Mg2 (Si,Sn) alloys.
Chem. Mater., 26: 4334–4337. DOI: https://doi.
org/10.1021/cm502413t

12.	Liu, Y, Liu, D, Du, Y, Liu, S, Kuang, D, Deng, P,
Zhang, J, Du, C, Zheng, Z and He, X 2017 Calculated
interdiffusivities resulting from different fitting
functions applied to measured concentration profiles
in Cu-rich fcc Cu-Ni-Sn alloys at 1073 K. J. Min.
Metall. Sect. B Metall., 53: 255–262. DOI: https://doi.
org/10.2298/JMMB170626022L

13.	Delhaise, A M and Perovic, D D 2018 Study of solid-
state diffusion of Bi in polycrystalline Sn using electron
probe microanalysis. J. Electron. Mater., 47: 2057–2065.
DOI: https://doi.org/10.1007/s11664-017-6011-x

14.	Hoffman, JD and Frankel, S 2001 Numerical Methods
for Engineers and Scientists, CRC Press.

15.	Sauer, F and Freise, V 1962 Diffusion in binären
gemischen mit volumenänderung. Zeitschrift Für
Elektrochemie, Berichte Der Bunsengesellschaft Für Phys.

https://github.com/zhangqi-chen/pydiffusion
https://doi.org/10.1361/105497100770340057
https://doi.org/10.1361/105497100770340057
https://doi.org/10.1007/s40436-013-0021-6
https://doi.org/10.1007/s11837-006-0223-5
https://doi.org/10.1007/s11837-006-0223-5
https://doi.org/10.1016/j.pmatsci.2005.10.001
https://doi.org/10.1016/j.pmatsci.2005.10.001
https://doi.org/10.1016/j.intermet.2012.11.012
https://doi.org/10.1016/j.intermet.2012.11.012
https://doi.org/10.1016/j.scriptamat.2016.09.040
https://doi.org/10.1016/j.scriptamat.2016.09.040
https://doi.org/10.1016/j.jallcom.2014.03.092
https://doi.org/10.1016/j.jallcom.2014.03.092
https://doi.org/10.1007/s11661-018-4645-9
https://doi.org/10.1007/s11661-017-4378-1
https://doi.org/10.1007/s11661-017-4378-1
https://doi.org/10.1021/cm502413t
https://doi.org/10.1021/cm502413t
https://doi.org/10.2298/JMMB170626022L
https://doi.org/10.2298/JMMB170626022L
https://doi.org/10.1007/s11664-017-6011-x

Chen et al: pydiffusion Art. 13, page 7 of 7

Chemie, 66: 353–362. DOI: https://doi.org/10.1002/
bbpc.19620660412

16.	Zhu, L, Zhang, Q, Chen, Z, Wei, C, Cai, G-M,
Jiang, L, Jin, Z and Zhao, J-C 2017 Measurement of
interdiffusion and impurity diffusion coefficients in
the bcc phase of the Ti–X (X = Cr, Hf, Mo, Nb, V, Zr)
binary systems using diffusion multiples. J. Mater.
Sci., 52: 3255–3268. DOI: https://doi.org/10.1007/
s10853-016-0614-0

17.	Zhong, W and Zhao, J-C 2017 First experimental
measurement of calcium diffusion in magnesium
using novel liquid-solid diffusion couples and forward-
simulation analysis. Scr. Mater., 127: 92–96. DOI:
https://doi.org/10.1016/j.scriptamat.2016.09.008

18.	Delhaise, A M, Chen, Z and Perovic, D D 2018
Solid-state diffusion of Bi in Sn: effects of β-Sn grain

orientation. J. Electron. Mater., 8. DOI: https://doi.
org/10.1007/s11664-018-6621-y

19.	van der Walt, S, Colbert, S C and Varoquaux,
G 2011 The NumPy array: A structure for efficient
numerical computation. Comput. Sci. Eng., 13: 22–30.
DOI: https://doi.org/10.1109/MCSE.2011.37

20.	McKinney, W 2010 Data structures for statistical
computing in Python. Proc. 9th Python Sci. Conf.,
1697900, 51–56. http://conference.scipy.org/
proceedings/scipy2010/mckinney.html.

21.	Hunter, J D 2007 Matplotlib: A 2D graphics
environment. Comput. Sci. Eng., 9: 90–95. DOI:
https://doi.org/10.1109/MCSE.2007.55

22.	Hall, L D 1953 An analytical method of calculating
variable diffusion coefficients. J. Chem. Phys., 21: 87.
DOI: https://doi.org/10.1063/1.1698631

How to cite this article: Chen, Z, Zhang, Q and Zhao, J-C 2019 pydiffusion: A Python Library for Diffusion Simulation and Data
Analysis. Journal of Open Research Software, 7: 13. DOI: https://doi.org/10.5334/jors.255

Submitted: 04 December 2018 Accepted: 02 April 2019 Published: 23 April 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://doi.org/10.1002/bbpc.19620660412
https://doi.org/10.1002/bbpc.19620660412
https://doi.org/10.1007/s10853-016-0614-0
https://doi.org/10.1007/s10853-016-0614-0
https://doi.org/10.1016/j.scriptamat.2016.09.008
https://doi.org/10.1007/s11664-018-6621-y
https://doi.org/10.1007/s11664-018-6621-y
https://doi.org/10.1109/MCSE.2011.37
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1063/1.1698631
https://doi.org/10.5334/jors.255
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	DiffProfile
	DiffSystem
	mphSim()
	datasmooth()
	Dmodel()
	FSA()

	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3

