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ABSTRACT
We demonstrate the utility and reproducibility of the saltmarsh foraminifera-based 
‘geological tide gauge’ (GTG) approach by developing two independent records of 
relative sea-level (RSL) change for Dublin, Ireland. Our records, recovered from two 
different saltmarshes, indicate that RSL rose at a century-scale rate of 1.5 ± 0.9 mm yr–1

 

over the last 200 years. This compares favourably with the shorter, but more precise, 
mean sea level (MSL) record from the Dublin Port tide gauge, which indicates long-term 
(1953–2016 CE) rise at a rate of 1.1 ± 0.5 mm yr–1

. When corrected for the influence of 
glacio-isostatic adjustment our saltmarsh-based reconstruction suggests sea levels in 
Dublin rose at a rate of 1.6 ± 0.9 mm yr–1 since the start of the 19th century, which is 
in excellent agreement with the regional value of MSL rise over the same period (1.5 ± 
0.2 mm yr–1) calculated from a compilation of tide gauge records around Britain. Whilst 
our record has decadal-scale temporal resolution (1 sample every 8 years), we are 
currently unable to resolve multidecadal-scale variations in the rate of sea-level rise 
which are masked by the size of the vertical uncertainties (± 20 cm) associated with 
our reconstruction of palaeomarsh-surface elevation. We discuss the challenges of 
applying the GTG approach in the typically minerogenic saltmarshes of the NE Atlantic 
margin and outline potential solutions that would facilitate the production of Common 
Era RSL reconstructions in the region.
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1. INTRODUCTION

Spatial patterns of relative sea level (RSL) provide critical 
insight into the drivers of sea-level change (Fox-Kemper 
et al., 2021 and references therein). The development 
of techniques to extract RSL data from saltmarsh 
sediments has produced a suite of near continuous 
reconstructions spanning several centuries to millennia, 
supplementing and extending the records provided by 
instrumental tide gauges (Gehrels et al., 2005; Kemp 
et al., 2009; Barlow et al., 2013). These saltmarsh-based 
‘geological tide gauge’ (GTG) records have been used in 
combination with spatiotemporal modelling to extract 
global temperature-related sea-level changes over 
the Common Era (Kopp et al., 2016), quantify sea-level 
budgets (Walker et al., 2021) and identify the onset of 
accelerated RSL rise linked with global warming (Walker 
et al., 2022). However, spatial bias in the distribution 
of RSL reconstructions limits the questions that can be 
addressed by this approach. For example, the availability 
of multiple GTG records along the eastern seaboard of 
North America has identified spatial patterns of RSL 
that may be linked with changes in atmospheric and 
oceanic circulation over the North Atlantic region (e.g., 
Kemp et al., 2011, 2013, 2018). In contrast, whilst similar 
signals may be detectable along other Atlantic margins 
(e.g., Saher et al., 2015), there are comparatively few GTG 
records from north-western Europe with which to explore 
the relative influence of these mechanisms (Barlow et al., 
2014; Walker et al., 2022).

The GTG technique utilises sequences of saltmarsh 
sediments and the microfossils preserved within them to 
build reconstructions of past RSL change (e.g., Gehrels et 
al., 2005; Kemp et al., 2009; Barlow et al., 2013). Saltmarsh 
foraminifera are vertically zoned, as individual species 
have a different tolerance to the frequency and duration 
of tidal inundation (Scott and Medioli, 1978; Horton 
and Edwards, 2006; Kemp et al., 2012). The modern 
relationships among elevation and different foraminifera 
species can be used to produce transfer functions that 
predict palaeomarsh surface elevation (PME) from down-
core fossil foraminifera assemblages that are extracted 
from sequences of saltmarsh sediments (Gehrels, 1999, 
2000; Horton et al., 1999; Edwards et al., 2004; Horton and 
Edwards, 2005; Massey et al., 2006; Cahill et al., 2016). 
In this way, the former position of RSL is calculated by 
subtracting the PME from the modern sample elevation 
which, when combined with information on sample age, 
can be used to reconstruct RSL change.

