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ABSTRACT
Here, we describe our process of developing Range Mapper, a new set of online 
interactive and animated visualizations of plant taxon range shifts since the Last Glacial 
Maximum. These animated maps of taxa distributions since the last deglaciation, based 
upon spatiotemporal networks of fossil occurrences, offer adaptable visualizations of 
species range shifts in response to past climate and other environmental changes. They 
are designed to be useful both for experts for quick-look insights into past patterns and 
processes at broad scales and for educators and science communicators interested in 
sharing knowledge about how species adapt to changing climates. Prior generations 
of animations, such as Pollen Viewer, lacked open-source code and so were not easy 
to update, and the underlying software no longer complies with internet security 
standards. Range Mapper maps data from the Neotoma Paleoecology Database using 
CARTO VL, an open-source JavaScript library for creating dynamic and modifiable web 
maps that interoperates with CARTO’s software-as-a-service platform. Specifically, 
we downloaded, processed, and temporally interpolated 2,635 georeferenced pollen 
records from Neotoma ranging from 21 thousand years ago (ka) to present. Then, we 
created maps for North America, Europe, and Oceania using Carto VL’s web mapping 
features to build the spatiotemporal animated sequences, define visual design 
parameters, and add interaction controls. Range Mapper illustrates major shifts in taxa 
distribution over the last 21 k years on all three continents. All workflows are publicly 
available on GitHub and Zenodo, allowing interested users to extend this approach to 
other taxa, regions, and times. 

CORRESPONDING AUTHOR:

Adrian K. George

1 Department of Geography, 
University of Wisconsin−
Madison, Madison, USA

aegeorge2@wisc.edu

KEYWORDS:
animated map; 
geoinformatics; pollen; 
Quaternary; range shifts; 
science communication; 
software as a service (SaaS); 
vegetation dynamics

TO CITE THIS ARTICLE:
George, AK, Roth, RE, Widell, 
S and Williams, JW. 2023. 
Range Mapper: An Adaptable 
Process for Making and Using 
Interactive, Animated Web 
Maps of Late-Quaternary Open 
Paleoecological Data. Open 
Quaternary, 9: 1, pp. 1–13. DOI: 
https://doi.org/10.5334/oq.114

*Author affiliations can be found in the back matter of this article

mailto:aegeorge2@wisc.edu
https://doi.org/10.5334/oq.114
https://orcid.org/0000-0003-1899-6179
https://orcid.org/0000-0003-1241-318X
https://orcid.org/0009-0001-0246-4998
https://orcid.org/0000-0001-6046-9634


2George et al. Open Quaternary DOI: 10.5334/oq.114

INTRODUCTION

Here, we describe our process for developing Range 
Mapper, a new series of online interactive and animated 
visualizations of plant taxon range shifts since the Last 
Glacial Maximum (LGM). Open scientific databases have 
proliferated over the last few decades (Diepenbroek 2018; 
Peters & McClennen 2016; Uhen et al. 2013; Williams et al. 
2018b), offering new opportunities for both research and 
education. Many of these databases use free and open-
source software (FOSS), common data standards, and 
online cartographic and visualization libraries to allow 
scientists, educators, and the broader public to explore 
patterns and trends in the data. For example, Ocean Data 
View, a tool to visualize large oceanographic data, allows 
users to upload and store datasets, then create maps 
and calculate statistics (Schlitzer 2015). The Paleobiology 
Database Viewer allows users to examine fossil deposits 
by location, by geologic period, by taxon, and through 
diversity over time (Peters & McClennen 2016). The 
Interdisciplinary Earth Data Alliance brings together 
multiple geochemical and geological databases and 
allows the creation of multi-layered maps, 3-D models, 
heat maps, and more (Carter-Orlando et al. 2017).

