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INTRODUCTION

Companies such as Google and Amazon exemplify 
successful learning systems, where the system learns 
from every customer interaction and iteratively improves to 
provide a better user experience or a more refined product 
recommendation for the next customer. Despite its immense 
promise, this efficiency in processing and analyzing big 
data to improve outcomes has not been realized in health 
care.1 Even today, most high-quality clinical evidence takes 
years to generate and disseminate.2 Nevertheless, health 
systems generate voluminous amounts of health care data 
that provide ample learning opportunities.3 The McKinsey 
Global Institute estimated that applying big-data analytics 
could generate up to $100 billion in value annually across US 
health care systems through broad improvements, including 
clinical trial efficiency, safety monitoring, payment innovation, 
administrative efficiency, and disease prevention.4

However, the opportunities are largely untapped despite the 
current technology that is well within the reach of effectively 
leveraging such data.5 These data continue to exist in silos, 
and the limited interoperability between major electronic health 
record systems slows the effective use of enormous data in 
generating new knowledge.6 The COVID-19 pandemic has put 
into bright relief the inability of health systems to rapidly learn 
from experience. Few health systems were well positioned 
to glean insights from the volumes of patients admitted with 
COVID-19 or to collaborate across systems.7 Agile responses 
were restricted to those who had the information systems in 
place that could be directed toward producing the needed 
knowledge at a rapid pace.8

In 2007, The Institute of Medicine proposed the concept of 
the learning health system, a conceptual model for continuous 
learning and knowledge generation embedded in the daily 
practice of medicine.9 It set a framework for health systems to 
improve outcomes with efficient utilization of data, similar to 
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Figure 1.
This figure shows similarities between the learning system successfully 
realized in companies and aspired in health care. Amazon improves the 
system via every web page click to increase profit. This efficiency has not 
materialized in health care to leverage the information gathered in every 
patient interaction to improve patient outcome.
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what is being achieved in the information technology sector 
(Figure 1). After more than a decade since it was proposed and 
even after some accomplishments, the learning health system 
remains to be fully actualized.

WHAT IS AN IDEAL LEARNING HEALTH SYSTEM?

An ideal learning health system rapidly turns electronic health 
data into actionable knowledge in almost real time, contributing 
to a collective wisdom that enables each patient to benefit from 
the experiences of prior patients. Electronic health data include 
a variety of sources such as text data from provider notes, 
image data, laboratory values, diagnostic codes, continuously 
measured vital signs, data from personal digital devices (eg, 
wearables), and data captured in devices such as mechanical 
ventilators and cardiopulmonary bypass machines. In the era 
of digital medicine, effective use of the data requires rapid 
data capture, efficient data processing and analysis, and 
interpretable and actionable data output.

These processes should be automated and optimized such that 
the generation of data in electronic health data systems can 
seamlessly translate into an output delivered to the bedside in 
near real time. These outputs can provide value by conveying 
information about risk and patient response—for example, the 
probability of the patient experiencing readmission in the next 
30 days, or the likelihood that the patient would benefit from a 
certain medical product(s), diagnostic test strategy, surgery, 
or other health care intervention. These systems can also help 
with diagnoses by leveraging pattern recognition. Ideally, such 
outputs would be available at the point of care to maximize the 
use of time-sensitive information and to inform timely clinical 
decision making for individual patients. In addition, an ideal 
system would automate the iterative learning process to rapidly 
refine algorithms. Although the infrastructure and technology to 
achieve each of these steps already exist, such platforms have 
not materialized to a large extent. As the Institute of Medicine’s 
report emphasized, data utility and a digital platform form key 
components to realizing the ideal learning health system.10

SCOPE OF THE PROBLEM

In addition to predictive analytics, the learning health system 
can feed discovery, comparative effectiveness, and experimental 
research designs. The current approach in clinical research 
is slow, expensive, and rigid. For example, a clinical trial takes 
5 years on average from the time of design to publication in a 
peer-reviewed journal,2 and the median estimated cost of trials 
testing therapeutic agents that were approved by the US Food 
and Drug Administration (FDA) between 2015 and 2016 was 
$19 million.11 Also, despite the value of adaptive trials, they are 
hard to implement largely because of the slow accumulation 

of data. In the time it takes to recruit subjects and collect data, 
the drug and/or intervention of interest may become obsolete 
or be used for slightly different clinical indications, whereby 
the study loses its relevance. Another problem is that trial 
inclusion criteria may be so limited that the resulting data is not 
considered inclusive enough to inform optimal therapy in real-
world situations.12 Additionally, the estimation of average effect 
size in a clinical trial cohort may not necessarily inform whether 
or not a particular patient with differing demographics or clinical 
characteristics would actually benefit from the therapy.