Ireland’s location on the Atlantic seaboard of Europe 
means it is ideally placed to improve our understanding 
of sea-level variability in the North Atlantic region. In this 
study, we test the application of the saltmarsh-based 
GTG approach in Ireland by reconstructing two centuries 
of RSL change in Dublin. We validate this reconstruction 

against the instrumental tide gauge record from Dublin 
Port, Ireland’s longest time series extending back to 
1938. We conclude that the GTG approach accurately 
quantifies the century-scale RSL trend which, when 
corrected for the influence of glacio-isostatic adjustment 
(GIA), reproduces the mean sea-level trend for the last 
200 years identified in a recent analysis of historical and 
instrumental data from Great Britain (Hogarth et al., 
2021). We discuss the implications of our results for 
the production of longer GTG records from Ireland and 
similar European contexts.

2. STUDY AREA

Dublin is located on the eastern coast of Ireland (Figure 1) 
where the rivers Liffey and Tolka drain into the Irish Sea. 
The area is mesotidal with a spring tidal range of around 
3.5 m. We investigate two saltmarshes adjacent to Dublin 
City, that historical mapping indicate have the potential 
to provide near-continuous accumulations of sediment 
spanning the last two centuries (Figure 1).

The first saltmarsh, located in Baldoyle estuary, 
formed in the lee of the large sand spit of Portmarnock 
and is separated from Dublin Bay by a low-lying tomobolo 
extending to the Howth Peninsula. The saltmarshes 
at Portmarnock were identified in an Ordnance Survey 
Ireland (OSI) survey dated to 1836 (Historic 6” First 
Edition; sheet DN015; published 1843) and today 
comprise a thin mature marsh of Festuca rubra, Glaux 
maritima and Scirpus maritimus flanked seaward by 
extensive meadows of the invasive species Spartina 
anglica (Craven et al., 2013). Whilst a small drain cuts 
through the rear of the marsh, a progressive transition 
from saltmarsh to upland is evident along the landward 
margin flanking the road.

The second saltmarsh is located on the landward side 
of North Bull Island (hereafter ‘Bull Island’), a sand spit 
situated in the northern part of Dublin Bay which grew 
rapidly from the early 19th century following construction 
of two tidal walls to improve navigation in the Port of 
Dublin (Harris, 1973). Saltmarshes have existed at this 
site since at least 1907 (Historic 25”; Sheet DN019-06; 
published 1910), with the construction of a causeway 
between 1964 and 1970 splitting the back barrier 
environment into two separate lagoons (Figure 1). 
Saltmarsh vegetation includes Salicornia spp., Spartina 
anglica, Halimione portulacoides and Puccinellia maritima 
(Grey et al., 2021). Embanking and fencing associated 
with two golf courses on Bull Island has caused 
significant disturbance at the rear of the marsh, so 
surface sampling for modern analogues was conducted 
toward the eastern end of the spit beyond the limit of the 
golf courses where the saltmarsh to upland transition is 
preserved (Figure 1d).
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3. METHODS

3.1 SURFACE SAMPLING AND TIDAL ELEVATION
We quantify the modern relationships among saltmarsh 
foraminiferal taxa and tidal elevation by collecting 
multiple transects of surface foraminifera from Bull 
Island and Portmarnock, extending across the vegetated 
marsh platform to the adjacent upland (Edwards & 
Wright, 2015). Each site was sampled four times in 
2007 to account for any seasonal fluctuations in the 
foraminiferal distributions (Horton and Edwards, 2006; 
Walker et al., 2020). Samples comprising approximately 
10 cm2 of the uppermost centimetre of sediment were 
recovered at 5–10 cm vertical intervals, with sample 
height measured by a Trimble R8s GNSS system and 
expressed relative to Ordnance Datum Malin (ODM), the 
Irish national levelling datum.

