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Introduction 
Aging of the vascular system is considered a major contributor 

in the development of atherosclerotic lesions.1, 2 The structural and 
functional integrity of the arterial wall progressively declines with 
aging, as manifested by endothelial and vascular smooth muscle 
cell dysfunction, reduced regenerative capacity, and a decline in 
circulating and tissue resident progenitor cells.3-5  The addition of 
systemic and local complications associated with insulin resistance, 
dyslipidemia, tobacco exposure, hypertension, and genetic 
predisposition engender atherogenic processes in the vessel wall 
that lead to the clinical manifestation of atherosclerosis. This 
review will focus on the age-related changes of the endothelial and 
vascular smooth muscle cells that contribute to vascular disease 
and examines potential new targets that could prevent or delay 
atherosclerosis through rejuvenation of the vascular system.

Cellular Aging and Senescence: Role in Development of 
Atherosclerotic Plaques

Cellular aging and associated cellular dysfunction is caused by 
multiple factors, such as accumulation of DNA damage, misfolded 
proteins, and telomere attrition.6 Telomere shortening plays a 
prominent role in cellular age-related dysfunction.6 Telomeres are 
a series of nucleotide repeats (TTAGGG/AATCCC) at the ends of 
chromosomes. The telomere is protected by a tightly controlled 
complex of DNA binding proteins and transcription factors called 
the shelterin complex (Figure 1a).7 Nevertheless, in somatic cells, 
telomeres shorten with each cell division due to a phenomenon called 
the “end-replication problem” (Figure 1b). After 40 to 60 population 
doublings, telomere length is reduced to the extent that a DNA injury 
response is induced. This response is associated with increased 
cellular oxidative stress and many of the phenotypic and functional 
changes associated with senescence. Researcher Leonard Hayflick 
determined the number of population doublings that somatic cells 
can undergo before they become senescent and incapable of cellular 
replication, a term referred to as the “Hayflick limit.”8

In some cells, telomere length may be restored by activity of 
the enzyme telomerase reverse transcriptase (TERT) together with 
its RNA component (TERC), which are regulated by the shelterin 
complex of the telomere (Figure 1a).9 The ability of embryonic or 
induced pluripotent stem cells to replicate indefinitely is due to the 
expression by these cells of functional TERT and TERC. Notably, 
TERT and TERC are reactivated in about 90% of malignancies, 
accounting for their transformation into essentially immortalized 
cells. Accordingly, one potential therapeutic approach to treating 
some malignancies would be to antagonize the activity of 
telomerase in cancer stem cells.10, 11

On the other hand, a transient restoration of telomerase 
activity to somatic cells could have therapeutic effects. Evidence 
suggests that inducing telomerase activity in somatic cells and 
thereby restoring telomere length may reverse cell senescence 
and restore a functional phenotype.12-14 Multiple observational 
and interventional studies have shown a strong correlation 
between telomere attrition in cells of the cardiovascular system 
and the development of atherosclerosis in animal models 
and humans.3, 15, 16 Furthermore, shortened telomere length of 
circulating lymphocytes, used as an indirect marker of a declining 
pool of circulating progenitors, has been identified as a predictor 
for early onset of cardiovascular disease.17 

Cellular senescence of endothelial cells, vascular smooth muscle 
cells, tissue resident cells, and circulating progenitor cells plays an 
important role in the early stages of a developing vascular lesion 
that ultimately leads to an atherosclerotic plaque. Aged endothelial 
cells manifest increased expression of proinflammatory surface 
markers, a decrease in nitric oxide (NO) production, and a change 
of structural phenotype that compromises the barrier function of 
the endothelial monolayer of arterial vessel walls (Figure 2).18-20 
Aged vascular smooth muscle cells, on the other hand, undergo 
a switch from a differentiated to a secretory phenotype that leads 
to medial thickening, loss of elasticity, and sclerosis of the media.4 
Additionally, the decrease in circulating endothelial progenitors 
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fails to compensate for micro-injuries of the arterial vessel wall, in 
turn exposing the subendothelial vessel structures to circulating 
factors that further promote lesion formation.5, 21 Preclinical studies 
suggest that activation of telomerase can delay or even reverse the 
senescent phenotype of aged vascular cells.13, 14, 22 

The importance of telomere integrity for a healthy cardiovascular 
system is further highlighted by diseases of premature aging that 
are caused or accompanied by accelerated telomere decay. One of 
the best-studied syndromes, Hutchinson-Gilford Progeria Syndrome 
(HGPS), is accompanied by severe and early onset atherosclerosis. 
Indeed, patients die in the second decade from coronary or carotid 
disease due to severe atherosclerosis. Notably, the lamin A mutation 
(that produces the abnormal protein, progerin) particularly affects 
tissues of mesodermal origin including the vascular system.23, 24 
Notwithstanding the fact that treatment of this disease cannot solely 
depend on restoring telomere length and integrity, development of 
a reliable therapeutic strategy to rejuvenate the vascular system may 
play an important role in ameliorating this devastating syndrome. 

