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INTRODUCTION

Revolutionary progress in cloud infrastructures, processing 
capabilities in computers, and broadband technology has opened 
new frontiers in information technology.1 As a result, many of these 
technological advances have trickled down into cardiovascular 
imaging. Single photon emission computed tomography, 
cardiac magnetic resonance imaging, and other technologies 
have allowed us to capture more images with each respective 
scan, leading to exponential growth in the complexity and sheer 
size of data.2,3 While this may appear to be a significant step 
forward in medicine, it actually creates a paradox: A surplus of 
information at a physician's disposal can potentially be daunting, 
counterproductive, and lead to profound ramifications in patient 
management.4 This is where artificial intelligence (AI) comes in.

From self-driving cars to voice recognition software such as 
Siri or Alexa, AI has propelled significant developments in 
technology and commercial industries.5 Machine learning (ML), 
a component of AI, will play a paramount role in cardiovascular 
imaging in the years to come.6 The algorithms produced in 
ML can analyze and comprehend a vast expanse of imaging 
data and lead to data-driven discoveries.7 Furthermore, 
they can efficiently automate a number of tasks and provide 
additional insight to physicians.8 By properly harnessing ML in 
cardiovascular imaging, it can reduce the cost and improve the 
quality of care. In this review, we discuss how AI can increase 
the diagnostic and prognostic capabilities of cardiovascular 
imaging and its potential to enhance patient care.

RELEVANCE OF MACHINE LEARNING

Conventional statistics currently play a paramount role in clinical 
trials and studies. However, new data is arising from multiple 

sources—including wearable devices, smartphone apps, and 
electronic medical records.1 As data evolves in complexity, 
magnitude, and dimension, it will exceed the threshold of 
analysis by conventional statistics. Conversely, due to its data-
driven capabilities, the diagnostic performance of ML algorithms 
will increase significantly with more data.9 Unlike traditional 
statistical approaches, ML can unravel hidden relationships 
within the data.10 In addition, certain ML approaches can 
operate independently and provide further insight regarding the 
nature of the data.

One example of this kind of ML-inspired insight is in 
cardiovascular imaging of coronary artery disease (CAD), the 
leading cause of global mortality. Because CAD can trigger 
a number of complications, there has been a progressive 
increase in cardiovascular imaging to predict the occurrence 
of underlying CAD.11 Nevertheless, many of these conditions 
are heterogeneous in nature and can have varied presentations 
depending on the type of imaging modality used.12 A number 
of factors could be responsible for these varied observations, 
and prediction is not a strong suite of conventional statistics.7 In 
contrast, ML algorithms can identify unique patterns or groups 
within large and heterogeneous data.3 By identifying these 
unique subtypes, it can lead to more effective therapies and 
medical management.

TYPES OF MACHINE LEARNING

ML is an umbrella term encompassing a wide variety of 
algorithms that can automatically learn and improve with 
experience. Each of these algorithms has unique properties 
and features (Figure 1),2 and the investigator must determine 
which one is most appropriate for any initiative. ML algorithms 
can be broadly subdivided into supervised, unsupervised, 
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semi-supervised, and reinforcement learning. Among these, 
supervised and unsupervised learning are frequently used.

Supervised learning requires the dataset to have labels and 
clearly defined outcomes for the algorithm to “learn,” whereas 
unsupervised learning can operate independently and identify 
relationships with minimal guidance and without predefined 
datasets.2,6 Semi-supervised learning is a mix of supervised 
and unsupervised learning and works with both labelled and 
unlabeled datasets.3 Reinforcement learning is less commonly 
used and has yet to gain a significant foothold in cardiovascular 
imaging.3 This approach draws comparisons to human 
psychology because it uses rewards criteria for the algorithm to 
execute a desired function in a dataset.