The Neotoma Paleoecology Database (Neotoma) is an 
open-access, community-curated data resource (Williams 
et al. 2018b) composed of a coalition of constituent 
databases and managed by expert data stewards 
(Williams et al. 2018a). Neotoma holds a wide range of 
paleoecological and paleoenvironmental data including 
pollen, vertebrate fossils, insects, testate amoebae, 
diatoms, ostracods, and stable isotopes. Neotoma’s 
data collection is growing, with active data mobilization 
campaigns for the African Pollen Database, European 
Pollen Database, Latin American Pollen Database and 
the Indo-Pacific Pollen Database (Flantua et al. 2015; 
Fyfe et al. 2009; Giesecke et al. 2017; Grimm et al. 2018; 
Vincens et al. 2007). The Neotoma software stack and 
its foundational application programming interface 
(API) services support a series of user-oriented software, 
including the neotoma2 R package (https://github.
com/NeotomaDB/neotoma2/) and Neotoma Explorer, 
a mapping interface that allows users to filter and view 
records based on criteria including taxon, geographical 
extent, and time period (Williams et al., 2018a).

Pollen Viewer was a once popular, but now-defunct 
Java applet for viewing past range shifts in northern 
and eastern North America (Figure 1, Leduc et al. 1998; 
Williams et al. 2004), based on data from the North 
American Pollen Database, now migrated into Neotoma. 
Even before Pollen Viewer ceased to operate, its underlying 
maps were increasingly out of date, because the 
interpolated GIFs were based on mapped data syntheses 
conducted in the late 1990s and early 2000s (Shuman 
2002; Williams et al. 2004) and did not incorporate new 
sites or advances in age-depth modeling. The neotoma2 R 

package uses the Neotoma API to support data retrievals 
from Neotoma and data searches for sites, chronologies, 
publications, and more that match search parameters – 
e.g. spatiotemporal boundaries, taxa, or author (Goring 
et al. 2015). Several third-party applications now use the 
Neotoma API or R package to generate fossil distribution 
maps for expert and public audiences (Loeffler et al. 
2021; Martin & Harvey 2017), but no resource yet 
supports interactive, dynamic, and modifiable mapping of 
past species distributions from Neotoma data holdings. 
Creating visualizations that are readily adaptable to 
different regions, taxa, and time periods is essential to 
maximize the potential for open scientific databases to 
serve broad and diverse user communities.

Further, the increasing number of software-as-a-
service (SaaS) web mapping resources have opened new 
opportunities for both making and using visualizations 
of open scientific databases (Roth et al. 2014). SaaS 
describes a model in which a client uses services from 
a provider’s software and receives technical assistance, 
through direct payment for services or institutional 
service licenses (Turner, Budgen & Brereton 2003). Cloud-
based resources for geovisualization allow quick views 
of spatiotemporal patterns contained within large data 
and also lower barriers to developing high-quality new 
visualizations by reducing the level of expertise required. 
The resulting open-source workflows can be readily 
adapted to support authentic place-based teaching and 
science communication (Myrbo et al. 2018).

In this article, we describe our reusable and 
adaptable process for harnessing open source and 
SaaS web mapping resources to visualize Neotoma 
paleoecological records in the newly developed Range 
Mapper (https://geography.wisc.edu/rangemapper/). 
Specifically, we draw on CARTO (formerly CartoDB), a 
commercial cloud-computing platform that provides 
database management, geospatial analysis, and 

Figure 1 GIF of Pollen Viewer, a now-defunct Java applet, 
that provided a dynamic visualization of post-glacial range 
dynamics for various North American plant taxa, based on 
an interpolated surface of fossil pollen data from the North 
American Pollen Database ca. 1999 (Leduc et al. 1998, Williams 
et al. 2004).

https://github.com/NeotomaDB/neotoma2/
https://github.com/NeotomaDB/neotoma2/
https://geography.wisc.edu/rangemapper/
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interactive and animated web mapping for large 
spatiotemporal datasets (https://carto.com/). Range 
Mapper uses the CARTO Vector Library (VL) to visualize 
networks of fossil pollen data for three regions—North 
America, Europe, and Oceania—to show the shifting 
distributions of selected plant taxa since the LGM. In the 
following sections, we describe our methods and design 
considerations, showcase example visualizations, and 
explain the underlying workflows to support future use 
and adaptation of Range Mapper and CARTO for other 
biodiversity and paleodata mapping contexts.

