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Cardiac amyloidosis (CA) is the buildup and infiltration of amyloid plaque in cardiac muscle. 
An underdiagnosed form of restrictive cardiomyopathy, CA can rapidly progress into heart 
failure. CA is evaluated using a multimodality approach that includes echocardiography, 
cardiac magnetic imaging, and nuclear imaging. Echocardiography remains an essential 
first-line modality that raises suspicion for CA and establishes functional baselines. Cardiac 
magnetic imaging provides additional incremental value via high-resolution imaging, 
robust functional assessment, and superior tissue characterization, all of which enable 
a more comprehensive investigation of CA. Cardiac scintigraphy has eliminated the need 
for invasive diagnostic approaches and helps differentiate CA subtypes. Positron emission 
tomography is the first modality introducing targeted amyloid binding tracers that allow 
for precise burden quantification, early detection, and disease monitoring. In this review, 
we highlight the role of several cardiac imaging techniques in the evaluation of CA.

mailto:mal-mallah@houstonmethodist.org
mailto:mal-mallah@houstonmethodist.org
https://doi.org/10.14797/mdcvj.1072
https://orcid.org/0000-0002-8303-9415
https://orcid.org/0000-0002-5886-7999
https://orcid.org/0000-0002-8571-2749
https://orcid.org/0000-0002-8357-9729
https://orcid.org/0000-0002-2676-3095
https://orcid.org/0000-0003-2348-0484


48Saad et al. Methodist DeBakey Cardiovasc J doi: 10.14797/mdcvj.1072

INTRODUCTION

Cardiac amyloidosis (CA) is a clinical condition in which 
one of more than 30 different precursor proteins with 
unstable tertiary structure misfolds and aggregates as 
insoluble amyloid fibrils and deposits in the extracellular 
space of the heart.1 CA leads to restrictive cardiomyopathy 
that predominantly presents as right ventricular (RV) 
failure. The workup and assessment of cardiac amyloidosis 
have employed a wide range of multimodality imaging 
techniques, each offering unique insights (Figure 1). This 
review discusses the role of several cardiac imaging 
techniques—including echocardiography, cardiac magnetic 
imaging, cardiac scintigraphy, and positron emission 
tomography (PET)—in the workup of CA.

ECHOCARDIOGRAPHY

From M-mode findings almost 40 years ago, echocardio
graphy has become a standard in any diagnostic evaluation 
of cardiac amyloidosis.2 Echocardiography’s widespread 
availability, accessibility, and low cost make it the first 
noninvasive imaging modality used when investigating the 
suspicion of CA.3 Although not sensitive or specific enough 
to confirm a diagnosis, echocardiography provides critical 
information regarding disease status, cardiac function, and 
follow-up in the setting of good image quality and a high 
index of suspicion.4-7

Cardiac amyloidosis develops following increased 
deposition and accumulation of amyloid fibrils specifically 
in the ventricular walls. These depositions translate into 

Figure 1 Multimodality imaging approach for cardiac amyloidosis (CA). (A) Increased left ventricular (LV) wall and interatrial thickness 
with sparkling texture are typically found in patients with CA (left). Evidence of restrictive LV filling, rapid E-wave deceleration time, high 
E/A ratio on mitral inflow Doppler, and low myocardial relaxation velocities on tissue Doppler imaging (middle). Corresponding “bullseye” 
map of the longitudinal strain pattern of the LV with a “cherry on top” sign (right). (B) Cardiac magnetic resonance imaging shows 
characteristic imaging of CA with diffuse and subendocardial late gadolinium enhancement. (C) 99mTc-PYP anterior planar (left) imaging 
and single-photon emission computed tomography/computer tomography (right) showing a Perugini Grade of 2 and 3, respectively.
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macro changes that form the basis of echocardiographic 
morphological assessment. These changes most promi
nently manifest as a thickened intraventricular septal wall 
> 12 mm that, in the absence of other causes of left ventricular 
(LV) hypertrophy, would indicate cardiac involvement in 
amyloid light-chain (AL) systemic amyloidosis.8 However, 
the ability to accurately differentiate cardiac amyloidosis 
from other cardiomyopathies remains extremely difficult 
and highlights a recurrent limitation of echocardiography. 
Echocardiography can detect classical changes including 
thickening of the ventricular walls, interatrial septum, and 
valves, resulting in a smaller LV cavity, biatrial enlargement, 
and restrictive LV filling pattern.9-12 Another reported finding  
includes a granular sparkling appearance of the myocardial 
wall, although this also was observed in other disease 
processes, namely end-stage renal disease.13 More impor
tantly, these changes are typically seen in more advanced 
stages of CA, hence limiting the utility of echocardiography 
in identifying early CA.