On return to the laboratory surface sediments were 
washed through 500 and 63 μm sieves and stained with 
a buffered solution of ethanol and rose Bengal to identify 
foraminifera that were living at the time of collection 
(Walton, 1952; Murray and Bowser, 2000). Sediment 
samples were sub-divided using a wet splitter (Scott 
and Hermelin, 1993) and complete aliquots counted 
in suspension under a binocular microscope until a 
minimum of 100 dead foraminifera were recorded, 
which is regarded as conservative for this kind of study 
(Kemp et al., 2020). We use the death assemblage for 
the palaeoenvironmental reconstructions, as this is more 
representative of the material recovered from sediment 
cores (Horton, 1999; Murray, 2000; Horton and Edwards, 
2003; Horton et al., 2005; Horton and Edwards, 2006).

Local tidal elevation was measured by on-site data 
loggers (Eijelkamp Mini-Divers) for 4 months at Bull 

Figure 1 (a) Map of County Dublin indicating the location of our study sites; Portmarnock (b), Bull Island West (c) and Bull Island East (d). 
Core sites (green circle), locations of Mini-Divers (green star), Dublin Port tide gauge (black star), Howth Harbour tide gauge (white star) 
and surface sampling locations (orange box) are indicated.
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Island and 6 months at Portmarnock, capturing seven 
and eleven spring-neap cycles respectively (Figure 1). As 
the data loggers were exposed at low tide, local mean 
tide level (MTL) was calculated by comparing the logger 
time series with the corresponding measurements 
(mean high water; MHW) at the nearby tide gauge in 
Howth Harbour and applying the vertical offset to the 
Howth datum (Table 1). MHW and MTL are identical at 
both study marshes and within 3 cm of the MTL recorded 
by the Dublin Port tide gauge.

We use the highest occurrence of foraminifera (HOF) 
in combination with the tidal data to define sample 
elevation in terms of a standardised water level index 
(SWLI) following Wright et al. (2011) where:

100 100
Elev MTL

SWLI
HOF MTL

æ öæ ö- ÷ç ÷ç ÷= ´ +÷çç ÷÷ç ÷ç ÷çè ø-è ø

The organic content of surface sediments was measured 
using loss on ignition (LOI). Approximately 5g of wet 
sediment was weighed, oven dried at 65°C for 48 hours 
and re-weighed to obtain the dry weight. The oven-
dried sediment was placed in a furnace at 550°C for 
four hours and, following this, weighed to obtain the ash 
residue weight. Percentage LOI was calculated following 
Plater et al. (2015). These data were collected to further 
characterise the different marsh environments as, 
typically, LOI values decrease from the high marsh to the 
tidal mudflats (Horton and Edwards, 2006; Plater et al., 
2015).

3.2 CORE SAMPLING AND CHRONOLOGY
Reconnaissance coring using a narrow chamber gouge 
auger confirmed a simple lithostratigraphy at both sites 
comprising a thin saltmarsh peat overlying stiff grey silty 
sands. In 2009, the uppermost 50 centimetres of the 
sequence at Portmarnock (PMC) and Bull Island (BIC) was 
sampled using a monolith tin, with additional material 
recovered using a closed-chamber Eijkelkamp flap gouge 
auger (Figure 1). Coring site altitude was measured by 
a Trimble R8s GNSS system and expressed relative to 
Ordnance Datum Malin (ODM). Sediments were described 

using the Troels-Smith scheme of stratigraphic notation 
(Troels-Smith, 1955).

