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THE DIGITAL TRANSFORMATION OF HEALTH CARE

Consider this scenario: A busy cardiovascular team is seeing 
an elderly female patient after a hospitalization for congestive 
heart failure. While she has experienced symptoms of heart 
failure, this is her first hospitalization. The care team collects 
pertinent information from the electronic health record such 
as comorbidities, medications, and diagnostic tests. They 
begin to formulate a plan to optimize treatment and suggest 
sensor-based management of pulmonary artery pressure. The 
patient asks several important questions, including: “How will 
the team use this information?” “How do I participate in this 
plan that uses a new technology?” and “Why did I develop 
symptoms of heart failure now?” As the cardiovascular team 
maps a strategy for using technology and data, these questions 
become the focal point for the design of a care coordination 
program that incorporates patient participation, remote patient 
monitoring, and clinical decision support in an effort to improve 
her outcomes. The team also considers what additional data 
would enable a deeper understanding of how the patient's 
cardiovascular function changed over time and how it could 
have better identified her cardiovascular risk.

Despite its ability to generate increasingly large quantities of 
electronic health data, health care continues to be reactive, 

treating a disease only after it is diagnosed. It is well recognized 
that this approach narrows our capacity to implement preventive 
measures and assumes that individuals mimic populations both 
in disease trajectories and in their response to treatments. 
Limited by the constraints of modern care delivery, healthcare 
organizations have yet to develop systematic methods for 
incorporating new digital health technologies into everyday 
practice and delivering care through virtual and remote 
techniques.1 Such technologies include wearable and wireless 
devices (activity monitors, sleep sensors, medication adherence 
devices), smartphone-connected technologies (single/
multiple-lead ECG, handheld ultrasound), implantable sensors 
(pulmonary artery sensors, continuous glucose monitoring), 
and various lab-on-a-chip platforms.2 These digital devices are 
constantly expanding and becoming increasingly sophisticated 
in their ability to quantify physiologic measurements through 
advanced computational approaches, thus challenging our 
contemporary methods for how risk is measured and ultimately 
for how a disease is detected and monitored.3,4

Since 2015, the number of wearable and digital health devices 
that have been purchased in the United States has increased 
from 10 million devices to nearly 100 million, with a market 
size that has exponentially grown from $3 billion to nearly $25 
billion.5 While this growth highlights the enthusiasm for the 
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rapid deployment of digital healthcare technologies, it is also 
concerning in that we are beginning to adopt a new method 
for patient care without the requisite evidence to ensure that is 
effective and actually leads to greater healthcare efficiency.6,7 
We do not yet understand the association between real-time 
digital health data and patient outcomes, nor do we understand 
how risk is measured longitudinally through the aggregation of 
data collected from home environments. These unknowns raise 
critical questions regarding which factors guide the effective 
use of digital health devices in patient care, how new digital 
technologies and data analytics should influence the patient-
clinician interaction, and the type of infrastructure that is needed 
to deliver care that is virtual, timely, and effective.

If we aim to make digital health a standard of care, it first 
requires an understanding of utilization factors and how patients 
and providers integrate new technologies and data analytics 
within clinical workflows. With this understanding, we can join 
the following three synergistic priorities to form the foundation 
upon which new digital innovations can advance healthcare 
delivery: (1) Develop a co-designed patient-centered digital 
health strategy that is efficient within the continuity of care; (2) 
implement digital health technologies within remote patient-
monitoring programs centered on patient-generated data; and 
(3) implement “electronic phenotyping” through translational 
bioinformatics analyses of multidimensional datasets to produce 
individualized approaches to risk assessments and treatments. 
Developing a systematic approach that incorporates these 
three methods to integrate new digital health devices into 
cardiovascular care will best position our efforts to respond to 
the aforementioned questions.

PATIENT-CENTERED CO-DESIGNS

A technology acceptance model is a framework that models 
how users come to accept and use a new technology. 
Technology acceptance models based on the “Theory of 
Reasoned Action”—which explains the relationship between 
human attitudes and behaviors—state that key factors for new 
technology adoption in patient care are its perceived ease of 
use and usefulness.8 Patients and clinicians are frequently 
engaged in iterative phases of development that entail 
various activities aimed at increasing the success of a digital 
intervention. The key components for technology acceptance 
that are important for patients are fundamentally rooted within 
core principals of adoption, which include (1) identifying the 
determinants of adoption at the individual level (ie, functionality, 
operational efficiency), (2) testing the proposed adoption (ie, 
how digital information flows between the patient, caregiver, and 
clinician), and (3) developing a pre- and post-implementation 
strategy that can enhance a patient's use of a new technology 
(ie, iterative testing with user feedback). Rather than using usual 

deployment-evaluation cycles in which successive measures of 
adoption are collected over time, patient participatory models 
that employ an upfront period of engagement may be sufficient 
to solve key challenges for device utilization and identify those 
factors leading to long-term retention.9 It is therefore important 
to empirically define effective digital engagement and what 
constitutes a behavioral change.

