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pydiffusion is a free and open-source Python library designed to solve diffusion problems for both single-
phase and multi-phase binary systems. The key features of pydiffusion include fast simulation of multi-
phase diffusion and extraction of diffusion coefficients from experimental concentration profiles using 
forward simulation analysis. pydiffusion also provides various mathematical models for diffusion profile 
smoothing, diffusion coefficient evaluation, and data optimization. In pydiffusion, diffusion profiles and 
various phases are easy to define or read from the experimental datasets. Visualization tools based on 
Matplotlib are also provided to help users present or refine their simulations and analysis.
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(1) Overview
Introduction
Diffusion is the transport of matter from one point to 
another by thermal motion of atoms or molecules [1]. It 
is one of the fundamental processes in nature. Diffusion 
in solids was firstly discovered by Roberts Austen in the 
late 19th century. Since then, various theories and models 
have been established to describe solid-state diffusion. 
Tremendous amount of diffusion data has been collected 
to better understand and predict diffusion associated 
phenomena such as precipitation, homogenization, 
solidification and creep deformation. In the past decades, 
many computational tools [2, 3] are powerful enough to 
handle complex simulation problems. A fast and stable 
simulation tool can help researchers understand and 
optimize diffusion processes in materials.

As one of the fundamental properties in materials, diffu-
sion coefficients are essential inputs for the establishment of 
mobility database and Integrated Computational Materials 
Engineering (ICME) [4] based material design and process 
optimization. Many high-throughput approaches [5] have 
been developed to establish various materials databases and 
accelerate materials design. Forward simulation analysis 
(FSA) is a powerful approach to extract diffusion coefficient 
data from diffusion couple experiments [6, 7]. It has been 
applied to various diffusion systems and has demonstrated 
its robustness over the last several years [8–13].

The pydiffusion software package is an open-source 
Python library designed to simulate diffusion and analyse 

diffusion data using various mathematical and simulation 
models. Compared to commercialized simulation software 
like DICTRA [2] and PanDiffusion [3], pydiffusion focuses 
on simulation with diffusion coefficients data instead of 
mobility databases. The key feature of pydiffusion includes 
fast simulation of multi-phase systems and extraction 
of diffusion coefficients from experimental profiles. 
pydiffusion also provides easy constructors for diffusion 
systems and profile objects, which makes it easy to learn 
and perform diffusion simulations and data analysis quickly.

Implementation and architecture
The general architecture of pydiffusion is depicted in 
Figure 1. Diffusion profile and diffusion coefficients 
are the two basic objects in diffusion studies. They 
are represented as DiffProfile and DiffSystem 
object respectively in pydiffusion. The process from 
DiffSystem to DiffProfile is a diffusion simulation, 
the reversed process is diffusion coefficient (D̃) extraction. 
Users can read/save DiffProfile and DiffSystem 
from/to csv files or plot them directly.

DiffProfile
The DiffProfile object is the fundamental represen
tation of diffusion concentration profile data in pydiffusion. 
It includes the information of 1-dimensional (1D) grids with 
distance and composition data. For multi-phase diffusion 
profile, the positions of phase boundaries/interfaces are 
also included.
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There are many types of profile data in diffusion 
analysis. For experimental raw data, DiffProfile can 
be constructed by providing composition and distance 
data. For the initial profile data used for a simulation, 
step() method is usually used to construct a step 
profile based on pre-constructed grids. 1D grids can be 
constructed using the mesh() function, which provides 
nonlinear/linear meshing of 1-dimensional grids. For 
convenience, pydiffusion also provides save_csv() 
and read_csv() methods to save/read DiffProfile 
to/from csv format files.

DiffSystem
The DiffSystem is a representation of diffusion 
coefficients data of a binary system. For each phase within 
the binary diffusion system, the DiffSystem includes 
its solubility range and a function representing its 
compositional dependence of interdiffusion coefficients, 
where spline functions are usually used. The DiffSystem 
can be constructed with a given spline function for each 
phase. User can also construct the DiffSystem with 
solubilities and diffusion coefficient data.

