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Cardiovascular Disease and Nanovectors
Cardiovascular diseases (Cvds) encompass a wide variety of 

disorders affecting the blood vessels and heart. these conditions 
include angina, arrhythmias, atherosclerosis, cardiomyopathy, 
stroke, hypertension, myocarditis, and pericarditis. nearly $0.5 
trillion dollars per annum is spent on treating cardiovascular 
diseases. Coronary artery disease (Cad), stemming from 
atherosclerosis, is the leading cause of death from myocardial 
infarction in the western world. in the united states, Cad results 
in about one-third of total deaths.1 Many of these patients succumb 
to thrombi that form rapidly and occlude vessels completely 
after rupture of atherosclerotic plaques. in many cases, plaques 
that rupture are nonstenotic (most cause less than 50% luminal 
narrowing) and evade detection by traditional imaging methods 
(i.e., X-ray angiography, intravascular ultrasound).2-6 Consequently, 
treatment of Cad does not occur until the blood flow has 
been severely compromised, and it usually involves surgical 
intervention. such an invasive procedure is by nature undesirable, 
does not address the underlying cause of the myocardial infarction, 
and thus fails to prevent reoccurrence. statin treatment has 
been effective at reducing acute coronary complications due to 
atherosclerosis; nonetheless, acute complications continue to occur 
in more than half of the patients, and aggressive statin treatment 
has been associated with serious side effects.7, 8 development 
of effective noninvasive imaging methods for early detection 
and consequent therapy that can treat the underlying causes of 
Cad and other cardiovascular diseases remain a major focus of 
cardiovascular research. nanovectors offer potential for improving 
current treatment options through more complete imaging 
information and delivery of drugs specifically targeted to tissues 
affected by disease.

there are numerous biochemical processes associated with 
the pathogenesis and destabilization of plaques that precede 
anatomical and physiological changes. By targeting the presence 

or activity of proteins associated with these biological processes, 
clinicians can identify nonstenotic vulnerable plaques before 
rupture and treat the underlying cause of plaque destabilization. 
the ability to detect these proteins with diagnostic imaging 
techniques has stimulated the development of targeted nanovectors 
containing contrast-enhancing agents. this form of imaging, 
known as molecular imaging, has been used to detect angiogenesis 
in early stage atherosclerosis and the activity of matrix 
metalloproteinases, a protease involved in plaque remodeling and 
destabilization.9-11 upon diagnosing the stage and determining 
the extent of disease, nanovectors can transport therapeutics 
specifically to the diseased tissue, thus localizing treatment 
and reducing adverse side effects associated with systemic 
administration.12 

to be successful, targeted drug delivery and/or imaging 
systems must reach their intended destination in functional form. 
this requires navigation through the blood stream to the target, 
including the ability to avoid the body’s clearance processes, to find 
the vessel wall from blood flow, and then to bind to the desired 
target. synthesizing nanovectors that avoid immune clearance 
and thus possess increased circulation time is challenging since 
particles are typically quickly removed from the bloodstream. 
approaches such as PeGylation and varying the size, shape, and 
composition of nanovectors may be explored to achieve this goal.

Cardiovascular Targets
recent technologies have focused on discovering appropriate 

molecules to target for Cvds once the particle approaches the 
vessel wall. the vascular endothelium that lines blood vessels 
and creates a natural barrier separating blood from surrounding 
tissue is considered an attractive target for both drug delivery 
and imaging due to its proximity to intravenously administered 
therapy. additionally, the unique markers expressed by endothelial 
cells during the progression of Cad offer an opportunity for the 
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Figure 1. Schematic of (A) soluble, (B) polymer-based, and (C) lipid-based 
nanovectors. 

design of molecular imaging probes and targeted nanovectors for 
localized treatments. Proinflammatory markers such as selectins, 
vCaM-1, and iCaM-1 expressed during chronic inflammation, 
which is prominent in most Cvds, serve as prime targets for 
targeted nanovectors.13 another means of directing nanovectors 
to Cad is to target fibrin clots formed at the site of atherosclerosis 
when blood comes into contact with exposed tissue within the 
plaque.14 While nanovectors may be targeted to biomarkers 
expressed by the endothelium, the endothelial cells themselves 
may not be the intended target of therapeutic action. For example, 
cells such as monocytes, t cells, and foam cells that are recruited 
into atherosclerotic plaques or the underlying tissue have served as 
targets.15 When the final destination of imaging and drug carriers 
is not the vascular endothelium but rather the underlying tissue/
organ, particle internalization and/or transcytosis of the nanovector 
must be considered.16, 17 another possible approach for treating 
atherosclerosis could rely on targeting neovascularization of the 
vasa vasorum (network of small arteries in the vascular wall) that is 
strongly correlated with plaque growth and rupture.18