RISE OF DEEP LEARNING

Deep learning (DL) is a type of ML that is programmed with 
large artificial neural networks that mimic the workings of 
the human brain.5 From voice recognition software to self-
driving cars, it is gaining significant prominence in various 
sectors of commercial industry and information technology.13 

The architecture of DL is arranged in a series of layers, with 
information passed from preceding and subsequent layers in 
a dynamic manner. The algorithm learns by processing both 
unstructured and unlabeled data and creating patterns to use 
in decision making.4 Convolutional neural networks (CNN) are 
commonly used in DL for cardiovascular imaging and research.14 
Simply speaking, CNN algorithms broadly encompass a 
convolutional part, which can extract features and recognize 
images, and a fully connected part, which can classify images.4

Transition of Machine Learning to Deep Learning

From an evolutionary standpoint, DL can be seen as the next 
transition point for contemporary algorithms. Compared to other 
ML algorithms, DL improves significantly with larger datasets, 
giving it boundless potential for application in cardiovascular 
imaging.13 Deep learning can analyze and learn from the data 
and then make appropriate decisions,15 whereas traditional ML 
still requires extensive guidance, and engineers may need to 
step in at various points to help the algorithm function properly. 
As stated earlier, DL processes information in layers to create 
a neural network that is independently capable of executing 
decisions.16 An excellent example is Google's AlphaGo DL 
program, which was able to process information and defeat 
renowned players in chess.17 Increasing integration of DL in 
cardiovascular imaging can create clinical pipelines that can aid 
in clinical diagnosis and medical management.17

ROLE OF AI IN ECHOCARDIOGRAPHY

Echocardiography (echo) frequently serves as the first 
line of diagnostic imaging and is indispensable in clinical 
management.18 It is an inexpensive test that provides abundant 
information regarding various pathologies. With the advent 
of speckle tracking, echo provides an array of information 
regarding myocardial function beyond conventional metrics 
such as ejection fraction.19 This vast plethora of information 
allows ML algorithms additional opportunities to analyze various 
clinical entities.

Samad et al. used a random forest algorithm to predict all-
cause mortality in 171,510 patients. A random forest algorithm 
uses a large number of uncorrelated decision trees that 
operate together to form a prediction. Using echocardiographic 
and clinical parameters in over 300,000 patients,20 this ML 
algorithm was able to demonstrate a superior prediction 
model (all AUC > 0.82) compared to clinical risk scores 
(AUC = 0.69 to 0.79) and logistic regression models for all 
survival intervals (P < .001). Khamis et al. used a supervised 
learning ML algorithm to enable spatial-temporal extraction and 
showed that apical two-chamber, four-chamber, and long-axis 
images could achieve accuracies of 97%, 91%, and 97%, 

Figure 1.
Progression of machine learning.
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respectively.21 In another study, Knackstedst et al. demonstrated 
that ML algorithms could accurately compute ejection strain 
and longitudinal strain.22 In addition to the superior speed, 
ML algorithms were able to provide accurate values to visual 
estimation and manual tracing. Narula et al. examined the 
role of an ensemble algorithm for distinguishing hypertrophic 
cardiomyopathy from an athlete's heart. Both volume and mid-
left ventricular segment were found to be the best predictors 
for separating hypertrophic cardiomyopathy and athlete's 
heart.23 Sengupta et al. used an associate memory classifier ML 
algorithm for separating constrictive pericarditis from restrictive 
cardiomyopathy. The diagnostic area under the curve (AUC) 
was 89.2% and 96.2% with echocardiographic parameters and 
63.7% for left ventricular strain.24

Automation of echocardiographic measurements can alter and 
greatly improve the clinical pipelines in various echo labs, saving 
time, reducing costs, and enabling rapid reporting and greater 
accuracy.25 Medvedofsky et al. utilized an automated algorithm 
to measure left atrial and ventricular volumes and ejection 
fraction in 180 patients for 3-dimensional (3D) echo. Strong 
correlations between manual and automated calculations were 
observed (left ventricular end diastolic volume = 0.97, left 
atrial volume = 0.96, and ejection fraction = 0.88).26 Similarly, 
Tsang et al. assessed the role of an automated algorithm for 
3D transthoracic echo evaluation of left ventricular, left atrial, 
and ejection fraction27 and found solid correlations between 
automated and manual (r = 0.89 to 0.96) and CMR (r = 0.84 to 
0.95).