There are similar issues of delay, cost, and complexity when 
using data to assess health care quality. For example, several 
states publicly report center- and provider-level outcomes 
for percutaneous coronary interventions and coronary artery 
bypass graft surgery, but performance in a given year is 
published 3 years later.13 The Society of Thoracic Surgeons 
Adult Cardiac Surgery Database distributes center- and 
surgeon-level quarterly reports, but this process is also delayed 
by the manual data abstraction process with the lag of at least 
several months.14 Therefore, data collection and reporting 
mechanisms limit timely response to the reported outcomes.

WHAT HAS BEEN DONE?

Electronic Health Record Data

Electronic health record data may provide an opportunity to 
generate high-quality evidence that reflects real-world practice 
and behaviors faster and with less effort. In addition, investing 
in an effective data platform may allow use of data that have 
traditionally been underutilized—such as information streams 
from mechanical ventilators, continuously monitored vital 
signs and telemetry, and cardiopulmonary bypass—to better 
assess and guide clinical care.5 These data streams can feed 
observational and experimental research in ways that enable 
faster, more accurate data acquisition.

To use health system data in research, it must be stored at the 
institutional level and easy to retrieve and process. Current 
electronic health record systems may house the bulk of the 
data, but continuous physiologic data and data captured in 
cardiopulmonary bypass machines and mechanical ventilators 
are often stored elsewhere in a separate local database. 
Effective storage of this massive data from multiple sources has 
been accelerated by distributed storage and cloud computing, 
allowing for parallel processing of computationally expensive 
tasks.15 Also, electronic health records are often not labeled in 
ways that make the information easy to aggregate and analyze; 
however, machine learning approaches can help with consistent 
and accurate data mapping without requiring substantial 
resources.
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One advance in fostering the interoperability of data platforms is 
the Common Data Model (CDM), which provides a shared data 
language that applications can use. This type of model has a 
set of standardized data schema that represent commonly used 
concepts. An example is the Observational Medical Outcomes 
Partnership (OMOP) CDM that was developed by the 
Observational Health Data Sciences and Informatics (OHDSI) 
group.16 With OMOP, health systems can generate evidence 
using standardized tools. Fast Healthcare Interoperability 
Resources (FHIR) is a standard describing data formats and 
an application program interface that is used to unify multiple 
CDMs.17

One challenge with data platforms is that many exist within 
proprietary systems that constrain choices. However, they may 
be enabled by an open-source software framework for distributed 
storage and scalable, parallel data processing, which allows 
effective storage of massive data from multiple sources.18 Using 
this type of platform, our group developed an integrated data lake 
to store large health care datasets that can be accessed in near 
real time and transformed into CDMs fit for purpose.19 One feature 
of this platform is the ability to store and analyze longitudinal 
physiologic monitoring data such as vital signs and ventilator data. 
Another key feature is the ability to map, organize, and analyze 
data in almost real time. The data lake can leverage an analytic 
layer that provides exceptional computing capability. We are also 
in the process of integrating genomic data. In cases such as 
the COVID-19 pandemic, where efficient use of rapidly evolving 
data is needed, the versatility of this agile analytics platform 
allowed us to rapidly shift our focus to COVID-19–related topics, 
providing near real-time analysis of the data necessary to support 
operational intelligence, clinical care delivery, and advanced 
discovery.20 In such cases where a rapid and complex diagnosis 
is critical, computed phenotypes of patients based on almost real-
time clinical data are also valuable.21

The rapidly increasing volume of data often makes it impractical 
to store all relevant data at a single, central location. This 
problem gave rise to the concept of “federated optimization,” 
in which analytical algorithms are tuned locally (ie, at each 
hospital), and the pooled results are used to update and 
improve the central model.16,22 A successful example of this is 
the OHDSI collaboration, which consists of an international data 
network with 11 data sources, using OMOP.16 This federated 
approach may bypass many issues encountered in the data 
centralization approach taken by large clinical registries. For 
example, the Society of Thoracic Surgeons database and the 
National Cardiovascular Data Registry depend on each hospital 
to collect data according to a standardized form and submit 
the data to a central repository. While this approach bypasses 
the interoperability issues between institutional electronic 
health records, the standardized collection of patient-level data 

is resource intensive and, by its nature, reductionist because 
information is lost when translating into case report forms. 
Additionally, there is an increasing concern about data security, 
even in de-identified data, because triangulation of de-identified 
individuals becomes easier with a large volume of ancillary 
data.23 This centralized approach may also create an asymmetry 
in benefit between the local sites and the central data manager, 
as the local sites bear the burden of data collection while 
benefits derived from the data may be harvested by the data 
manager.22 Therefore, federated models of data utilization may 
become an effective complement for the learning health system.