Particle Type
Particle material and fabrication technique are important design 

parameters that affect the performance of nanovectors. several 
types of carriers have been proposed for use in the treatment and 
imaging of cardiovascular diseases including soluble carriers, viral 
carriers, lipid-based carriers, nano/microbubbles, polymeric, and 
inorganic-based nanocarriers (Figure 1).

soluble carriers include modified plasma proteins such as 
albumin, antibodies, and soluble biopolymers such as dextran and 
chitosan, and the design is such that the active agent is covalently 
linked to the carrier. For example, albumin has been conjugated 
to gadolinium for use as an Mri contrast agent.19 these types of 

carriers are attractive due to their solubility in plasma and thus 
their ability to leave the bloodstream and pass into targeted cells. 
however, soluble carriers remain plagued with limited load-
carrying capacity, lack of protection for the bounded therapeutics, 
and covalent linkage chemistry that may alter drug efficacy. as 
such, soluble carriers can have limitations for drug delivery but still 
be beneficial for imaging application and gene delivery.

viral nanoparticles are advantageous due to their natural ability 
to avoid detection and clearance from the bloodstream, their innate 
targeting capability, and their ability to enter cells. For example, the 
cowpea mosaic virus (CPMv) may be used for vascular imaging 
and drug delivery due to its specific binding to vimentin, which  
is presented on endothelial cells during angiogenesis and also 
present during neovascularization of the vasa vasorum in 
atherosclerosis.20, 21 additionally, imaging of CPMv has shown 
their localization to inflamed endothelium.22 PeGylation of 
CPMv may permit the use of these viruses for other targets.23 the 
drawbacks to such nanoparticles are potential toxicity in humans 
and the requirement for them to be engineered and grown in 
bioreactors, which adds to the complexity of their design.  

several lipid-based nanovectors such as liposomes, micelles, 
and lipoproteins have been proposed for targeted drug delivery 
and imaging. liposomes, phospholipid-based nanovesicles, are 
easy to fabricate and possess low toxicity and large versatility. 
liposomes can be loaded with hydrophilic, hydrophobic, and 
lipophilic drugs for therapeutic applications. For diagnostic 
applications, contrast-generating material can be incorporated in 
the outer shell or entrapped within the core. For example, a group 
at Washington university school of Medicine has engineered a 
targeted paramagnetic nanoemulsion for molecular imaging of 
atherosclerotic plaques with Mri.9, 24 the nanoemulsion consists 
of a liquid perfluorocarbon core coated with a lipid shell that 
contains gadolinium. unfortunately, issues of gadolinium toxicity 
have been raised that may limit the utility of the paramagnetic 
nanoemulsion. alternatively, perfluorocarbon nanoemulsions 
have been used for ultrasound-based molecular imaging of 
atherosclerosis.25 however, the nanoemulsions are weak scatterers 
due to their size and the incompressibility of the liquid core, and 
thus a large number of nanoemulsions are required in order to 
produce a detectable change in image contrast. ideally, ultrasound 
contrast agents will contain gas, which is more compressible than 
liquid and thus is more echogenic. liposomes containing liquid 
and gas have been engineered for ultrasound-based molecular 
imaging of several components of atheromas, including fibrin and 
adhesion molecules.26, 27 in addition to imaging, ultrasound can be 
used to trigger the release of entrapped thrombolytic agents from 
echogenic liposomes.28, 29 thus, echogenic liposomes can serve as a 
nanovector platform for targeted image-guided drug delivery and 
treatment of thrombi.30 