A number of disease subtypes can be deciphered by various 
ML architectures by examining different patterns within 
pathologies.3 In unsupervised ML, clustering is frequently 
used for this purpose. In addition, a number of novel 
algorithms can be used for this purpose. Casaclang-Verzosa 
et al. used a topological data analysis (TDA) to discern patient 
similarity for precise phenotypic recognition of left ventricular 
responses during the natural course of aortic stenosis (AS).28 
The TDA algorithm created a loop that uniquely grouped 
patients with mild and severe AS (P < .0001) on the right and 
left sides. Both components were connected by moderate 
AS, with the upper arm showing patients with reduced 
ejection fractions and the lower arm showing patients with 
preserved ejection fractions (P < .001); these findings 
were corroborated in mice (P < .001). Similarly, Todoki et 
al. used an unsupervised learning approach by integrating 
echocardiographic properties of left ventricular function and 
structure to predict major adverse cardiac events (MACE) in 
866 patients. A loop was created that subdivided patients 
into four groups, and Kaplan Meier curves demonstrated 
significant differences in MACE-related complications 
and death (both P < .001). With the addition of network 

information to clinical risk predictors, there were substantial 
improvements in net regression and median risk scores for 
predicting MACE (P < .05).29

ROLE OF AI IN COMPUTED TOMOGRAPHY

Computed tomography (CT) is a primary diagnostic modality 
for a number of clinical entities.6 It provides a comprehensive 
description of entire coronary artery anatomy, from the presence 
of plaques to stenosis.30 As CT angiography (CTA) is becoming 
increasingly integrated into many diagnostic algorithms, 
this further emphasizes the importance of ML algorithms. 
By analyzing these vast troves of CTA data, ML can provide 
additional insight that can aid in clinical practice.

Motwani et al. compared the role of an ML algorithm to predict 
5-year mortality versus traditional cardiac metrics in CT for 
10,030 patients with supposed CAD.31 Interestingly, the ML 
algorithm showed a substantially higher AUC than CT severity 
scores for 5-year all-cause mortality prediction. Santini et al. 
used a CNN algorithm for classifying and segmenting lesions in 
cardiac CT imaging and demonstrated a Pearson correlation of 
0.983 after adequate training with various CT volumes.32

Baskaran et al. used an ML algorithm for automatic 
segmentation of cardiac structures on computed tomography 
angiography.33 The overall Dice score was 0.932 and was 
consistent across structures. In addition, the automatic 
segmentation took an average of 440 seconds, far quicker than 
manual or semi-automated segmentation. In addition, Baskaran 
et al. used a DL algorithm for assessing cardiovascular 
structures from CTA in 166 patients.34 The combined Dice 
score was 0.9246, and the ML algorithm verified with manual 
annotation for left ventricular volume (r = 0.98), right ventricular 
volume (r = 0.97), left atrial volume (r = 0.78), and right atrial 
volume (r = 0.97) with substantial statistical significance 
(P < .05).

Han et al. explored the role of an ML algorithm for predicting 
rapid coronary plaque progression in 1,083 patients with CTA 
from the Progression of Atherosclerotic Plaque Determined by 
Computed Tomographic Angiography Imaging (PARADIGM) 
registry.35 The ML framework exhibited superior performance 
for identifying patients with rapid coronary plaque progression 
compared with conventional metrics and statistical models (area 
under the receiver operating characteristic curve [ROC] in ML 
model 3 was 0.83 [95% CI, 0.78-0.89] versus 0.60 [0.52-0.67] 
for atherosclerotic cardiovascular disease risk score and 0.74 
[0.68-0.79] for the Duke coronary artery disease score). This 
study, in particular, demonstrates the ability of ML algorithms 
to offer new insights that are currently not possible with clinical 
tools.
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ROLE OF AI IN NUCLEAR CARDIOLOGY

Single photon emission computed tomography (SPECT) 
myocardial perfusion imaging (MPI) enables risk stratification in 
cardiac imaging and is the hallmark test in nuclear cardiology.7 
It encompasses a broad role in cardiovascular imaging by 
providing vital information regarding ventricular function and 
perfusion defects.36 ML algorithms can open new pathways 
in nuclear cardiology for their ability to predict coronary artery 
disease and cardiovascular complications.