METHODS

The creation of Range Mapper followed a two-stage 
process: data acquisition and processing in R and 
subsequent web mapping in CARTO. We designed the 
methods and walkthroughs to be understandable to 
users with some paleoecology or ecology background 
and a wide range of experience with coding. 

We used the neotoma2 R package and the underlying 
Neotoma API to download and process pollen data 
(Figure 2). We downloaded all records from 21 thousand 
years ago before present (ka BP) to present in bounding 
boxes for North America, Europe, and Oceania. The total 
download included 3,432 unique records. We included 
these North American woody taxa: Alnus (alder), Fagus 
(beech), Picea (spruce), Pinus (pine), Quercus (oak), Tsuga 
(hemlock), and Ulmus (elm), and herbaceous taxa: 
Ambrosia (ragweed), Cyperacaeae (sedges), and Poaceae 
(grasses). For Europe, we selected Alnus (alder), Fagus 
(beech), Picea (spruce), and Quercus (oak). We included 
the Oceanian taxa: Nothofagus (southern beech), Callitris 
(cypress-pine), Phyllocladus (celery pine), Casuarina 

(she-oak), and Eucalyptus (eucalyptus). These taxa were 
chosen because of their widespread abundance and to 
highlight known past dynamics of interest; other users 
interested in developing variants of Range Mapper could 
choose different taxa. In R, we removed records with 
uncalibrated radiocarbon time series as their default and 
without the above taxa of interest, resulting in a filtered 
dataset of 2,635 unique records and 139,720 samples.

We then calculated the percentage of each taxon 
found at a site at a given time, relative to sums of all 
upland herbs and trees for that site and time, using 
Neotoma’s ecological groupings, which are ecological 
and taxonomic sets used when organizing stratigraphic 
diagrams and taxa lists (Goring 2022). Sites were 
not shown for a taxon if zero pollen grains of that 
taxon were reported for the site and timestamp being 
mapped. Although pollen analysts sometimes use non-
zero minimum pollen percentages for each taxon to 
determine presence/absence, for Range Mapper, a taxon 
is mapped as ‘present’ if at least one grain is reported for 
a given site and time period, but low-abundance samples 
are visually downweighted relative to high-abundance 
samples through the proportional symbol size. Then, 
we did a simple temporal interpolation and binning of 
the samples in each record, in which we rounded the 
year of each sample to the nearest 500 years (yr) and 
averaged the pollen percentages for each taxon across 
all samples in each 500-yr time interval. We exported 
the CSV tables of the interpolated pollen data from R. 
We provide two R Markdown documents: 1) a simplified 
walkthrough file for others wishing to make their own 
variant of these dynamic maps and 2) the methods file 
for full reproducibility, at Zenodo (https://zenodo.org/
record/7600912) and at the Github repository (https://
github.com/NeotomaDB/RangeMapper/tree/master/

Figure 2 Flowchart showing methods for generating the Range Mapper animated maps; objects are in square boxes while actions are 
in diamonds. We used the neotoma2 package in R (top, in gray) to select taxa (trees icon), time period (clock icon), and location (map 
icon), download datasets (online web services such as the Neotoma database represented by stacked circle icon) from the Neotoma 
server, and process the datasets. We then uploaded the pollen datasets and ice sheets (stepped hill icon) to the CARTO server and 
formatted the interactive map using the CARTO VL JavaScript library in an HTML document (bottom, in white). Each time the Range 
Mapper page loads, data are downloaded from the remote CARTO server, and layers are created and added to the map.