Micelles are limited to the entrapment of hydrophobic drugs, 
but with their smaller size, they may be able to enter tissue from 
the bloodstream. they may include multifunctional complexes 
with polymers and attachment of targeting ligands/contrast 
agents for imaging.14 lipoproteins are also limited to hydrophobic 
drugs, and their loading and release is not as tunable as with 
other materials. synthetic high-density lipoproteins (hdl) may 
be decorated with contrast agents such as gadolinium and used 
to target hdl receptors such as on macrophages.31 alternatively, 
synthetic hdl can be combined with inorganics such as iron 
oxide to make iron oxide core hdl nanoparticles that utilize the 
natural hdl trafficking pathway with magnetic resonance contrast 
enhancement provided by iron oxide.32 

Polymeric nanoparticles are widely proposed as vectors for 
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targeted drug delivery due to their variety of materials, sizes,  
and shapes. typical formulations include solid matrix, 
polymersomes, and dendrimers, and available biodegradable 
polymers include poly(lactide), poly(glycolide), their copolymer 
poly(lactide-co-glycolide), poly(caprolactone), and poly(ethylene 
glycol). solid matrix particles come in a variety of shapes 
and sizes and may be decorated with a variety of targeting 
ligands. one disadvantage to solid matrix particles made from 
biodegradable polymers such as poly(lactide), poly(glycolide), 
and their copolymers is the acidic degradation environment that 
may degrade or damage certain loaded therapeutics, particularly 
proteins.33 Means to mitigate this acidity concern include the 
incorporation of trehalose or poorly soluble bases alongside the 
encapsulated drug, as this has been shown to increase the stability 
of encapsulated proteins.34, 35 Polymersomes are made from 
amphipathic polymers and are similar to lipid-based liposomes 
in their membrane flexibility while maintaining better structural 
integrity and allowing for greater PeGylation. dendrimers are very 
small, highly branched polymers that allow for the attachment 
of targeting ligands, imaging markers, and therapeutics; thus 
they can be useful for theranostic applications — the merging 
of therapeutics and diagnostics in a single-carrier system.19, 36 
however, their use in high concentrations can be toxic (depending 
on their surface characteristics), and their loading capacity is often 
low. Moreover, covalent bonding of therapeutics to dendrimer 
surface is frequently required when physical entrapment is not 
feasible, which potentially diminishes their efficacy as drug 
carriers.37 thus, very much like soluble carriers, dendrimers may 
be best suited for gene delivery and imaging applications.38 indeed, 
Gadomer-17, a polylysine dendrimer complexed with 24 Gd-dota 
(gadolinium-tetraazacyclododecane tetraacetic acid), has been 
explored for use as an Mri contrast agent and shows promise of  
in vivo efficacy with minimal toxicity.39 

Particles made from inorganic materials such as gold, silver, 
silicon, iron oxides, and carbon have been explored for drug 
delivery. one concern in the design of such particles is the loading 
and release profiles of therapeutics, requiring tuning of pore sizes 
to achieve desired release. iron oxide and polymer-coated iron 
oxide particles have been explored for Mri imaging of cardio-
vascular systems due to their paramagnetic properties.40, 41 iron 
oxide particles can be used as a contrast agent for both magnetic 

resonance and X-ray imaging modalities, opening the possibility 
of overlaying images from dual sources and thus allowing more 
detailed analysis of affected tissues.

Particle Size
Physical characteristics of drug or imaging carriers, including 

size and shape, will determine how these particles localize 
to the blood vessel wall in flow. spheres in the nanometer to 
micrometer range made from many types of materials have been 
broadly explored as injectable drug carriers and imaging agents 
due to their ease of fabrication. nanospheres are attractive for 
intravenous injection routes as they are more likely to clear the 
microcirculation, particularly in the lungs, since the smallest 
human capillaries are on the order of 5 microns. this constraint 
imposed by the capillaries eliminates larger spherical particles 
made from rigid materials due to the risk of vascular occlusion. 
additionally, nanoparticles are less likely to be internalized by 
macrophages than microspheres possessing diameters from 2 to  
3 μm.42 this is possibly due to the fact that the opsonization rate 
with serum proteins decreases with particle size.43