Betancur et al. used a DL algorithm to predict CAD events with 
MPI.37 The algorithm clearly showed a higher area under the 
receiver-operating curve than total perfusion deficit (TPD) for 
predicting CAD (per patient: 0.80 vs 0.78; per vessel: 0.76 
vs 0.73: P < .01). The researchers also used a DL algorithm 
to predict CAD occurrence with both semi-upright and supine 
stress MPI relative to TPD.38 The area under the receiver-
operating curve for predicting disease per patient and per 
vessel with an ML algorithm was superior (per patient: 0.81 vs 
0.78; per vessel 0.77 vs 0.73; P < .001). Arsajani integrated 
SPECT imaging with clinical information to predict CAD.39 The 
ROC curve for the ML approach was substantially superior to 
TPD and two readers with considerable significance (P < .001). 
Alonso et al. used a supervised ML algorithm to predict the 
risk of cardiac death with adenosine myocardial perfusion 
SPECT and clinical characteristics in 8,321 patients and 551 
cases of cardiac death.40 The ML framework was substantially 
better than logistic regression (AUC = 0.76; 14 features), and 
demonstrated a higher discriminatory capacity (AUC = 0.83; 
P < .0001; 49 features). Notably, many ML studies to date 
have leveraged the data from databases while multivariable 
logistic regression models—to which ML algorithms are often 
compared—have more limited numbers of variables (eg, 49 vs 
14 features in the Alonso study). Thus, future studies should 
evaluate both approaches equally, using the same type and 
number of features embedded in an ML framework as those 
used in a logistic regression model.

ROLE OF AI IN CARDIAC MAGNETIC RESONANCE IMAGING

Cardiac magnetic resonance (CMR) imaging is heralded as 
the benchmark for noninvasive depiction of ejection fraction 
and ventricular volume.19 Furthermore, CMR facilitates tissue 
characterization and provides excellent temporal and spatial 
resolution.19 As a result, CMR has become instrumental for 
evaluating a number of pathological entities in cardiology. With 
the implementation of ML algorithms, it can expand the existing 
capabilities to greater heights.

Winther et al. found that DL for automatic segmentation of 
the right and left ventricular endocardium and epicardium 

to evaluate cardiac mass and function parameters achieved 
outcomes similar to human counterparts.41 In a similar fashion, 
Tan et al. used DL for automatic segmentation of the left 
ventricle in all short-axis slices in a publicly available datasets.42 
Surprisingly, they achieved a Jaccard index—which measures 
the intersection and union of observed versus predicted 
segmentation—of 0.77 in the left ventricular segmentation 
challenge dataset and demonstrated a continuous ranked 
probability score of 0.0124 with the Kaggle second annual data 
science bowel. Leng et al. demonstrated superior DL-based left 
ventricular contour identification with exceptional agreement 
(r = .975) and fractional area changes (r =.959 to .971) with 
manual tracing.43

POTENTIAL OF AI IN BIG DATA

Big data continues to be a valuable means of providing 
additional clinical insight and is frequently used to improve 
patient care or aid in clinical guidelines (Table 1).44 Although 
it plays an important role, many valuable findings may 
go unrecognized due to the immense scope of captured 
information and the uncertainty of how to handle it. AI can 
have a profound impact in this regard since it can decipher 
a number of key relationships and findings within troves of 
information present. Zhang et al. demonstrated the potential 
of a DL framework for automatic interpretation in 14,035 
echocardiograms over a large time span.45 The algorithm 
identified 96% parasternal long-axis views and facilitated 
cardiac chamber segmentation. In a number of aspects, such 
as the correlation of left atrial and ventricular volumes, the 
automatic measurements outperformed manual measurements. 
Hu et al. examined an ML algorithm for predicting coronary 
revascularization following SPECT MPI in 1,980 patients. 
Per vessel, the AUC for discriminating future coronary 
revascularization by ML framework (AUC 0.79, 95% CI, 0.77-
0.80) was higher than regional stress TPD (0.71) or combined-
view stress TPD (AUC 0.71, 95% CI, 0.69-0.72; P < .001). 
Similarly, for each patient, the AUC was superior to stress or 
ischemic TPD (P < .001).38

Al'Aref et al. used an ML model incorporating clinical 
characteristics with calcium score to predict coronary artery 
events in 35,281 patients from the CONFIRM registry.46 The AUC 
for ML and coronary calcium was superior to Ml alone (0.881 
vs 0.773, P < .005), coronary calcium (0.866), and updated 
Diamond-Forrester score (.682). Han et al. evaluated ML-derived 
prediction of all-cause mortality in 86,155 patients and found the 
AUC (0.82) to be superior to the Framingham risk score, coronary 
artery calcium score (0.74), and atherosclerotic cardiovascular 
disease and coronary calcium score (0.72, P < .05).47 In addition, 
the ML algorithm performed better reclassification in low-to-
intermediate risk individuals (P < .001 for all).
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LIMITATIONS OF MACHINE LEARNING