https://carto.com/
https://zenodo.org/record/7600912
https://zenodo.org/record/7600912
https://github.com/NeotomaDB/RangeMapper/tree/master/workflows
https://github.com/NeotomaDB/RangeMapper/tree/master/workflows
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workflows). Then, we created an account in CARTO 
and uploaded the CSV tables for each continent to our 
CARTO account. We also uploaded the publicly available 
North American and European ice sheet files for the LGM 
and deglaciation from Dalton et al. (2020) and Hughes 
et al. (2016), each of which comprise sets of polygons 
representing continental ice sheet extents at multiple 
time periods, to our CARTO account in JSON format 
(JavaScript Object Notation, a popular data standard for 
web mapping).

Once the CSV tables were uploaded to CARTO, we 
leveraged CARTO VL to create free-to-use, dynamic web 
maps of fossil pollen abundances for Range Mapper. 
CARTO VL is a custom, open-source Javascript library 
that interacts with proprietary CARTO SaaS APIs to build 
custom maps through in-browser vector rendering 
and thus requires a free educator/student license or 
paid commercial license (https://docs.carto.com/faqs/
categories/carto-for-education/) to make new maps 
but not to use hosted maps. We set up a web directory 
including an HTML file with code to create the map 
document and widgets, set animation parameters for 
taxa and ice sheets, and create the map layers (Figure 2). 
To access our data, we entered our username, API key, 
and the name of the CSV into the HTML file. 

The CARTO VL package enables compact setting of 
parameters for each animated map visualization. For 
example, CARTO VL uses the filter parameter to animate 
a map. We set filter equal to @animation. Then, we define 

the @animation variable as an animation that proceeds 
through the values in the time column of the data frame 
from -21 ka to 0 a BP. We also input values for the initial 
animation duration and the fade duration, indicating 
how long the symbol will appear on the map before and 
after its timestamp to make a smooth visual transition 
between timestamps. To create the proportional symbol 
for the pollen percentage of the taxa, we set the width 
parameter to be equal to the samples column in the data 
frame (which holds pollen percentages), multiplying this 
value by the formula for apparent magnitude scaling, 
so that users will interpret the proportional symbol size 
correctly (Flannery 1971). We first implemented the 
web directory for the North American data frame and 
later modified the HTML document to integrate the 
data frames for North America, Europe, and Oceania. 
We also built a custom user interface using JavaScript 
for the loaded layers (Figure 3). We modified CARTO VL 
example code to create the time control and interactive 
taxa components, and built the continent selection 
dropdown menu, the proportional symbol legend, and 
the acknowledgements sidebar from scratch.

All workflows are posted to GitHub (github.com/
NeotomaDB/RangeMapper) and Zenodo (https://zenodo.
org/record/7600912), so that other interested users can 
extend this approach to other regions, times, and taxa. 
The GitHub repository includes the actual workflows used 
here and the introductory R Markdown and CARTO VL 
walkthroughs for pollen and mammal data.

Figure 3 Annotated screenshot of Range Mapper, showing its five panels: the central map, the selector panel for choice of continent, 
time control panel with buttons and sliders, the interactive taxa legend, and the acknowledgements sidebar. Other graphical 
elements include the interactive zoom bar and the proportional symbol legend with woodrat icon representing Neotoma. The time 
control panel allows changes to rate of animation and play/pause, while the interactive taxa legend allows individual selection of 
taxa for display. Symbol proportion is scaled to pollen percentages calculated as a sum of upland plant taxa. Pollen data are drawn 
from Neotoma, while ice sheet extents for North America are from Dalton et al. 2020.

https://github.com/NeotomaDB/RangeMapper/tree/master/workflows
https://docs.carto.com/faqs/categories/carto-for-education/
https://docs.carto.com/faqs/categories/carto-for-education/
https://zenodo.org/record/7600912
https://zenodo.org/record/7600912
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RESULTS