Like DiffProfile, save_csv() and read_csv() 
can save/read DiffSystem as well. Users can choose 
to either save DiffProfile and its corresponding 
DiffSystem together within one csv file or save them 
separately.

mphSim()
mphSim() is the core diffusion simulation method within 
pydiffusion. Its functionality is to use given diffusion 
coefficients to simulate diffusion process for a certain 
amount of time. The keyword arguments of mphSim() are
def mphSim(profile, diffsys, time, liquid=0, 
output=True, name=’’)

profile is the initial DiffProfile before simulation, 
diffsys is the DiffSystem during simulation, time 
is the diffusion time in seconds and liquid gives the 
position of liquid phase in the current geometry. By 
default, liquid=0 means there is no liquid phase during 
simulation. liquid=1/-1 is corresponding to liquid 
phase attached to left/right of the current geometry. The 
mphSim() method returns the simulation result as a 
DiffProfile object.

Within a single phase, diffusion can be simulated using 
the finite difference method based on Fick’s two diffusion 
laws:

	 ,         
dC dC dJ
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dx dt dx

=− =− � Eq. 1

For a binary diffusion system with multiple phases, phase 
boundary/interface is controlled by moving boundary 
condition:
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In mphSim(), phase boundaries/interfaces are 
independent from simulation grids, i.e. not attached 
to any grids, the geometry nearby a phase interface is 
illustrated in Figure 2. The sharp interface model is used 
so a phase interface is a point with no width. There are two 
composition values Cα and Cβ assigned to each interface, 
which corresponds to the solubility limits of two adjacent 
phases α and β. The phase interface can move across any 
simulation grids following Eq. 2. Once a simulation grid is 
passed by an interface, it will be assigned to the adjacent 
phase.

Figure 1: General architecture of the pydiffusion package.
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To ensure stability, the simulation time step Δt must 
be strictly under control. In every simulation loop within 
mphSim(), time step Δt is limited by the following three 
rules:

1.	 Within every phase, von Neumann analysis [14] gives 
the upper limit of simulation time step to prevent 
simulation instability.

		
2

2
d
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D

Δ < � Eq. 3

	 In which d is the grid size, D̃ is the interdiffusion 
coefficient.

2.	� Each phase interface can pass by one grid at most 
after each loop. The purpose of this rule is to help 
arrange grids easier by the end of each simulation 
loop.

3.	� For the grids nearby phase boundaries, the two rules 
above cannot keep their composition values within 
their solubility limits. An additional rule must be 
assigned. In Figure 2, CA < Cα and CB < Cβ must be 
ensured after applying Fick’s 2nd law, which is:
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In diffusion with a liquid phase attached, diffusion 
coefficients in liquid phase (~5 × 10–9m2/s) is extremely 
high in comparison with a solid phase. Therefore, 
liquid can only be attached to the end of the geometry 
in mphSim(), which is controlled by the liquid 
parameter. During simulation, the liquid phase only 
provides a diffusion flux at the phase boundary/interface.

For diffusion simulations with thin films, users can 
setup the initial profile with a very thin phase on the 
left/right. mphSim() will delete such phase once it is 
consumed during simulation.
mphSim() can handle most of diffusion simulation for 

complex systems with multiple phases. For easy simulation of 
single-phase systems, users can also use sphSim() method, 
in which moving boundary condition is not considered.

datasmooth()
The datasmooth() function is responsible for 
smoothing experimental diffusion profile data. Better 
quality of diffusion coefficients can be extracted using 

Figure 2: Configuration nearby an interface on simulation grids. The dash line denotes the interface at location xIf. 
The height of each dot represents the concentration value (C) at each grid and the interface. Connecting those dots, 
yielding the solid curve, is the concentration profile during simulation. The arrows represent the mass flux J between 
adjacent grids.
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Sauer-Freise equation [15] afterwards. datasmooth() 
uses moving average method to smooth diffusion profiles. 
For multi-phase systems, data within different phases are 
smoothed separately. Then sharp phase interfaces will 
be created between two adjacent phases to obtain more 
accurate solubility information of the multiple phases. 
This step is very important especially for diffusion systems 
in which diffusion coefficients change dramatically among 
the various phases [8, 9, 16]. datasmooth() function 
returns smoothed data as a DiffProfile object with 
much more grids compared with original one, which is 
done by interpolation after data smoothing.