Although ML has a tremendous impact on clinical prediction, 
it is not without pitfalls.5 A common misconception is that AI 
is “all knowing” or “ready from the get go,” but this is not the 

case. For any ML architecture to thrive, a number of criteria 
must be achieved. Prior to analysis, all ML algorithms must 
first undergo some form of training and a series of iterations 
prior to functioning effectively. Secondly, ML algorithms require 
large datasets for training. It can be a tedious task for smaller 

STUDY MACHINE LEARNING ALGORITHM TYPE OF IMAGING BRIEF STUDY DESCRIPTION

Samad et al. 20 Supervised learning Echocardiography Utilizing clinical and echocardiographic 
variables to predict complications

Khamis et al. 21 Supervised learning Echocardiography To automatically detect correct views on 
echocardiography

Knackstedt et al. 22 Machine learning Echocardiography To automatically calculate ejection fraction 
and longitudinal strain

Casaclang-Verzosa et al. 28 Unsupervised learning Echocardiography To detect unique phenotypes of aortic 
stenosis

Todoki et al. 29 Unsupervised learning Echocardiography Utilizing echocardiographic variables to 
predict MACE complications

Motwani et al. 31 Multiple machine learning 
algorithms

Computed Tomography To estimate 5 year mortality in patients with 
CAD

Santini et al. 32 Deep learning algorithm Computed Tomography To classify and segment lesions on CTA

Baskaran et al. 34 Machine learning algorithm Computed Tomography To perform automatic segmentation of 
structures on CTA

Baskaran et al. 33 Deep learning algorithm Computed Tomography To identify CTA cardiovascular structures

Arasajani et al. Supervised learning algorithm Nuclear Cardiology Integrated echocardiographic and clinical 
characteristics to predict CAD.

Betancur et al. 38 Deep learning Nuclear Cardiology To predict CAD and compare to TPD

Betancur et al. 37 Supervised learning Nuclear Cardiology To estimate the occurrence of MACE events

Winter et al. 41 Deep learning Magnetic Resonance Imaging To automatically calculate right and left 
ventricular mass and volumes

Leng et al. 43 Deep learning Magnetic Resonance Imaging To identify ventricular contours and compare 
with manual tracing

Table 1. 
Description of an array of studies that have leveraged machine learning applications in echocardiography, computed tomography angiography, nuclear imaging, 
and cardiac magnetic resonance imaging.20-22,28,29,31-34,37,38,41,43 CTA: computed tomography angiography; CAD: coronary artery disease; TPD: total perfusion deficit; 
MACE: major adverse cardiac events
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academic centers to obtain and/or organize these datasets,7 
and there is significant cost associated in obtaining and training 
ML algorithms. Furthermore, the findings of ML must be taken 
with caution if applied to smaller datasets, as biases in any 
given population upon which the ML algorithms were trained 
may propagate unpredictably in de novo populations that have 
not been seen by the ML.

The “black box” nature of AI—that is, the fact that AI computing 
systems are not transparent to the user—is another important 
aspect that needs to be considered.3 Even with extensive and 
careful programming, a number of unintentional biases can 
be entered into any model, and this can lead to significant 
ramifications in clinical care. As a result, clinical teams must 
be actively involved in all stages of ML development to ensure 
accurate and safe algorithms for medical care.

Finally, the role of AI in cardiovascular imaging must be 
actionable. Limiting ML applications to segmentation of 
structures may improve efficiency but does not leverage the vast 
potential of ML to identify relationships that are as-yet unknown 
using conventional approaches. Linking ML segmentation 
of cardiovascular imaging with patient-centric outcomes 
will likely maximize the potential for the integration of AI into 
cardiovascular medicine.