The Range Mapper interface includes five component 
panels: the map, the widget panel with options 
for animation playback, an interface for continent 
selection, another interface for taxa selection, and the 
acknowledgements sidebar (Figure 3). The map, which 
also includes graphical elements for the proportional 
symbol legend and the interactive zoom bar, visualizes 
the pollen percentage for each taxon and ice sheet 
extent for each time step. Using the animation playback 
controls, the user can jump to a selected time step as well 
as play, pause, slow down, and speed up the animation. 
Changing the continent selection via the drop-down 
menu recenters the map on the continent of interest and 
loads its taxa. The user can add or remove taxa from the 
map by clicking a taxon’s name on the interactive taxa 
legend. The proportional symbol legend shows the size of 

a circle for 25, 50, and 100 percent pollen for reference. 
The user can zoom in/out and pan to different locations 
using the controls in the bottom left of the screen or 
directly manipulating the map with the mouse and 
mouse wheel.

The completed visualizations are interactive and 
illustrate major shifts in taxa distribution over the last 
21 kyr on all three continents. North America’s Range 
Mapper includes western North America, which has 
had few major mapped syntheses of late-Quaternary 
plant distributions (Figure 4) (COHMAP Members 1988; 
Thompson & Anderson 2000). Range Mapper shows 
the rapid changes during the early to middle Holocene 
(16-8ka BP), as well as the relative stability of eastern 
North American vegetation patterns during the full-
glacial period and the mid-to-late Holocene (Williams et 
al. 2004). The unique trajectories of different taxa and 
different taxa associations over time also are apparent. 

Figure 4 Range Mapper screenshots of North America. A) Tsuga, Fagus, and Poaceae distributions at 14, 6, and 4 ka BP. Vegetation 
changes shown here include the postglacial expansion of western hemlock (Tsuga heterophylla) and mountain hemlock (T. 
mertensiana) in the Pacific Northwest, eastern hemlock (T. canadensis) in the northeastern US, the widespread expansion of grass 
(Poaceae) in the Great Plains, and the beech (Fagus) population collapse in the mid Holocene. B) Screenshots of Quercus and Picea 
distributions at 15, 11, and 2 ka BP show the expansion of oak (Quercus) in eastern North America and the northwards range shift of 
spruce (Picea). Of all the taxa shown here, spruce shows the clearest signals of both leading-edge range exansion into newly suitable 
habitats and trailing-edge losses of populations at its southern margin.
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Picea expands northward earlier than other taxa and 
then declines across the eastern US from 10 to 8 ka BP 
(Jacobson, Webb & Grimm 1987; Webb 1986). Tsuga 
expands to the north and west from the east coast, while 
Quercus expands northwards across the Northeast and 
Midwest (Davis 1983). We can see the emergence of 
mid-Holocene Quercus-Poaceae savannah in the upper 
Midwest and that the ranges of Fagus and Tsuga did not 
always overlap as they do today (Williams et al. 2004). 
The massive deforestation and other land cover changes 
caused by EuroAmerican colonists during the last 200 
to 400 yr are less apparent in these maps (Webb 1973), 
because of the 500-yr bins used for the pollen data 
shown here.

In Europe, other prior mapped syntheses have 
described the major patterns in vegetation dynamics 
over the last 20 kyr (Brewer et al. 2017; Giesecke et al. 
2017; Huntley 1990), which Range Mapper effectively 
reproduces. Range Mapper shows the rapid northward 
expansion of Alnus, always near the edge of the ice sheet, 
from the end of the Quaternary onwards (Giesecke et al. 
2017). The three main refugial populations of Quercus on 
the Iberian peninsula, Italy, and Turkey/Syria between 21 
and 15 ka BP are also clearly visible at the beginning of 
the visualization (Brewer et al., 2002) (Figure 5). As the 
animation progresses, Range Mapper depicts the rapid 
range expansion of Quercus at the onset of Holocene 
warming, and the late Holocene expansions and 
westward shifts of Picea and Fagus population centers 
(Giesecke & Bennett 2004; Saltré et al. 2013). Interested 
users could readily add additional taxa to the European 
map to gain a more complete picture of taxa range shifts 
since 21 ka BP.