In this context, the Telehealth Literacy Project evaluated upfront 
co-design prior to implementing a remote monitoring program 
for chronic diseases in elderly patients. Patient participation 
included mutual acceptance of the type of technologies 
selected to optimize its functionality and experience. This led to 
improvements in health literacy, health management skills, and 
access to health information related to a given patient's care.10 
Similarly, Walsh and colleagues evaluated co-design as part 
of an eHealth platform for self-management of cardiovascular 
disease and cardiac rehabilitation.11 In their experience, 
organizing patient input upfront for the types of behavior 
and cognitive techniques needed—and using an iterative 
co-design process centered on education, enablement, and 
training—facilitated a better understanding of how an eHealth 
infrastructure can enable self-care. While co-design addresses 
key adoption challenges for a new technology, it can also be 
used to design a monitoring strategy to overcome common 
barriers (eg, form factors, physical limitations, and familiarity 
with Internet and Smartphone use) that would otherwise impede 
utilization and to identify which devices works best and in 
whom.

In this context, elderly patients, particularly high-risk elderly 
patients, represent a target population in whom the outcome 
of digital health and its derived benefit may be the greatest. 
Contrary to this assumption, the United Kingdom's Whole 
Systems Demonstrator trial aimed to determine the health 
outcomes, utilization, and barriers to the implementation of 
digital health monitoring in more than 3,000 elderly patients with 
diabetes, heart failure, or pulmonary disease. The study used a 
suite of devices for vital sign monitoring, oximetry, weight scales, 
and glucometry as well as ambient sensors in the patients' 
homes. At 12-months, while the outcomes of readmission and 
mortality were lower with digital health monitoring compared 
to standard care, several important determinants of adoption 
emerged.12,13 First, the patients who increased their digital 
health utilization may already have been motivated to make 
health and behavioral changes, especially when digital health 
monitoring was aligned with clinical decisions that resulted 
in benefit. This group may present an opportunity for health 
engagement with digital technologies. Second, those patients 
who did not use digital monitoring and withdrew from the trial 
largely did so due to the perceived threats towards their existing 
healthcare interactions. For example, patients perceived digital 
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monitoring as a replacement for usual face-to-face visits, felt 
that it required self-care, had technical problems, and raised 
questions as to why digital monitoring was pursued in place of 
healthy aging. This study, executed in 2008-2009, has salient 
findings that present challenges for today, where the availability 
of devices are ubiquitous and the interest for patient care is 
ever increasing. Developing robust methodologies that integrate 
the who, how, and why within the different patterns of adoption 
and identifying how those patterns relate to health and disease 
trends will better position patients and their providers for more 
efficient technology utilization.

DIGITAL HEALTH REMOTE PATIENT MONITORING PROGRAMS

The integration of a self-managed remote patient monitoring 
(RPM) program for cardiovascular diseases using a digital 
health intervention is a primary focus because it is a 
contemporary phenomenon.14 Modern-day RPM programs 
harness patient-generated data—that is, any health-related 
data such as biometrics, symptoms, and patient-reported 
outcomes recorded by a patient. Based on the data they 
collect, patients can self-measure when desired and make 
self-informed decisions based on trends. Patient-generated 
data is distinguished from health data captured during a 
clinical visit, the latter of which often creates sporadic data 
trends. While there are concerns that patient-generated 
data may not be reliable because it is collected outside 
of a clinical setting,15 it is also valuable in that device 
measurements and their trends may result from lifestyle, 
environmental, and behavioral circumstances. These factors 
may or may not be immediately evident; however, they may be 
inferred when disease trajectories change from what would 
otherwise be expected, such as improvements in blood 
pressure or glycemic control that occur without a change in 
pharmacotherapy.16,17

The use of patient-generated digital health data supplemented 
by existing clinical information provides a more comprehensive 
picture of ongoing patient health. Through continuous 
data collection and analysis, patient-generated data offers 
opportunities to fill in information gaps for chronic disease 
management, utilize new workflows that enable clinical teams 
to participate in remote care, and develop a clinical decision 
support (CDS) system that allows clinicians and patients 
to communicate in real time. The implementation of patient-
generated data specifically implies a model of care where 
patients actively acquire physiologic data on devices that are 
populated within electronic health records (EHRs), and the data 
is reviewed by clinicians in an ongoing basis (Figure 1). This 
type of model is cyclical in that additional clinical information 
is used to understand disease classifications with greater 
precision than single measurements alone.