Another emerging approach is to support each patient’s agency 
over their data. Bringing together an individual patient’s data 
is a challenge when it is often scattered across multiple health 
care systems. Interoperability between electronic health record 
vendors has progressed slowly and remains limited despite 
the Health Information Technology for Economic and Clinical 
Health Act of 2009. Consequently, it is difficult to understand 
the health course of a patient being treated at multiple health 
care systems. Studying simple outcomes such as medication 
use and readmission over the long term remains a major 
challenge outside of payer-specific claims databases such as 
Medicare datasets,24 which is a limited population and often 
lack granularity such as laboratory and imaging data.

User-mediated health information exchange enables people 
to assemble their own longitudinal record across venues, 
ultimately producing an integrated record of the patient 
experience that feeds into research and clinical care.25 In this 
approach, a digital platform facilitates access to patients’ 
own medical records through each hospital system’s patient 
record portal, allowing patients to centralize all of their health 
records in one place, even data from pharmacies, payors, and 
wearable devices (Figure 2). Patients may then choose to 
share the data for specific clinical uses or research projects. 
By empowering patients to be the hub of their own health care 
data, this approach may foster research partnerships, bypass 
the interoperability issues across different electronic health 
record vendors, and benefit patients by providing a platform to 
keep track of their health records. From a research perspective, 
with a patient’s permission, this may help create a repository of 
more comprehensive longitudinal health care data, unlike most 
current clinical databases that are tied to providers, institutions, 
or payors. Such platforms can enable patients to partner with 
their clinicians or with researchers to share their data, improve 
the data about their care, and drive research forward.

Advanced Analytics

The promise of advanced analytics applied to high-dimensional 
health care data is just on the horizon. Such approaches could 
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help with prediction, pattern recognition, causal inference, 
computational phenotyping, and treatment matching. Diagnosis 
has perhaps been the most successful application of these 
methods. Machine and deep-learning approaches have 
successfully leveraged various data from unconventional 
sources to demonstrate the algorithms’ diagnostic capacity, 
which is comparable or even superior to that of clinicians.26,27 
Although large-scale implementation of such algorithms and 
their impact on improving patient outcomes remain largely 
unexamined, these examples represent a major step forward in 
realizing a next-generation learning health system.

The use of sensors is also showing promise, although it has 
not yet been fully realized. For example, Yan and colleagues 
have twice shown that high-throughput screening for atrial 
fibrillation may be possible by using video recordings of 
patients’ faces in lieu of an electrocardiogram or even physical 
contact with the patient.26,28 The algorithm they developed 
using deep convoluted neural networks successfully 
discriminated 20 individuals who were experiencing atrial 

fibrillation from 24 individuals in sinus rhythm, with a sensitivity 
of 94%, specificity of 98%, positive predictive value of 
98%, and negative predictive value of 94%.26 Other such 
examples include use of a screening electrocardiogram for 
the automated diagnosis of hyperkalemia27 and left ventricular 
dysfunction29 and identification of malignancies from various 
imaging sources.30,31

Some of the algorithms have already gained the approval of 
regulatory agencies. For example, deep learning algorithms 
demonstrated excellent performance in diagnosing diabetic 
retinopathy using retinal fundus photographs,32 and the FDA 
approved this software (IDx-DR) for clinical use.33 As more 
such software gains FDA approval, researchers are beginning 
to study how its implementation in the clinical arena may impact 
outcomes and costs of caring for these patient populations. 
Early evidence suggests that the use of advanced analytics may 
improve tailoring of treatment through improved phenotyping 
of diseases. Bhargava and colleages, for example, found that 
a machine learning algorithm detected critical variations in 
the stromal morphology of prostate cancer in black and white 
patients that prognosticated cancer recurrence.34 There are 
many other publications touting analytic approaches, and it is 
likely that we will soon see many such algorithms integrated into 
practice.

WHAT NEEDS TO BE DONE?

Implementation, Value Validation, and Algorithm Regulation

There are abundant reports of the use of big data and 
advanced analytical techniques demonstrating superior 
predictive performance compared with a conventional 
approach. Even so, there is little evidence regarding their 
implementation in clinical practice and validation that they 
add value in the real-world clinical setting. Several trial results 
evaluating the efficacy of analytical algorithms in improving 
clinical outcomes are much awaited. Moreover, defining the 
lifecycle of novel algorithms and determining how they should 
be regulated by governing agencies remain active areas of 
interest.35,36 Algorithms turned into software for clinical use 
instigated recognition of “Software as a Medical Device” 
(SaMD)—a term defined by the International Medical Device 
Regulators Forum (IMDRF) as “software intended to be used 
for one or more medical purposes that perform these purposes 
without being part of a hardware medical device.”37 This effort 
by the IMDRF to provide a harmonized approach for regulating 
how SaMD will be used for clinical evaluation is critical and 
timely to address unique challenges of such software that 
are not well regulated in the existing framework for devices. 
Nevertheless, we are still early in optimizing our approach to 
software oversight.