Senescent Endothelial Cells as a Primary Target for 
Cardiovascular Rejuvenation

Cardiovascular health requires a healthy endothelium since 
this diaphanous film of tissue produces a panoply of factors that 

maintain cardiovascular homeostasis. In the arterial circulation, 
a normal endothelium is resistant to platelet and leukocyte 
adherence, maintains the vascular smooth muscle in a quiescent 
state, and plays an important role in regulating vascular tone. 
In response to the tractive force of fluid flow, the endothelium 
secretes vasodilator factors. Paradigmatic of these is endothelium-
derived nitric oxide, which, in addition to inducing potent 
vasodilation, inhibits platelet and leukocyte interaction with the 
vessel wall and is demonstrably antiatherogenic (Figure 2).25  

With aging, phenotypic changes occur within endothelial cells 
as they switch to an activated state, expressing inflammatory 
surface markers such as VCAM-1 and ICAM-1 and secreting 
proinflammatory cytokines.266 The chronic activation of the 
immune system and leukocyte recruitment to the dysfunctional 
regions of endothelial cell layers further accelerates the aging 
process.19 Aging of the endothelium is accelerated at sites 
of disturbed flow such as the iliac artery bifurcation, where 
the telomeres of human endothelial cells are demonstrably 
shorter15, 27 and histological analysis reveals an increased number 
of senescent endothelial cells.16, 28 This accelerated aging at vascular 
bifurcations may be due in part to the hemodynamic activation of 
an inflammatory phenotype by low and oscillating shear stress at 
these sites.29, 30 Thus, a pathologic cycle of inflammation and aging 

Figure 1. Telomere structure. The repetitive nucleotide sequences at the end of each chromatid are called telomeres. The “end-replication problem” during DNA 
replication results in a 3-prime overhang of the DNA in the telomere region (a). The shelterin complex protects the telomeres from degradation. It consists of six 
subunits, namely telomeric repeat-binding proteins 1 and 2 (TRF1 and 2), TRF1-interacting nuclear factor 2 (TIN2), tripeptidyl peptidase 1 (TPP1), protection of 
telomeres protein 1 (POT1), and ras-related protein 1 (RAP1) (a). Each DNA replication cycle is associated with the loss of nucleotides at the telomeres (b) and 
may be compensated in some cell types by activation of telomerase, a polymerase complex consisting of a reverse transcriptase (TERT, telomerase reverse 
transcriptase) and a guide RNA (TERC, telomerase RNA component) (a). Telomerase is tightly regulated by the shelterin complex and expression and activation is 
detectable in embryonic or induced pluripotent stem cells as well as in most malignant cell types.
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occurs at the very sites (bends, branches, and bifurcations) where 
the most severe atherosclerotic lesions typically occur. 

This pathologic cycle could potentially be reversed by 
therapeutic extension of telomeres.9, 13 Previously, we have 
shown that aged human aortic endothelial cells manifest many 
attributes of a senescent vasculature, including reduced ability to 
proliferate and respond normally to shear stress, to generate nitric 
oxide, and to resist adhesion of leukocytes. When we transfected 
these endothelial cells using a lentiviral vector to overexpress 
telomerase, these senescent properties were reversed. Telomerase-
transfected endothelial cells made more nitric oxide, manifested 
fewer adhesion molecules, were less adhesive for mononuclear 
cells, and had greater replicative capacity. Such changes would be 
expected to reduce the progression of atherosclerosis if vascular 
regeneration by telomere extension could be achieved in patients 
(Figure 2). 

However, use of a viral vector that integrates the gene for 
telomerase in a human cell is unsafe since it could cause a 
malignant transformation of the vasculature. Another approach is 
to use therapeutic RNA to transiently express proteins of interest 
for a defined period of time.31 Indeed, we recently assessed the 
effect of modified mRNA encoding telomerase in senescent 
human cells and found that it can increase telomere length and 
replicative capacity.32 However, such an approach would require 
a method for delivering the therapeutic RNA to the vasculature. 
Because of the ubiquitous nature of RNases, therapeutic RNA 
would have a very short half-life without some protection. 
Furthermore, RNA provided systemically would be expected to 
activate innate immunity, potentially causing severe side effects. 
These problems may be overcome by modifications of the RNA 
(e.g., modified nucleotides that reduce innate immune activation) 
as well as novel delivery devices. The differential expression by 
senescent endothelial cells of inflammatory surface markers such 

as ICAM-1 and VCAM-1 offers a potential target for enhancing 
delivery. Tasciotti’s group has shown that functionalized 
nano- and microparticles are capable of releasing therapeutic 
molecules to sites of inflamed endothelium.33 In these studies, 
anti-inflammatory drugs or other therapeutics may be packaged 
into nanoparticles that are partially composed of autologous 
leucocyte membranes. The interaction of the leucocyte surface 
markers with the inflammatory surface markers on the inflamed 
endothelium allow region-specific release of the therapeutic 
agent. 

Summary and Conclusions
Cardiovascular disease remains the greatest cause of 

morbidity and mortality worldwide, and cardiovascular 
senescence is a major contributor to the progression of 
atherosclerosis and other degenerative vascular diseases. A 
strategy of cardiovascular regeneration could attenuate or 
reverse vascular senescence and reduce the progression of 
vascular disease. Targeting the endothelium using nanoparticles 
that preferentially deliver RNA encoding telomerase is one such 
strategy. Endothelial regeneration would be expected to slow or 
reverse vascular diseases and may provide a higher quality of 
life to the aging population. 
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