The real-world benefits of this model can be seen with the 
implantable pulmonary artery sensor, which monitors ambulatory 
pressure in patients with heart failure. Clinical teams use 
patient-generated data (ie, pulmonary artery pressures) to titrate 
medications and make lifestyle recommendations and can 
see how these modifications affect future pressure readings. 
Through this approach, real-world registries have demonstrated 
a greater per-patient reduction in pressure readings compared 
to those changes observed in randomized trials.18 This example 
demonstrates how a data-driven, technology-enabled care 
program can modify a chronic disease, promote ongoing patient 
participation, and lead to improved outcomes.19

ELECTRONIC PHENOTYPING ANALYZING MULTIDIMENSIONAL 
DIGITAL DATASETS

Predicting patient outcomes is primarily based on standard 
demographic characteristics and diagnostic testing. While 
conventional risk models provide predictive information for 
populations, the aggregation of multidimensional data including 
EHR data, imaging, laboratory, and digital health trends can 
enhance risk stratification at the individual level. This process 
depends on robust development of data-driven CDS systems 
that can be used at the point of care.1 Although current CDS 
systems are static in that they lack generalizability, use simplistic 
logic (ie, yes/no), or use rule-based methods (ie, diagnosis 
and treatment codes), leveraging recent developments 
in data analysis such as electronic phenotyping can help 
overcome some of these challenges. Electronic phenotyping 
is a translational bioinformatics method that identifies patients 
with a certain characteristic of interest or outcome though 
multidimensional data analysis.20 This analytic framework 
characterizes patients by a set of encoded representations and 
categorizes structured digital information into vectors to identify 
patterns in the data that can be used to design CDS systems.21

The ongoing use of digital health devices perpetuates a cycle 
of data collection and analysis that generates larger and 
higher-definition datasets, ultimately creating an electronic 
phenotype of a specific disease and its severity. In contrast 
to current standards of care that use laboratory and clinical 
markers (eg, blood pressure, cholesterol levels, or signs/
symptoms of heart failure) to identify the onset of disease 
and thresholds upon which to initiate therapy, the continuous 
streaming of digital health data into EHRs can provide a data-
rich portrait of a patient at the point of care (Figure 2). Through 
supervised and unsupervised machine learning approaches, 
predictive modeling such as patient similarity networking,22 
cluster analyses,23 and deep learning24 can be used to 
characterize those baseline factors that drive progression from 
health to subclinical disease to pathological phenotypes. For 
example, encoded representations can link echocardiographic 
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Figure 1.
Examples of digital health monitoring devices used within real-world remote patient monitoring programs. (A) Implantable, wireless, pulmonary artery 
sensor for continuous pressure assessment in an 85 year old with heart failure with preserved ejection fraction and frequent hospitalizations. Red lines 
denote medication titration with subsequent reduction in pressure measurements leading to improved quality of life and for readmission risk reduction. 
(B) Continuous glucose monitor with patient-facing trends in a 64-year-old patient with type 2 diabetes and ischemic heart disease. Observations of AM 
hyperglycemia and PM hypoglycemia that require adjustments in medications to prevent further hypoglycemia and for lifestyle modification. (C) Wearable 
blood pressure monitor in a smartwatch form factor for patient-triggered blood pressure measurements in a 55 year old with hypertension and coronary 
disease. Tracings illustrate hypertensive episode predicted by an embedded algorithm analyzing sequential blood pressure trends. (D) Smartphone 
electrocardiogram (ECG) for patient-triggered single-lead ECGs in a 63 year old with paroxysmal atrial fibrillation and heart failure. Review of patient-
generated data by clinical teams for medication adjustment (black lines) and to monitor recurrence of atrial fibrillation over time. Device images reprinted with 
permission from (A) Abbott, (B) Dexcom, Inc., (C) Omron Healthcare, Inc., and (D) AliveCor.
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measurements to define how heart failure progresses from one 
class to another20 or to identify which cluster of hypertensive 
patients within a heterogeneous population is at higher risk.21 
This method can then be used to map where a specific patient 
is within a disease process and determine which type of digital 
health technology and monitoring strategy can alter future 
projections.