While Neotoma data for Oceania are still relatively 
sparse, some important patterns and population changes 
are visible (Figure 6). As Range Mapper shows, Tasmania 
has the highest regional density of records currently in 
Neotoma. Prior to 12 ka BP, Tasmania was connected 
to Australia, allowing species to disperse more easily 
between these now disconnected landmasses. While sea 
level rise is not currently captured by Range Mapper, a 
user could choose to add the layer relatively easily. Range 
Mapper clearly shows first the expansion of Eucalyptus 
in Tasmania between 11.5 and 9.5 ka BP and then the 
expansion of Nothofagus rainforests after ~9 ka BP (Beck 
et al. 2019). Nothofagus and Phyllocladus pollen often 
appear together, because they are both wet sclerophyll 
forest and rainforest taxa (Fletcher et al. 2014; Colhoun 
& Shimeld 2012). Starting at about 4 ka BP, fire-sensitive 
taxa, such as Nothofagus, declined in abundance, while 
fire-resistant taxa like Eucalyptus expanded (Beck et al. 
2019; Mariani et al. 2019), which is clear in Range Mapper. 
The higher values for fire-sensitive Casuarina pollen in 
northeastern Australia at about 10 ka BP are consistent 
with previously described vegetation and fire histories 
in the region (Haberle 2005). Range Mapper will soon 

support additional ecological research and education in 
the Oceania region, as a data mobilization campaign for 
Indo-Pacific pollen data is underway as part of the CABAH 
project (https://epicaustralia.org.au/). This campaign 
will allow researchers to do more regional studies on 
ecological change in Oceania, such this recent analysis of 
vegetation turnover of 24 sites in islands in the Bass Strait, 
Tasmania, and southeast Australia during the late glacial 
and early Holocene (Adeleye et al. 2021). This work will 
also situate these regional trends within global analyses 
designed to better understand the human, climate, and 
other drivers of past vegetation change, assess ecological 
sensitivity to climate change, and integrate pollen data 
into interdisciplinary research. As this work proceeds, the 
Range Mapper animations shown here can be readily 
updated to include new sites and taxa.

DISCUSSION

The Range Mapper visualizations draw upon open 
data resources for late-Quaternary fossil pollen and 
ice sheet distributions to provide broad and readily 
adaptable visualizations of past vegetation dynamics, 
in which climate change was a primary driver. The open 
workflows provided here offer increased flexibility in 
both the creation and use of interactive and animated 
web maps for displaying paleoecological data. The maps 
use proportional symbols, a visualization technique first 
used in palynology by von Post in hand-drawn maps of 
pollen data (von Post 1924), later were generated by 
computer, and now, are generated on the fly by the 
CARTO VL servers.

The data processing by CARTO VL servers simplifies 
the animation process by removing the need to create 
individual snapshot images for each time period, as 
was necessary with Pollen Viewer and other earlier map 
series (Bernabo & Webb 1977; Jacobson, Webb & Grimm 
1987; von Post 1924; Webb III et al. 1993; Williams et al. 
2004). Both Pollen Viewer and Range Mapper users select 
a taxon from a predefined list (Williams et al. 2004), but 
Range Mapper users can select any combination of taxa 
within the set of taxa shown, while Pollen Viewer offered 
a more limited set of pre-built multi-taxa combinations. 
This additional flexibility is especially useful for scientific 
hypothesis generation and exploratory exercises 
in university classrooms and is a major reason we 
chose proportional symbols over heatmaps or other 
visualization methods.