Dmodel()
The Dmodel() function is used to create a DiffSystem 
object based on smoothed profile by the datasmooth() 
function. The output of DiffSystem will be used as the 
initial diffusion coefficients of upcoming FSA. Dmodel() 
will ask users to model each phase consequently. There 
are two interpolation methods to choose to represent 
the composition dependence of diffusion coefficients: 
splrep() and UnivariateSpline(), both of 
which belongs to the scipy.interpolate module. 
UnivariateSpline() is useful for smoothed data, 
while splrep() is suitable for more scattering data.

FSA()
FSA() represents the forward simulation analysis, which 
can extract interdiffusion coefficients from raw diffusion 
profile data [6, 7]. Its keyword arguments are
def FSA(profile_exp, profile_sm, diffsys, time, 
Xlim=[], n=[400, 500], w=None, name=’’)

in which, profile_exp is the DiffProfile contains 
raw experimental data, profile_sm is the output of 
datasmooth() on profile_exp, diffsys is a 
DiffSystem object represents initial guess of diffusion 
coefficients, which is usually the output of Dmodel(), 
and time is diffusion time in seconds. A step profile is 
used as initial profile for every simulation, Xlim is used as 
the composition values of the two ends if provided.

In FSA, diffsys is used to simulate a diffusion 
process through mphSim() method and compared 
with profile_exp repeatedly. After each simulation, 
diffsys is modified using Dadjust() method. The 
difference between simulation and profile_exp will 
be calculated through comparing their concentration 
values at all grids. Once the difference is small enough, 
the simulation will stop. The final diffsys after several 
modifications will be output as FSA result.

Because mphSim() will be applied several times within 
FSA(), an accurate and efficient simulation is required 
for the FSA() method. Before the first simulation, grids 
will be arranged efficiently to accelerate all simulation 
runs. Based on Eq. 3, lower D̃ requires smaller grid size 
while higher D̃ affords larger grid size, so that higher 
time step Δt can be assigned to each simulation loop. 
Therefore, the simulation grid size d follows d ∝ Dα based 
on profile_sm, in which α is a constant with a default 
value of 0.3 which has been tested well in various systems. 
This meshing process can be done by automesh() 

method. In FSA’s keyword arguments, n is an integer 
list with length 2 which indicates the minimum and 
maximum number of grids produced by automesh(). 
More grids will help perform simulation with more details 
but at the expense of lower speed.

Parameter w is a list whose length equals to the number 
of phases. It provides the weights used to calculate 
differences between simulation and experimental profile 
profile_exp. By default, all phases have the same 
weight. This parameter is useful when diffusion data of 
multiple phases have different accuracy.
FSA()uses Dadjust() function to adjust diffsys 

after each simulation run. Users may select from Phase 
Mode and Point Mode to adjust diffusion coefficients 
during FSA. Phase Mode only increases or decreases all 
diffusion coefficients D̃ together within one phase, and 
the shape of D̃ doesn’t change after adjustment. The Point 
Mode adjusts selected points across the solubility range 
individually; In other words, both the magnitude and 
shape of D̃ curve changes. Compared to the Point Mode, 
the Phase Mode has less degree of freedom but higher 
stability.

Quality control
The core simulation mechanism in pydiffusion was 
developed in 2013 by Zhang and Zhao [6]. Diffusion 
simulation is hard to perform especially for those 
systems with multiple phases or highly composition 
dependent diffusion coefficients, such as Ti-(Mo,Nb,Ta), 
Cu-Zn and Mg-Al. Compared with the original Matlab 
implementation, pydiffusion has much higher stability 
and efficiency on simulating those binary systems. Usually, 
mphSim() function can complete a diffusion simulation 
within 30 seconds using default settings. For systems with 
highly composition dependent diffusion coefficients, the 
pydiffusion simulation speed is hundreds of times faster 
than the original Matlab code. In addition, the diffusion 
profiles simulated using pydiffusion also have much 
greater details, especially for thin-layer with extremely 
slow diffusion. This is due to the advanced meshing 
approach implemented in the pydiffusion package.