Echocardiography excels at providing exclusive insight 
into diastolic function and LV filling pressures. A high 
A-wave, low E-wave, and subsequently a reduced E/A ratio 
are indicative of possible early-stage CA compared with low 
A-wave and normal E-wave leading to a high E/A ratio in 
late CA.14 Advanced restrictive patterns also include a rapid 
decelerating diastolic MV inflow time and small S-wave 
pulmonary venous spectral Doppler patterns. Furthermore, 
reduced mitral and tricuspid annular velocities and a 
high E/e’ ratio are also indicative of increased filling  
pressures.15

Cardiac amyloidosis has exhibited a progressive pattern of 
diastolic dysfunction characterized by impaired relaxation. 
Following a stage of preserved ejection fraction,16,17 these 
patterns ultimately lead to a deterioration of LV function.18 
Similar patterns are also noted using other functional 
assessment parameters such as stroke volume index and 
myocardial contraction fraction (MCF), which have both 
proven to be better diagnostic markers than ejection 
fraction.

Moreover, stroke volume index is easily obtained and 
prognostically useful in patients with AL-CA, making it an 
essential parameter in the CA workup.17 MCF is a ratio of 
stroke volume to myocardial volume, thus creating an index 
that assesses volumetric shortening of the myocardium 
independent of chamber size and geometry.19-21

Although most conventional echocardiographic 
parameters report low diagnostic accuracy due to low 
sensitivity, other parameters have shown remarkable 
specificities. Some examples include E/e’ ratio (> 9.6 
specificity is 100%, and sensitivity 50%), left atrial volume 
index ( ≥ 47 mL/m2 specificity is 93%, and sensitivity 44%), 
and MCF (≤ 0.234 specificity is 96%, and sensitivity 56%).22

The recent implementation of Doppler imaging and 
speckle-tracking echocardiography has introduced 
longitudinal strain measurement as a useful assessment 
of quantitative systolic function.11,23,24 Using 2-dimensional 
(2D) speckle tracking, abnormal myocardial deformation 
has been detected in as many as 93% to 100% of patients 
with CA.11

Moreover, both transthyretin amyloidosis (ATTR) and 
AL cardiac amyloidosis are known to lead to reduced 
global longitudinal strain prior to any noticeable changes 
in left ventricular ejection fraction. However, this is more 
prominent in the detection of ATTR cardiomyopathy (ATTR-
CA), with a global longitudinal strain of -15.1 or greater 
reporting an area under the curve (AUC) of 0.85 (87% 
sensitivity and 72% specificity).22 Furthermore, a regional 
gradient pattern showing impairment of the mid and basal 
segments with relative sparing of the apex— known as 
the “bullseye”—is consistent with cardiac amyloidosis.25,26 
Although the underlying pathophysiology remains unclear, 
this pattern has allowed clinicians to differentiate between 
cardiac amyloidosis and other causes of LV hypertrophy, 
such as hypertensive cardiomyopathy or aortic stenosis, 
which typically present with reduced LV longitudinal 
strain in the areas of maximum hypertrophy.26,27 An 
apical/average longitudinal strain ratio > 1.0 in the mid 
and basal segments was able to distinguish CA from LV 
hypertrophy (93% sensitivity, 82% specificity).26 Reduced 
global longitudinal strain carries significant prognostic 
implications in both AL amyloidosis and ATTR.11,25,28