Proportional symbols encode information by varying 
symbol size rather than the symbol shape, color, 
texture, etc. Size is a salient visual variable that is 
perceived quantitatively (i.e., as a numerical gradient) 
and therefore enables greater visual discriminability of 
the symbolized data than maps reliant on the ordinally-
read (i.e., as ranked classes without easy numerical 

https://epicaustralia.org.au/
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Figure 5 Range Mapper screenshots of Europe at 15, 10, and 5 ka BP. Four iconic tree taxa are shown here: beech (Fagus), spruce 
(Picea), alder (Alnus) and oak (Quercus). Vegetation changes shown by Range Mapper include the known glacial refugia, the post-
glacial expansion of beech, the rapid range expansion of oak at the onset of Holocene warming, and the late Holocene expansion and 
westward shifts of spruce and beech population centers.



8George et al. Open Quaternary DOI: 10.5334/oq.114

Figure 6 Range Mapper screenshots of Oceania at 14.5, 7, and 1 ka BP. While Neotoma data for Oceania are still relatively sparse, 
phenomena such as the early Holocene expansion of Eucalyptus and Nothofagus in Tasmania are visible.
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estimate) visual variables such as choropleth and heat 
maps (MacEachren 1994). This perceptual advantage 
potentially is more important on animated maps that 
grow in visual complexity and may suffer from “change 
blindness”, or the inability to notice and attend to all 
important changes in animated maps (Fish, Goldsberry 
& Battersby 2011). Animated proportional symbols also 
evoke a visual metaphor of abundance increases or 
decreases at specific sites, versus areal spread (as with 
heat maps) or administrative change (as with choropleth 
maps) (Kraak et al. 2020), and therefore better showcase 
the Neotoma dataset for classroom and data-driven 
exploration. To replicate the ease of adding a Pollen 
Viewer animation to a presentation, we have created 
a separate Zenodo upload with MOV videos of selected 
single taxon and multi-taxa Range Mapper animations 
(https://zenodo.org/record/7626576).

Users can repeat and adapt the processes outlined 
in the Range Mapper R and HTML scripts for other 
regions, time periods, taxa, and paleoecological data 
types by following the instructions in the walkthrough 
documents on GitHub (https://github.com/NeotomaDB/
RangeMapper/tree/master/workflows) and the guides 
on the CARTO VL website (https://carto.com/developers/
carto-vl/). The scripts are already configured to process 
and visualize proportional data such as pollen abundance. 
Hence, users could readily create CARTO animations 
for other micropaleontological datasets in Neotoma 
(e.g., ostracod, diatom, and testate amoebae) with few 
alterations and limited coding knowledge (e.g., Amesbury 
et al., 2018). Some paleoecological data types may need 
further preparatory work or minor adjustments to these 
workflows. For example, one hurdle for mapping diatom 
data is the disconnect between classic systematics, which 
grouped species into genera based on characteristics 
that aided identification, and modern systematics, which 
arranges species based on phylogenetic relationships 
(Cox 2009). Reworking the diatom systematics, so that 
older records can easily be integrated into analyses, is in 
progress (D. Charles, pers. comm.). Terrestrial vertebrate 
records could be represented as points if presence-only 
information is available or proportional symbols for 
abundance data. 

The CARTO zoom and pan interactions allow detailed 
explorations of past vegetation dynamics at local to 
global geographic scales. Accordingly, Range Mapper 
can be readily extended to other regions and spatial 
resolutions to provide researchers with additional tools 
for hypothesis generation and conference presentation, 
while also enabling educators to create place-based and 
culturally relevant ecological examples for classroom 
instruction, e.g., mapping common plant taxa in their 
region. When extending to new regions, the primary need 
is to choose appropriate lists of taxa and time periods 
from Neotoma for mapping. We chose the last 21 kyr 
because there are many records and good radiocarbon 

dating control. Shorter time domains, e.g., for networks 
with high-precision chronologies for the last several 
thousand years, require only minor adjustments to the 
source code. A longer time domain, such as the last 
interglacial (Felde et al. 2020), also is feasible, but will 
result in an animation supported by sparser datasets and 
often more uncertain age constraints than shown here.