Sauer-Freise equation [15] is one of the approaches to 
extract interdiffusion coefficients from diffusion profiles. It 
is also a good validation for simulation reliability. Figure 3 
shows this validation using diffusion coefficient data of 
the Ni-Mo system at 1100°C [6]. Solid line is the diffusion 
coefficients (DiffSystem) used in the simulation, 
while crosses represent Sauer-Freise calculation results 
based on simulated profile. We can observe that the 
original diffusion coefficients and Sauer-Freise results 
are almost identical. The deviation at two ends are 
unavoidable in simulations with finite difference method. 
The reproducible diffusion coefficients demonstrate the 
robustness of pydiffusion.

FSA has been applied to many alloy systems for the past 
several years [6, 8]. Figure 3 illustrates the comparison 
between simulation and experimental data as a testing 
result of FSA(). Extracted diffusion coefficients is 
shown in Figure 3 for the Ni-Mo diffusion couple that 
was annealed at 1100°C for 800 h. Good agreements 
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between simulation and raw data in Figure 3 validates 
the robustness of FSA in pydiffusion. pydiffusion has 
utilized FSA to extract reliable diffusion coefficients from 
various types of experiments, such as liquid-solid diffusion 
couples [17], two-step annealing diffusion multiples [9], 
and thin film diffusion couples [18].

(2) Availability
Operating system
pydiffusion can run on Linux, OSX or Windows with 
supported version of Python installed.

Programming language
Python 3.5+

Additional system requirements
None.

Dependencies
NumPy [19]
SciPy [19]
Pandas [20]
Matplotlib [21]

List of contributors
•	 Zhangqi Chen – Development and Testing
•	 Qiaofu Zhang – Development of an FSA matlab code 

(precursor of pydiffusion)
•	 Ji-Cheng Zhao – Project supervision

Software location
Archive

Name: Zenodo
�Persistent identifier: https://doi.org/10.5281/
zenodo.1473778

Figure 3: (a) Comparison of the input interdiffusion coefficients (lines) for the Ni-Mo system to mphSim() with those 
obtained by applying the Sauer-Freise method to the simulated profile (crosses); (b) Comparison between simulated 
diffusion profile (line) and experimental profile (open circles) of a Ni/Mo diffusion couple after being annealed at 
1100ºC for 800 h.

https://doi.org/10.5281/zenodo.1473778
https://doi.org/10.5281/zenodo.1473778
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Licence: MIT
Publisher: Zhangqi Chen
Version published: 0.1.6
Date published: 01/11/18

Code repository
Name: GitHub
�Identifier: https://github.com/zhangqi-chen/pydiffusion
Licence: MIT
Date published: 01/11/18

Language
English

(3) Reuse potential
As the core functionality of pydiffusion, diffusion 
simulation and diffusion coefficient evaluation are very 
useful in materials research and development, especially 
for diffusion (mobility) database establishment and ICME-
based materials design. Because a diffusion system is easy 
to define in pydiffusion, researchers can also utilize the 
simulation tools in this package to estimate diffusion 
length and phase growth for their future experiments. 
pydiffusion also provides various functions to help 
diffusion analysis, such as Matano plane calculation, 
the Hall method [22] to estimate the impurity diffusion 
coefficients, et al.

More features will be added to the pydiffusion package 
in the future to provide more simulation and analysis tools. 
For example, the functions to implement 2-dimenstional 
(2D) numerical simulations will be provided to simulate 
diffusion in 2D. Various thermodynamics and kinetics 
modelling tools based on CALPHAD approach will also be 
included in pydiffusion so that users can perform mobility 
assessment using various diffusion datasets. These features 
will make pydiffusion a general and convenient tool to 
perform efficient and accurate diffusion data analysis and 
forward simulations.

New users can find example documentation in the 
repository, which illustrates usage of the core functions in 
pydiffusion. Example datasets and scripts are also provided. 
All methods in pydiffusion provide full explanations in 
their documentation strings. Users who are interested in 
collaboration or seeking technical support are welcome to 
contact authors by email.
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