On return to the laboratory the sediments were 
processed for foraminifera and organic content 
(LOI) using the methods outlined in Section 3.1, with 
additional material being extracted for dating. 137Cs, 
214Pb and 210Pb activity were measured at 2 cm intervals 
in the University of Plymouth Consolidated Radio-isotope 
Facility (CORIF), following the analytical procedure 
outlined by Appleby (2001). Spheroidal carbonaceous 
fly-ash particles (SCPs) were counted at 2 cm intervals 
with sample preparation following Rose (1990, 1994). 
SCPs are by-products of industrial fossil fuel combustion 
and can be used to establish chronohorizons given 
knowledge of atmospheric pollution history (Marshall, 
2015). The R programme ‘rplum’ was used to develop 
a model to reconstruct 210Pb accumulation histories 
using Bayesian statistics, combine the different dating 
techniques into an age-depth model and estimate ages 
for sample-specific depths within the cores (Aquino-
López et al., 2018). Radiocarbon dating is not utilised 
in this study because previous work has demonstrated 
that 14C dating of saltmarsh sediments in Dublin Bay 
produces erroneously old ages, presumably due to 
the reworking of ‘old’ allochthonous carbon (Southall, 
unpubl. data).

In addition, we applied optically stimulated lumine-
scence (OSL) dating to the Bull Island core. One sediment 
sample (BIC-33) was recovered at 33cm depth by inserting 
an opaque, light-resistant plastic tube into the sediment. 
Once removed, the tube was sealed in a light-tight 
container. In the laboratory the sample was prepared 
using standard procedures for 150–200 mm quartz 
grains settled on 8 mm large aliquots. A single-aliquot 
regeneration protocol was employed involving a single 
regenerative and test dose of 2.35 Gy for determining the 
equivalent dose and applying standard rejection criteria 
(Murray and Wintle 2003). The dose rate was determined 
using standard gamma-spectrometric procedures (Mauz 
et al. 2022) and factors adopted for converting activity 
concentration to dose (Guérin et al., 2011), attenuation of 
beta- and gamma-rays in quartz grains (Mejdahl, 1979) 

BULL ISLAND MINI-DIVER (02/07/08 TO 17/09/08) LEVEL RELATIVE TO ODM (m)

Mean High Water 1.48

Mean tide level 0.01

Highest occurrence of foraminifera 2.01

SUTTON MINI-DIVER (07/03/2009 TO 24/06/2009) LEVEL RELATIVE TO ODM (m)

Mean High Water 1.48

Mean tide level 0.01

Highest occurrence of foraminifera 2.05

Table 1 Tidal datums and standardisation of elevation data across tide gauge sites.
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and attenuation of radiation in the presence of water 
(Guérin et al., 2012).

3.3 DATA ANALYSIS AND RELATIVE SEA-LEVEL 
RECONSTRUCTION
We use partitioning around medoids (PAM) to identify 
distinct assemblages of foraminifera following screening 
of the dataset to remove samples with low counts (<50 
tests) and minor taxa (<5% of any sample). PAM was 
performed using the ‘cluster’ package in R (Maechler 
et al., 2012), with the number of clusters informed by the 
‘NbClust’ package (Charrad et al., 2014).

We quantify the modern relationship between surface 
foraminifera and elevation using a Bayesian transfer 
function (BTF) for tide level based on count data (Cahill 
et al., 2016). Whereas traditional transfer functions 
typically apply a single response form to all species of 
foraminifera (e.g., unimodal gaussian), the Bayesian 
model allows for a multi-modal and non-gaussian 
species response to environmental conditions and better 
reflects true ecological variability (Cahill et al., 2016). 
We use this transfer function to predict PME for our 
core samples, based on their foraminifera assemblage, 
with a sample specific 95% uncertainty interval. RSL is 
calculated by subtracting the PME from the sample 
elevation. Down-core measurements of RSL and age, 

with associated error terms, are then combined within 
an Errors in Variables Integrated Gaussian Process (EIV-
IGP) model to estimate RSL and rates of RSL change over 
time while accounting for both vertical and chronological 
uncertainties (Cahill et al., 2015).