In theory, such predictions can be used within CDS systems 
and at the patient-clinician interface where data analytics can 
augment the clinical interaction for shared decision making.25,26 

Before techniques such as electronic phenotyping can be 
used within the process of care, it must first meet key criteria 
for reproducibility. On the one hand, bias assessment resulting 
from algorithm development is important as it can result in 
under- and overestimations as well as measurement error 
resulting from missing, incomplete, or misclassified data.27 
On the other hand, it is vital that reproductivity ensures a 
similar outcome between real-world analyses and analyses 
upon which the initial analytic approach and algorithm were 
developed. In this context, generalizability is important to cross-
validate electronic phenotyping and clustering within diverse 

Figure 2.
Electronic phenotyping through the analysis of multidimensional datasets (including electronic health record [HER] data, imaging, laboratory, 
echocardiography [ECG], and digital health device trends) can be used to define new patterns of health and disease.
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patient populations, including cohorts of different age, race, 
and gender. Failure to ensure reproducibility can perpetuate 
an implicit bias propagating socioeconomic disparities and 
healthcare inequalities.28 While these do not result from 
machine learning methods themselves, they are inherent to the 
training and validation data sets upon which such computational 
approaches are developed.

THE IMPORTANCE OF COVID-19

The COVID-19 pandemic has necessitated a shift in healthcare 
delivery from a conventional approach of in-person and 
transactional care to one that is virtual, remote, and patient-
generated. Telehealth and digital health technologies have 
enabled this transformation, and while virtual care will continue 
to find its place within new models of healthcare delivery, it 
has also magnified the barriers to equitable care in the United 
States.29,30 During the initial phases of the shelter-in-place order, 
nearly 3,000 telehealth visitations were scheduled between 
March and April 2020 at a University hospital in Philadelphia. 
In contrast to all types of telehealth visits, video visitations were 
less likely to be completed by black patients and those with the 
lowest median household income.31

Despite organizational shifts to telehealth and virtual care, tools 
designed to improve access to health care, socioeconomic 
disparities persist and are magnified. As such, equitable care 
and new models that include diverse patient populations 
and lower socioeconomic communities and drive greater 
and more efficient access are imperative within a changing 
healthcare landscape. The digital divide is defined as a lack of 
access to digital and communication technologies between 
distinct groups.6 In health care, the digital health divide not 
only identifies groups with limited access to new devices but 
also groups in which a higher burden of disease exists.32 This 
paradox between the need to risk stratify and monitor patients 
and the lack of access to available technologies to augment 
treatment approaches that mitigate risk is also primed for 
change. COVID-19 can potentially balance the scales towards 
equanimity.33 Patient participation, provider engagement, and 
data analytics will become increasingly important. Incorporating 
broad patient clusters within population health may overcome 
inherent biases and, in doing so, may drive a lower cost of care, 
particularly among those most vulnerable to high healthcare 
expenses.

NEXT-GENERATION TECHNOLOGY-ENABLED MODELS OF 
CARDIOVASCULAR CARE

Implementing new technologies in clinical settings should 
begin with patient participation and end with patient outcomes. 
As wearable devices become more miniaturized with new 

form factors ranging from epidermal microfluidics and smart 
contact lenses to stretchable skin sensors and ear-sensing 
technologies,34-37 passive biochemical and cardiovascular 
monitoring may emerge as standard approaches in health 
care. To maximize this potential, it is essential that we employ 
robust approaches for how new devices are used within 
remote monitoring programs and how advanced analytics on 
continuously streaming digital health data will be integrated 
into clinical decision support systems. By doing so, a new 
cardiovascular ontology of data-driven phenotypes can be 
targeted to uncover hidden features of health and disease and, 
ultimately, improve the quality of care across the cardiovascular 
care continuum.

KEY POINTS

• Digital health is a rapidly growing field in health care that 
will eclipse 100 million connected devices in 2020.

• Patient-centric co-designs is an important implementation 
factor for how new devices are effectively used 
by patients and their caregivers in home-based 
environments.

• Remote patient monitoring and the acquisition of patient-
generated data represents a new approach upon which 
physiologic trends are measured and assessed within the 
continuity of care.

• Analytic approaches such as artificial intelligence and 
machine learning are under development to produce 
new “electronic phenotypes” of cardiovascular disease 
and to translate these phenotypes within an iterative 
process that merges digital health data and dynamic 
clinical decision support systems for individualized 
cardiovascular risk stratification.
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