THE PROMISE OF MACHINE LEARNING

In this current era of medicine, physicians are facing exorbitant 
workplace demands and rigorous time constraints since there 
are exceedingly high patient volumes in a number of clinical 
institutions.48 In parallel, imaging modalities are becoming 
increasingly complex and offering an excess of information. This 
constant need to multitask and process multidimensional data 
can potentially lead to inadvertent errors in medical judgement.8 
In this regard, ML algorithms can serve as a valuable clinical 

decision support tool for physicians by automating a number of 
tedious or tiring tasks and performing calculations.49 It can also 
provide a number of suitable diagnostic options for physicians 
while allowing them to focus more on the patient and medical 
management (Table 2).45-47,50

Some may fear that AI and ML algorithms may replace physician 
judgment altogether, but this is not likely in the foreseeable 
future. In any ML output, the physician is still responsible for 
evaluating the clinical relevance of the findings. In each patient 
encounter, ML algorithms can assist physicians by integrating 
information arising from multiple sources and analyzing this 
data in real time.2 This will allow them to deliver tailored medical 
regimens designed according to each patient's specific 
needs. In the near future, these algorithms will pave the way 
for precision medicine, which assesses an individual's unique 
disease characteristics rather than surrogate markers of 
population-based risk.

Randomized controlled trials (RCTs) are the benchmark in clinical 
research and frequently dictate guidelines,50 yet a number of 
RCTs are never completed due to deficient power or incomplete 
follow-up. In addition, RCTs may not appropriately enroll the 
proper patient population for the study. These weaknesses can 
hamper the overall findings of related RCTs and their relevance 
to the general community. The integration of AI can potentially 
improve the performance of RCTs by analyzing results of a trial 
and providing investigators a glimpse of the outcomes.50 In turn, 
this information could help investigators restructure their trials to 
become more effective or to measure feasibility. These algorithms 
can also potentially enhance the randomization process by 
incorporating additional characteristics. The integration of AI in 
clinical trials will be pivotal in patient care.

Clinical research is often rigid in nature and guided by 
hypothesis-driven objectives. While this approach is the sine 

STUDY SAMPLE SIZE DESCRIPTION

Zhang et al.45 14,035 To perform automatic interpretation from echocardiography

Al' Aref et al.46 35,821 To estimate the occurrence of CAD by using calcium score and clinical factors

Han et al.47 86,155 To predict all-cause mortality with a number of variables and compare with other metrics

LH et al.50 1,980 To predict coronary revascularization from SPECT MPI

Table 2. 
Summary of studies that have evaluated machine learning algorithms for prediction or automated interpretation.45-47,50 SPECT: single photon emission 
computed tomography; MPI: myocardial perfusion imaging; CAD: coronary artery disease
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qua non of the scientific process, it can overwhelm even the 
most competent clinical investigator due to the sheer amount 
and dimension of collected data (eg, physical exam, laboratory 
testing, imaging, patient-reported outcomes, etc.). Given our 
limited ability to account for the depth and breadth of data 
in large-scale studies that alter a single variable, AI can help 
recognize and interpret critical patterns emerging from these 
various data points.51 To maximize this potential, AI must be 
introduced at earlier stages in a physician's career, such as 
during medical school or residency training,4 and precision 
medicine must be simplified so it can be truly appreciated by the 
medical community. Collaboration between medical societies, 
organizations, and teaching institutions can result in task 
forces and/or guidelines to achieve this purpose, thus allowing 
physicians to tap the potential of AI and direct it towards clinical 
care.

CONCLUSION

AI and ML algorithms will soon represent the critical 
lynchpin connecting patient care and technology. They can 
open new pathways in clinical care by extrapolating hidden 
relationships and performing beyond conventional statistics. 
AI has the potential to greatly expand the diagnostic and 
prognostic capabilities in cardiovascular imaging and 
augment patient care. But as with any new scientific 
development, numerous financial, medical, and social hurdles 
must be overcome to achieve widespread adoption of AI into 
daily clinical care.

KEY POINTS

• Machine learning is a branch of artificial intelligence 
that can be accomplished through supervised learning, 
unsupervised learning, and semi-supervised learning.

• Applications of machine learning in cardiovascular 
imaging include automated segmentation, diagnosis, and 
prognostic risk stratification.

• Machine learning outputs must be carefully considered 
for potential biases and non-generalizability, and machine 
learning algorithms applied to clinical care must be 
actively integrated into our traditional approaches to 
improving patient outcomes.
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