4. RESULTS

4.1 SURFACE FORAMINIFERA DISTRIBUTION 
AND TRANSFER FUNCTION DEVELOPMENT
We identified 15 foraminifera species across our two study 
sites (Figure 2). Of the 21,700 tests counted from 148 
samples, Entzia macrescens (also known as Jadammina 
macrescens) was the dominant species (15,404 
tests), followed by Miliamina fusca (2,649 tests) and 
Trochammina inflata (2,035 tests). We use cluster analysis 
to divide the Dublin surface data into three assemblages 
(Figure 3). Cluster 1 (mean SWLI = 182; standard deviation 
= 11) is characterised by high relative abundances of 
E. macrescens (mean = 60%) and T. inflata (mean = 
31%). Cluster 2 (mean SWLI = 177; standard deviation 
= 11.5) is dominated by E. macrescens (mean = 88%), 
with lower abundances of T. inflata (mean = 7%), whilst 
Cluster 3 (mean SWLI = 156; standard deviation = 11) is 
characterised by a high relative abundance of M. fusca 

Figure 2 Raw foraminifera data (dominant species expressed as relative abundance and colour coded based on month of collection), 
total number of foraminifera identified and total organic matter (loss on ignition; LOI) against elevation (m OD) for Portmarnock and 
Bull Island. HOF = Highest occurrence of foraminifera, MHWS: Mean high water springs, MHW = Mean high water.
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(54%), with smaller contributions from E. macrescens 
(mean = 36%) and Quinqueloculina spp. (mean = 7%).

Modern foraminifera distributions indicate that E. 
macrescens and T. inflata are middle to high saltmarsh 
species (e.g., Coles, 1977; Coles and Funnell, 1981; Murray, 
1991; Boomer, 1998; Funnell and Boomer, 1998; Gehrels 
and van de Plassche, 1999; Horton et al., 1999; Edwards et 
al., 2004; Horton and Edwards, 2006; Armynot du Châtelet 
et al., 2009; Milker et al., 2015). In addition, E. macrescens 
can sometimes be found in monospecific assemblages 
towards the landward limit of the saltmarsh (Scott, 1976; 
Scott and Medioli, 1978, 1980; Edwards et al., 2004). The 
relative abundance of M. fusca is typically elevated within 
low marsh to tidal flat environments (Scott and Medioli, 
1980; Smith et al., 1984; Scott et al., 1990; Horton and 
Edwards, 2006; Milker et al., 2015), whilst calcareous taxa, 
including Quinqueloculina spp., frequently characterise 
tidal flat foraminifera assemblages (Phleger, 1970; 
Horton and Edwards, 2006; Horton and Culver, 2008). 
These distributions are broadly consistent with the results 
of our cluster analysis which divides the samples into a 
high marsh assemblage (Cluster 1) characterised by high 
relative abundances of E. macrescens and T. inflata, a high 
to middle-marsh assemblage (Cluster 2), characterised 
by abundant E. macrescens, and a low-marsh to tidal 
flat assemblage (Cluster 3), with abundant M. fusca and 
Quinqueloculina spp. (Figure 3).

Collectively, the foraminiferal assemblages populating 
the vegetated saltmarsh platforms above MHW in Bull 
Island and Portmarnock are very similar in composition 

to each other and are typical of upper saltmarsh 
assemblages reported elsewhere in the literature (e.g., 
Horton et al., 1999; Gehrels & van de Plassche, 1999; 
Hawkes et al., 2010; Wright et al., 2011; Kemp et al., 2012; 
Milker et al., 2015). At Portmarnock, the common faunal 
turnover from high marsh taxa, such as E. macrescens and 
T. inflata, to characteristic lower elevation taxa, such as 
M. fusca, Quinqueloculina spp., and Elphidium williamsoni, 
occurs just below MHW, a pattern that is broadly 
replicated across sites in Britain, Ireland and adjacent 
regions (e.g., Horton & Edwards, 2006; Müller-Navarra et 
al., 2017; Rush et al. 2021). Unusually, the lower elevation 
(below MHW) distributions at Bull Island do not follow this 
pattern and are dominated by E. macrescens with only 
minor contributions from M. fusca and calcareous taxa. 
This appears to be a robust feature of the distributions at 
this site, as it is replicated in transects sampled four times 
over the course of twelve months.