CARDIAC MAGNETIC RESONANCE

Improved technology and heightened provider awareness 
have led to the increased use of cardiac magnetic imaging 
(CMR) in the workup of cardiac amyloidosis.29 CMR provides 
additional incremental value in the form of high-resolution 
imaging, robust functional assessment, and superior 
tissue characterization, enabling a more comprehensive 
investigation of CA. The use of CMR is therefore crucial to 
the continued assessment of CA, especially in cases of 
poor acoustic windows or uncertain diagnosis following 
echocardiography. In addition to anatomical and functional 
assessment, CMR offers an array of other parameters in 
the workup of CA, including T1/T2-weighted imaging, T1/
T2 mapping, late gadolinium enhancement (LGE), and 
extracellular volume (ECV).3

As previously noted on echocardiography, CA was known 
to cause LV hypertrophy across AL amyloidosis and ATTR-CA. 
However, owing to its high image resolution and 3D image 
acquisition, CMR noted that concentric symmetrical LV 
hypertrophy is more typical of AL amyloidosis, occurring in 
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approximately 79% of patients. Conversely, 68% of patients 
with ATTR-CA have asymmetrical hypertrophy compared 
with 18% of those with AL amyloidosis,30 while no differences 
were noted among the subtypes of ATTR-CA: wild-type ATTR 
and hereditary ATTR. In addition, amyloid deposition in the 
RV wall results in a typical RV hypertrophy morphology.

Another unique advantage offered by CMR is LGE, a 
highly accurate finding for the detection of CA (Figure 2).31,32 
First described by Maceira et al., global subendocardial 
LGE became a pathognomonic finding highly suggestive 
of CA.31 Furthermore, LGE in the left atrium is specific for 
differentiating cardiac amyloidosis from other hypertrophic 
cardiomyopathies.33

Initial implementation of LGE proved technically 
challenging due to difficulty with myocardial nulling. 
However, the use of a widely available phase-sensitive 
inversion recovery sequence (PSIR) helped resolve previous 
issues with optimal nulling settings and served to increase 
the reliability and application of LGE CMR.31 LGE was also 
used to track progression in both AL and ATTR amyloidosis 
based on progression from typical subendocardial to 
transmural enhancement.34,35 Although other LGE patterns 
were described, RV, subendocardial, and transmural 
remained the most commonly reported.30 Studies 
comparing LGE patterns between ATTR and AL amyloidosis 
noted that while both forms exhibited similar LGE patterns, 
a higher prevalence of subendocardial LGE was reported in 
AL amyloidosis compared with transmural and RV LGE in 
ATTR amyloidosis.30,35-37

Although LGE is a qualitative indicator of CA, it lacks the 
ability to quantitatively measure amyloid infiltration due 
to the large heterogeneity in pattern and signal intensities. 
Furthermore, LGE utilization is limited in patients with renal 
impairment, a subsequent manifestation in amyloidosis 
patients.38

In contrast, T1 and ECV provide benchmarks to 
quantify and track disease burden, allowing for disease 
stratification and evaluation of response to therapy.39 
T1- and T2-weighted imaging sequences are intrinsic 
magnetic parameters based on the abundance and 
magnetization of hydrogen nuclei in tissues. Native 
(noncontrast) T1 mapping is a composite signal from both 
extra and intracellular spaces (Figure 3).40,41 The addition 
of contrast (LGE) accentuates these properties and allows 
for the isolation and measurement of ECV, categorizing T1 
mapping as precontrast (native T1) and postcontrast (ECV). 
Native myocardial T1 is a measurement of myocardial T1 
relaxation times using noncontrast CMR, noting increased 
T1 values in both AL and ATTR amyloidosis.42 Similar 
diagnostic accuracy for detecting ATTR amyloidosis was 
reported by Fontana et al., albeit with a lower T1 elevation 
compared with AL amyloidosis.43 Studies have also 
suggested the use of native T1 as a marker of early cardiac 
involvement.42,43