Range Mapper is supported by Neotoma’s open and 
well-vetted datasets. Neotoma follows a community 
curation model in which expert data stewards check 
taxonomy, age models, and other key information as 
they add new datasets into Constituent Databases that 
comprise Neotoma (Williams et al. 2018a). One potential 
limitation of Range Mapper is the varying quality of the 
age models used for the temporal interpolations. Range 
Mapper simply uses the available default age models in 
Neotoma, which will vary in the number and precision of 
their supporting age controls (Blois et al. 2011; Giesecke 
et al. 2014), the radiocarbon calibration curves chosen, 
or the choice of age-depth model. There is an ongoing 
effort to generate new and better age-depth models for 
Neotoma data holdings (Wang, Goring & McGuire 2019). 
While we removed datasets with only uncalibrated 
radiocarbon age models, the default age models of 
some older sites have not been updated with the most 
recent radiocarbon correction curve or preferred method 
of calculating an age model (e.g., Blaauw & Christen 
2011; Parnell et al. 2008). We chose not to calibrate the 
datasets with uncalibrated radiocarbon models, because 
the Range Mapper maps are intended primarily for first-
pass hypothesis generation, university-level education, 
and science communication, rather than full scientific 
analysis. However, as sites are added to or age models are 
updated in Neotoma, it is straightforward to occasionally 
run the Range Mapper R scripts and upload new versions 
of the CSV tables to CARTO to update the map’s datasets.

In contrast to Neotoma, which is an open-access 
database, and Range Mapper, whose scripts are freely 
available on Github, CARTO VL is proprietary software. 
All maps are free to use but uploading data and building 
and hosting maps requires a CARTO license. CARTO offers 
free licenses to educators and students and discounted 
licenses to researchers, education professionals, and 
universities but requires others to purchase an individual 
or institutional license after a free year-long trial. While 
CARTO’s for-profit model potentially limits the audience 
for Range Mapper’s modifiable workflows, most users 
wishing to visualize other regions, taxa, or time periods 
will be university-affiliated and thus have access to a free 
or discounted license. CARTO and other SaaS, like ESRI’s 
ArcGIS Online, offer stability and support over open-
source alternatives and have a lower barrier to access 
overall but are subject to possibly disruptive updates 
impacting open-source code written on top of the SaaS. 
For Range Mapper, the advantages of this proprietary 
software, including powerful data processing and 

https://zenodo.org/record/7626576
https://github.com/NeotomaDB/RangeMapper/tree/master/workflows
https://github.com/NeotomaDB/RangeMapper/tree/master/workflows
https://carto.com/developers/carto-vl/
https://carto.com/developers/carto-vl/
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visualization features and large developer communities, 
outweighed the concerns. Developers of future modifiable 
visualizations must consider their audience’s technical 
expertise and software access when deciding whether 
to use SaaS or open-source software in their workflows.

CONCLUSIONS

Range Mapper offers a new set of dynamic and interactive 
mapped visualizations that shows the changing 
distributions of plant taxa in North America, Europe, and 
Oceania over the last 21 kyr. Users can interact with the 
map using animation controls, the continent selection 
menu, and the interactive taxa legend. These maps will 
enable users to integrate up-to-date paleoecological 
data and mapping methods into their research, teaching, 
and outreach. The workflows available on GitHub enable 
interested paleoecologists and biogeographers to make 
their own maps to support the extension of these 
visualizations to undermapped regions or taxa. Because 
the workflows can be quickly rerun as new data come 
in, the Range Mapper animations can be regularly, albeit 
asynchronously, updated as new datasets are added to 
Neotoma. The Range Mapper animations, supported by 
the openly available and curated data available in the 
Neotoma Paleoecology Database, are available to support 
research and education for a wide variety of audiences.
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