Post-mortem modification of low elevation assem-
blages can occur via the dissolution of calcareous tests 
leading to an artificially elevated relative abundance of the 
residual agglutinated component (Murray & Alve, 1999; 
Edwards & Horton, 2000). Whilst this kind of taphonomic 
process would contribute to the very high relative 
abundance of E. macrescens in low marsh to mudflat 
environments, it does not explain the extremely low 
abundance of the agglutinated taxon M. fusca. Similarly, 
the transport of high marsh foraminifera into depauperate 
low marsh and mudflat sediments would be expected to 
result in an increase in both E. macrescens and T. inflata 

Figure 3 Partitioning around medoids (PAM) analysis on screened and combined surface foraminifera data set. This includes samples 
from Bull Island and Portmarnock. (a) Optimal number of clusters for our dataset, guided by ‘NbClust’ (Charrad et al., 2014). (b) Box and 
whisker diagram showing standardised elevation (SWLI) range of clusters. (c) Silhouette plot showing silhouette widths for samples 
from Bull Island and Portmarnock.
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which is not observed. Müller-Navarra et al. (2017) report 
high relative abundances of E. macrescens in low elevation 
samples from the tidal creek marsh at Sønderho in the 
Danish North Sea region. However, M. fusca is abundant at 
the site and the contrasting tidal and salinity conditions are 
associated with a very different high marsh assemblage, 
dominated by Balticammina pseudomacrescens. The 
semi-enclosed nature of the lagoon at Bull Island, coupled 
with nutrient-rich runoff from the surrounding land, 
promotes extensive algal blooms that coat the tidal flats 
for part of the year. Whilst it is possible that that this may 
contribute to the unusual faunal character of the lagoon, 
further work will be required to explain the low elevation 
distributions at the site.

We develop a BTF from a training set comprising the 
combined surface foraminiferal data from Portmarnock 
and Bull Island. We remove samples recovered from 
the intertidal flats at Bull Island with an assemblage 
comprised almost exclusively of E. macrescens, as these 
samples are strongly influenced by an unknown secondary 
environmental control. The resulting species response 
curves describing the vertical distribution of the major taxa 
reproduce the general patterns described in the cluster 
analysis (Figure 4c). The agglutinated species T. inflata has 
optimum occurrence above MHW (174 SWLI) at a SWLI 
of 186. E. macrescens has a bimodal distribution, with an 
optimum occurrence at the landward limit of the marsh 

(200 SWLI) and a second peak close to MHW (171 SWLI). 
Lower elevation taxa have their optima below MHW, with 
the maximum occurrence of M. fusca occurring at 153 
SWLI, and peaks in the calcareous taxa E. williamsoni and 
Quinqueloculina spp. at 136 SWLI. Ten-fold cross validation 
indicates that the transfer function performs well, with the 
true value of SWLI falling within the modelled 95% credible 
intervals 95% of the time and a root mean squared error of 
9.91 SWLI units (0.2 m at our study sites).

4.2 CORE DATA AND PALAEOMARSH SURFACE 
ELEVATIONS
We analysed the lithostratigraphy and biostratigraphy of 
the core material recovered from Portmarnock (PMC) and 
Bull Island (BIC) to produce two independent records of 
PME change from neighbouring sites (Figures 5 and 6). PMC 
is 50 cm long and comprises 10 cm of brown saltmarsh 
silty peat which grades progressively downwards into 
a brown-grey organic clayey-silt with abundant roots 
extending to a depth of 30 cm. Below 30 cm sediments 
are clay-rich with black mottling and occasional fine 
humified rootlets, grading into a basal unit of well sorted 
sand with rare, fine humified rootlets. The down-core 
foraminiferal assemblage is dominated by E. macrescens 
(>60%), with elevated abundances of T. inflata (~30%) 
at 1.5 cm, 17.5 cm and 31.5 cm depth. M. fusca is 
present in low abundances of up to 6% between 0 and 