it has been recently reported, however, that microspheres with 
diameters ranging from 2 to 5 microns display significantly higher 
localization and binding to inflamed endothelial cell monolayers 
from bulk human blood flow than nanospheres with diameters 
from 100 to 500 nm as shown in Figure 2.44 this may be due to the 
impact of particle size on their interactions with red blood cells 
(rBCs). larger particles (>2 μm in diameter) are preferentially 
excluded from the middle of blood flow and pushed to the wall, 
but nanospheres are likely small enough that they comfortably fit 
in the pocket between rBCs.45 it is likely that smaller nanoparticles, 
particularly in the tens-of-nanometers size range, are able to 
partition into plasma and show improved localization to the wall 
in bulk blood flow. however, the small size limits their utility for 
drug delivery due to a low capacity for carrying drugs.46, 47 

efficiency of transport to the blood vessel wall where the 
particles may then adhere is more important for targeted drug 
delivery. high efficiencies of binding at the desired target allow  
for smaller concentrations of injected particles, lowering potentially 
harmful particle interactions with blood components and 
decreasing the risk of occlusion in arteries. For drug delivery, this 
translates to a lower systemic therapeutic amount, decreasing cost 
as well as deleterious side effects from potent drugs. For imaging, 
this amounts to better contrast and sensitivity per injection amount, 
which is important for imaging modalities that have relatively 
low detection sensitivity. For example, Mri has low detection 
sensitivity (i.e., 10-3 to 10-5 moles/l) compared to positron emission 

Figure 2. Adhesion of nano/microspheres to activated endothelium from 
blood flow in a parallel plate flow chamber with a step channel. Blood flow 
is pulsatile between 120s-1 for 4 seconds and 1200s-1 for 2s over 5 minutes. 
Channel height at the entrance = 127 μm and channel height at the main 
channel (after step) = 508 μm.

Figure 3. Schematics of microcarriers binding and releasing encapsulated 
nanovectors from blood flow at the endothelium.  
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tomography (10-11 to 10-12 moles/l). increasing the density of 
targeting moieties on the surface of paramagnetic nanovectors may 
increase the number that bind to the intended target, thus providing 
more material for contrast enhancement. however, increasing ligand 
density will have minimal effect if nanovector delivery to the wall is 
limiting.44 alternatively, the concentration of paramagnetic material 
loaded onto a single nanovector can be increased, thus increasing 
the effect of each nanovector on the Mr signal. localization of 
a nanovector may also be increased by attaching the nanovector 
to micron-sized carriers that are highly efficient in traveling 
to the vessel wall. For example, ananta et al. loaded nanoscale 
gadolinium-based contrast agents into porous silicon microparticles 
and showed an enhancement in contrast due to their geometrical 
confinement.48 For drug delivery, microcarriers would bind to the 
endothelial wall and release their nanocarrier load at the vessel 
wall, where they may transmigrate through the endothelium (Figure 
3). this would require the design of microcarriers to release their 
load over a suitable time frame, perhaps involving fast-degrading 
polymers as a shell to release nanocarriers fairly quickly. For Cvds 
such as atherosclerosis that inflict larger arteries, the effective 
delivery of nanoparticles without a microcarrier system may be 
possible via the vasa vasorum that feed the wall of these arteries. as 
previously mentioned, associated inflammation and angiogenesis 
in these vessels may provide an avenue for targeting. however, 
only circumstantial evidence currently exists in the literature 
for nanoparticles localizing to the vasa vasorum.49 Certainly, 
nanoparticles may not be able to enter the vasa vasorum if they 
originate from the lumen of the coronary artery.50

Conclusion
overall, there are advantages and disadvantages to differently 

sized particles for treatment and imaging of cardiovascular 
diseases. nanoparticles are attractive as they offer low risk of 
vessel occlusion and avoidance of phagocytosis by macrophages, 
but they seem to lack efficiency in finding and binding the vessel 
wall from blood flow. these tradeoffs indicate an apparent need for 
further modification of particles by deviating from spherical shape 
or using micron-sized spherical carriers loaded with nanosphere 
cargo. additionally, in vivo animal models may be insufficient to 
identify the best risk imaging and treatment carriers in humans; 
differences in vessel size and blood flow patterns (shear stress, red 
blood cell size, etc.) between animals necessitate trials in humans. 
development of more effective methods of imaging for detection 
and consequent treatment that can address the fundamental causes 
of cardiovascular diseases and can identify those at greatest risk 
offer potential improvements in the treatment and outcomes of  
these diseases.
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