Because amyloid deposition results in the gradual 
expansion of the extracellular matrix, the quantification of 
ECV can potentially provide insight into disease burden and 
degree of amyloid infiltration. Several studies reported an 
increase in ECV in both AL and ATTR amyloidosis.39-41 More 
importantly, studies have shown how an increase in ECV 
can serve as an early marker of disease since it is identified 
before LGE and abnormal findings in other imaging 
modalities.44

Higher native myocardial T1 mapping was able to 
identify and stratify worse prognosis in AL-CA but not 
in ATTR-CA.45,46 On the other hand, ECV has shown 
prognostic association in both AL and ATTR-CA. Ultimately, 
incremental to traditional risk factors, both LGE and 
ECV can serve as independent predictors of disease 
prognosis.30,45,47

Figure 2 (A) Short-axis view and (B) long-axis view shows diffuse late gadolinium enhancement uptake (Seimens 1.5 Tesla).
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CMR myocardial T2 mapping provides another dimension 
of tissue characterization by visualizing and quantifying 
myocardial edema. Prior studies have revealed elevated 
T2/myocardial edema in patients with acute myocardial 
infarction, myocarditis, and heart failure.48,49 Although 
T2 ratios in CA reported conflicting results, T2 mapping 
has shown consistent elevation in both ATTR and AL-CA. 
Furthermore, T2 was also shown to be an independent 
predictor of mortality even after adjusting for ECV and NT-
proBNP.50

TECHNETIUM-LABELED CARDIAC 
SCINTIGRAPHY

Cardiac scintigraphy provides incremental value in the 
workup of CA because it can differentiate between AL 
and ATTR amyloidosis.3,51 More importantly, 99mTc-labeled 
radiotracer cardiac scintigraphy prevents the need for 
invasive diagnostic procedures in patients screened for 
monoclonal gammopathies, effectively rewriting previous 

diagnostic approaches to CA, especially ATTR-CA.3,52 Initial 
interest in 99mTc-labeled bone scans as an imaging tool 
for amyloidosis began during the 1970s and 1980s after 
studies reported diffuse myocardial uptake, particularly in 
the right and left ventricles of patients with CA.53-57 However, 
the potential of cardiac scintigraphy was not fully realized 
until the last two decades, following reports of improved 
diagnostic accuracy for ATTR-CA.58-60

Two grading systems are used for radiotracer uptake 
in single-photon emission computed tomography (SPECT) 
imaging, offering a semiquantitative and quantitative 
approach to CA workup. Heart to contralateral lung (H/
CL) was used to quantify uptake by comparing radiotracer 
retention, where an H/CL ratio > 1.5 was suggestive of ATTR-
CA (Figure 4). Perugini et al. established a semiquantitative 
visual system to score planar images obtained at 3 hours 
post injection. This system was based on the uptake 
comparison between bone (rib) and the heart. The scoring 
system proposed was as follows: 0 = absent cardiac uptake, 
1 = uptake less than bone, 2 = uptake equal to bone, and 3 
= uptake greater than bone (Figure 5).58

Figure 3 T1 map (precontrast) shows the left ventricle with an elevation of native T1 values (Seimens 1.5 Tesla).
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Figure 5 99mTc-PYP cardiac scintigraphy using single photo emission computer tomography/computed tomography visual scoring. 
Reproduced with permission from Springer Nature. doi: 10.1007/s10741-021-10174-x

Figure 4 99mTc-PYP cardiac scintigraphy shows anterior planar imaging using heart-to-contralateral ratio semiquantitative scoring. 
Reproduced with permission from Springer Nature. doi: 10.1007/s10741-021-10174-x.