Figure 2.
Model for patient as the holder of health care data. Hospitals often have 
interoperability issues to automatically share patients’ health records 
(red cross). Empowering patients to centralize their health care data could 
form a meaningful research partnership and create efficient ways to help 
the next patient.
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Additionally, predictive analytics that depend on historical data 
must be cautiously evaluated for potential bias that resides in 
the data,38 eg, sex- and race-based differences in outcomes 
and quality of care that exist in cardiovascular disease. Using 
algorithms trained on historical data that harbor potential 
sources of human biases can unintentionally propagate this 
problem.

Finally, we must remain cognizant that the current paradigm 
of treatment decisions is based on a group-level average of 
treatment effects. This approach may obscure individuals 
who, based on specific phenotypes, are actually harmed by a 
treatment that is beneficial to the group when the outcome is 
averaged.

Data Privacy and Access

Improvement in the way data are being used must be 
accompanied by the disruption of the current health care data 
market, which allows hospitals and companies to monetize 
patient health care data. Poor interoperability between 
electronic health record systems developed by different 
manufacturers promotes the way these data are treated as 
proprietary assets by limiting access. Although patient-directed 
centralization of health records through a digital platform may 
be a partial solution, a system-wide solution is needed to 
allow for a more efficient way of liberalizing health care data 
trapped in silos. At this juncture, the limited interoperability and 
modifiability of such electronic health record platforms, even 
within health systems, represents one of the largest barriers 
towards a rapidly adaptive learning health system.

Additionally, integration of multiple data sources must be 
done in a secure way with patients’ permission. Ownership 
of patients’ health care data is becoming increasingly 
controversial with a significant market interest.39,40 For 
example, there is the famous Dinerstein v Google case, in 
which a patient sued Google and the University of Chicago for 
turning over thousands of patient data that could triangulate 
a unique individual even without the identifiers that the Health 
Insurance Portability and Accountability Act (HIPAA) currently 
regulates.41 This case illustrated the inability of HIPAA to 
address contemporary privacy issues that are unique to the 
enormous scale of data. The current law is poorly equipped to 
answer the simple question of who owns health care data42 and 
urgently requires modernization to provide accountability and 
transparency to the data-sharing process.

Clearly defining and regulating access to health care data are 
critical because the medical record request form in about half of 
all hospitals does not provide an option for patients to acquire 
the entire medical record that they are entitled to by federal and 

state law.43 Efforts are underway to promote patient data agency 
by giving patients the option to share their data for research 
purposes, and this may be a way to drive people-powered 
generation of knowledge.25,44

The 21st Century Cures Act by the US-based Office of the 
National Coordinator for Health Information Technology (ONC) 
was created in 2016 to promote interoperability and patient 
access to health care records.45 This act was notable in that 
it prohibited information blocking, defined as “a practice by a 
health care provider, health IT developer, health information 
exchange, or health information network that…is likely to 
interfere with, prevent, or materially discourage access, 
exchange, or use of electronic health information.” The act 
also specified examples of information blocking, including (1) 
imposing formal or informal restriction on access, exchange, or 
use of electronic health information, and (2) discouraging efforts 
to develop or use interoperable technologies or services by 
exercising influence over customers, users, or other persons.46 
The recent rules from ONC and the Centers for Medicare & 
Medicaid Services make tangible the aspirations of the act and 
will further advance this agenda. Thus, while the full promise of 
interoperability is yet to be delivered, a learning health system 
must strive towards it and ensure that health care organizations 
abide by these rules.

CONCLUSIONS

The digital era presents unprecedented opportunities to improve 
health care, and many promises are on the cusp of being 
actualized. Significant advances include the use of advanced 
predictive analytics that leverage unconventional data source; 
creation of data science platforms that enable centralization 
and analysis of rich health care data; awareness and 
discussions surrounding data security, privacy, and ownership; 
and regulation of advanced analytical algorithms. Remaining 
challenges include large-scale clinical implementation of 
analytical algorithms and demonstration of clinical benefit, 
improving interoperability of data storage mechanisms, and 
promotion of value and quality through disruption of the current 
health care data market.
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