Figure 4 (a) Bayesian transfer function (BTF) 10-fold cross validation. Modern sample SWLI plotted against predicted SWLI predicted 
by the BTF. 95% of the time the True SWLI falls within the model 95% credible intervals. Prediction of error is 9.91, as measured by the 
Root Mean Squared Error (RMSE). (b) Observed-predicted residuals. (c) Species response curves for our screened, combined dataset (red 
line), with 95% confidence intervals (grey area). This incorporates surface samples from Bull Island and Portmarnock (blue circles). The 
proportion of each species is plotted against standardised elevation (SWLI). MHW is shown as a vertical dashed line.
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Figure 5 (a) Core log and relative abundance of foraminifera, (b) number of foraminifera counted, (c) percentage total organic matter 
(LOI), (d) age depth model obtained from R package ‘rplum’ with 95% confidence interval and (e) palaeomarsh elevation predicted by 
the Bayesian transfer function, expressed as standardised water level index (SWLI) with 95% confidence interval. The red dashed line 
indicates the core top SWLI. PMC is cropped (a–e) to only include saltmarsh sediments. (f) 137Cs, (g) Spheroidal carbonaceous particle 
(SCP) concentration and (h) 210Pb and 214Pb results for Portmarnock core PMC.

35 cm depth. Below 35 cm, E. macrescens has a relative 
abundance >90%. Organic content decreases with depth 
from around 50% in the saltmarsh silty peat to less than 
10% in the basal unit below 32 cm depth.

BIC is 34 cm long and comprises an upper unit of grey-
brown silty peat with clay and humified organic matter, 
extending to 23 cm depth. Below 23 cm, sediments are 
grey silty clay with occasional fine humified rootlets, 
with a basal unit (30.5 cm to base) of fine to medium 
sand (0.06–0.6 mm) with rare fine humified rootlets. The 
downcore foraminiferal assemblage is similar to PMC and 
is dominated by E. macrescens (>80%). T. inflata is also 
present, with an elevated relative abundance (~13%) at 
5.5 cm and 9.5 cm depth and between 20 and 25 cm. 
H. wilberti and M. fusca are present at very low relative 
abundances (1–2%). Organic content decreases with 
depth from around 74% at the top of the core to less 
than 5% in the basal sediments.

Calibration of the fossil foraminiferal assemblages with 
the BTF produces PME estimates for the two sediment 
cores, suggesting relatively uniform accumulation in a 
high marsh environment at or above MHW (Figures 5e and 
6e). Whilst a high marsh interpretation is consistent with 
the uppermost, organic-rich portions of the sequences, it 
is incompatible with the minerogenic nature of the units 

underlying the saltmarsh. The performance statistics 
indicate that this is not an intrinsic problem with the 
BTF (Figure 4) but rather it reflects the general absence 
of M. fusca and calcareous taxa from the minerogenic 
sediments of both cores, resulting in an assemblage that 
is indistinguishable from that of the high marsh. Such a 
situation could arise from post-depositional processes 
that selectively remove the diagnostic components of 
the lower elevation assemblages (e.g., dissolution or 
preferential degradation of M. fusca tests). Alternatively, 
this could be the product of similar processes to those 
operating today in the lagoon at Bull Island which have 
produced low elevation, minerogenic sediments with 
apparently high elevation foraminiferal assemblages 
(Section 4.1). In either case, this mismatch violates the 
basic premise of reasoning by analogy that underpins the 
transfer function approach and so we do not attempt to 
reconstruct PME from samples with a low organic content 
similar to that of the modern tidal flats (<15%) and 
sedimentological characteristics that indicate deposition 
in a tidal flat setting.

The resulting reconstructions of PME encompass the 
top 30 cm of PMC and the top 23 cm of BIC. In both 
cores the marsh surface accumulated around 180 SWLI 
with minor fluctuations primarily reflecting the varying 
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abundance of T. inflata. At both sites, the reconstructed 
elevations inferred from the topmost foraminiferal 
assemblage match the measured core top elevations 
within error.