H/CL: heart to contralateral lung; ATTR: transthyretin amyloidosis
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Applying this visual scoring system revealed that any 
grade (1,2, or 3) conferred a sensitivity of > 99% but low 
specificity of 68% when compared with EMBs to identify 
ATTR. However, following the screening of patients for 
monoclonal gammopathy, a grade ≥ 2 established a 
sensitivity and specificity of 100% along with a 100% positive 
predictive value reproduced along all 3 radiotracers.52 This 
obviated the need for more invasive confirmatory testing 
in patients with unexplained heart failure, suggestive 
echocardiography/CMR findings, and ruled out monoclonal 
gammopathy. Furthermore, a visual grade ≥ 2 also allowed 
the accurate differentiation of ATTR-CA from AL-CA (or 
unaffected controls). This is particularly relevant in the era 
of the new targeted amyloidosis treatments unique for 
both ATTR-CA and AL-CA.

The commonly investigated technetium-labeled 
radiotracers included 99mTc-pyrophosphate (99mTc-PYP), 
99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid 
(99mTc-DPD), 99mTc-hydroxymethylene diphosphonate  
(99mTc-HMDP), and 99mTc methylene diphosphonate  
(99mTc-MDP). 99mTc-PYP is commonly used in the United 
States (US), while 99mTc-DPD and 99mTc-HMDP are used in 
Europe. On the other hand, 99mTc-MDP, a widely available 
radiotracer in the US, is not routinely used due to its low 
sensitivity for detecting ATTR.61

It is also important to note that some specific hereditary 
ATTR mutations have shown varying uptakes and 
sensitivities in cardiac scintigraphy. In particular, V30M,62,63 
Y114C,63 Thr59Lys,59 and Phe64Leu64 are reported as having 
low sensitivity with cardiac scintigraphy or no uptake 
with different Tc-labeled tracers (DPD and PYP) (Table 1). 
This discrepancy is due to specific TTR fibril compositions 
that include type A or type B (fragmented and full length 
versus exclusively full length, respectively),65,66 with full-
length fibrils exhibiting little to no radiotracer uptake. To 
prevent missed diagnoses, a high degree of suspicion and 

a multimodality imaging approach are needed to balance 
out the inconsistencies presented by these mutations.

In addition to its diagnostic utility in the workup of 
CA, cardiac scintigraphy has also proven useful in some 
avenues of CA prognostication. Particularly, an H/CL 
ratio > 1.6 was shown to predict worse survival among 
patients with ATTR-CA.67 Radiotracer retention grading and 
indices along different bone radiotracers have a reported 
association with cardiac biomarkers such as NT-proBNP, 
cardiac troponin T, and extracellular and other imaging 
parameters such as volume fraction, ejection fraction, 
LV wall thickness, and mass. Subsequently, radiotracer 
retention also has been associated with increased adverse 
cardiac outcomes such as advanced heart failure and 
mortality.67-71

POSITRON EMISSION TOMOGRAPHY

Despite the attributes of cardiac scintigraphy, there 
continue to be gaps in the management of CA, such as the 
inability to clearly detect early disease as well as monitor 
disease progression and/or response to therapy. To counter 
these limitations, positron emission tomography (PET) has 
emerged as a new modality in the diagnostic evaluation of 
CA. PET offers several promising tracers such as Pittsburg 
Compound B, florbetapir, and florbetapan.72 While these 
tracers were originally created to visualize and quantify 
beta-amyloid plaques in patients with Alzheimer’s disease, 
they have since proven effective in diagnosing CA. Antoni 
et al. showed how there was a significant increase in 
11C-PiB (Pittsburgh Compound B) retention index (RI) in 
patients with ATTR-CA and AL-CA compared to controls.73 
A subsequent study showed significant differences in 
maximal and mean myocardium-to-blood cavity standard 
uptake value (SUV) ratios between AL-CA patients with 

Table 1 Reported non-transthyretin amyloidosis causes of false positive and false negative Tc-labeled cardiac scintigraphy. Reproduced 
with permission from Springer Nature, doi: 10.1007/s10741-021-10174-x

FALSE POSITIVE FALSE NEGATIVE

Amyloid light-chain amyloidosis Early disease

Hydroxychloroquine toxicity Delayed imaging

Rib fracture Full length (type B, Phe64Leu, Ser77Tyr, 
and Thr59Lys) transthyretin fibrils

Pleural effusion Small radiotracer injection dose

Valvular calcification Short acquisition time

Blood pool Pericardial effusion

Breast implants Breast implants

Myocardial infarction (acute or subacute)

Rare forms of cardiac amyloidosis

APO-A1 mutation
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prior chemotherapy versus chemotherapy naïve patients. 
This established the role of 11C-PiB as a surrogate indicator 
of active myocardial light chain deposition.74 Rosengren et 
al. showed how CA without cardiac wall hypertrophy had 
increased 11C-PiB uptake, indicating a possible role in early 
diagnosis before the development of overt morphological 
changes.75

18F-florbetapir and 18F-florbetapan, PET tracers of 
the Stilbene class, could serve as molecular imaging 
biomarkers for CA as they bind directly to amyloid 
fibrils.76 Earlier studies confirmed significant uptake 
of 18F-florbetapir in CA patients with a predilection for  
AL-CA compared to ATTR-CA.77 Similarly, 18F-florbetapan 
has the potential to differentiate between non-CA, AL-CA,  
and ATTR-CA. Furthermore, 18F-florbetapan retention  
in CA was an independent determinant of functional 
and morphological parameters cardiac dysfunction on 
echocardiogram (for global LV longitudinal strain) and 
CMR imaging (for ventricular wall thickness).78,79

However, some new limitations arise with the use of 
these PET tracers—mainly, the shorter half-life of the 
11C-PIB radiotracer versus 18F-labeled PET tracers. This 
necessitates the installation of an on-site cyclotron for 
continuous production, which may limit its accessibility 
and adoption.75 Moreover, these radiotracers are not yet 
approved for clinical use and are only available in limited 
specialized centers.

PET imaging has brought forth new targeted amyloid-
binding radiotracers that facilitate detection of all amyloid 
deposits regardless of the particular subtype of CA. More 
importantly, early studies have suggested that, using 
11C-PiB and 18F-florbetapir, PET imaging may detect CA 
well before macroscopic changes such as wall thickening 
or later changes in cardiac biomarkers.75,80 As such, PET 
introduces new avenues in the early diagnosis, monitoring, 
and assessment of CA burden.

CONCLUSION

Multimodality imaging tools provide complementary 
roles in the diagnosis of patients with suspected CA. 
Echocardiography is the first-line test to identify nonspecific 
signs such as ventricular wall thickening and restrictive 
filling patterns. CMR enables high-resolution structural 
assessment as well as qualitative and quantitative 
measurement of amyloid infiltration. Pyrophosphate 
cardiac scintigraphy’s strength is its ability to differentiate 
AL from ATTR amyloidosis. PET has an emerging role in 
early detection, disease monitoring, and response to 
therapy.

KEY POINTS

•	 Cardiac amyloidosis (CA) remains an underdiagnosed 
cause of rapidly progressive heart failure. The 
evaluation of CA entails a multimodality imaging 
approach encompassing echocardiography, cardiac 
magnetic resonance (CMR), and nuclear imaging.

•	 The combination of echocardiography and CMR 
provides valuable anatomical and functional cardiac 
assessment in an effort to increase suspicion and 
maximize diagnostic accuracy.

•	 99mTc-labeled radiotracer cardiac scintigraphy excels 
at differentiating and confirming the diagnosis of 
transthyretin CA following adequate screening and 
ruling out light-chain amyloidosis, obviating the need 
for more invasive biopsy approaches.

•	 The application of quantitative advanced cardiac 
imaging such as CMR and positron emission 
tomography have opened up new avenues in the early 
detection and prognostication of CA and tracking of 
therapeutic response, which is especially useful given 
the promising advancements in the treatment of CA.
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