4.3 CHRONOLOGY AND AGE-DEPTH MODELLING
We combine the age information provided by 210Pb, 137Cs 
and SCPs in rplum to produce composite chronologies 
for each of our sedimentary sequences (Figures 5d and 
6d). In addition, at Bull Island, the age of the basal sand 
unit is constrained by the single OSL date of 1735 ± 20 
CE. Excess 210Pb was interpreted using rplum (Aquino-
López et al., 2018). 210Pb-based ages are supported by a 
chronostratigraphic marker based on 137Cs activity.

137Cs contamination at our sample sites is likely 
derived from global fallout (late 1950s to early 1960s), 
discharge from nuclear fuel processing (e.g., Sellafield, 
UK) and from the Chernobyl incident (1986). Previous 
coastal studies in Britain have found that down-core 
137Cs specific activity reaches levels that cannot be 
explained by Northern Hemisphere 137Cs fallout alone, 
and that waterborne discharges from Sellafield are a key 
contributor (Tsompanoglou et al., 2010). As such, peak 
137Cs is frequently attributed to maximum authorised 

discharges from Sellafield into the Irish Sea in 1975 (Gray 
et al., 1995; Tsompanoglou et al., 2010; Rahman et al., 
2013; Swindles et al., 2018) and we assign an age of 
1975 ± 5 years to the 137Cs peak in our cores.

Peak SCP concentration in the UK and Ireland is variable, 
occurring in 1979 ± 6 years in the northwest UK (north 
Wales, northwest England, Northern Ireland, northern 
and southwest Scotland), 1994 ± 2 years in southeast 
Scotland and northeast England and in 1970 ± 5 years 
in south and central England (Rose and Appleby, 2005). 
Our sedimentary sequences are also likely to be strongly 
overprinted by local sources of SCPs from electricity 
generation in Dublin, with a series of oil and coal-fired 
power stations operating within 5–10 km of our study 
sites from 1903 onward. The Pigeon House oil-powered 
station operated between 1903 and 1976; the oil and coal 
fired Ringsend A and B commenced operation in 1955 
and 1965 respectively, before being decommissioned 
in 1988; whilst the Poolbeg station operated between 
1971 and 2010, with a second chimney being added in 
1978. On this basis we date the peak SCP concentration 
to 1971 ± 10 years, coinciding with increased electricity 
production at Poolbeg but prior to the decommissioning 
of the adjacent station at Pigeon House.

Figure 6 (a) Core log and relative abundance of foraminifera, (b) number of foraminifera counted, (c) percentage total organic matter 
(LOI), (d) age depth model obtained from R package ‘rplum’ with 95% confidence interval and (e) palaeomarsh elevation predicted by 
the Bayesian transfer function, expressed as standardised water level index (SWLI) with 95% confidence interval. The red dashed line 
indicates the core top SWLI. BIC is cropped (a–e) to only include saltmarsh sediments. (f) 137Cs, (g) Spheroidal carbonaceous particle 
(SCP) concentration and (h) 210Pb and 214Pb results for Bull Island core BIC.
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4.4 RELATIVE SEA-LEVEL RECONSTRUCTIONS
We combine the PME and age-depth data to produce 
two, independent RSL reconstructions from neighbouring 
sites. These duplicate records allow us to informally 
assess inter-site variability and evaluate the consistency 
of the GTG approach.

Our reconstruction indicates RSL at Portmarnock 
rose by 30 ± 8 cm between 1785 and 2009 (Figure 7a). 
Whilst subtle variations in RSL are hinted at in the PME 
reconstructions, the record lacks the resolution to 
distinguish decadal-scale changes in the model. Instead, 
the EIV-IGP model indicates RSL rose at a long term 
(century-scale) rate of 1.5 ± 1.0 mm yr–1 (Figure 7a).

The record from Bull Island is slightly shorter than that 
from Portmarnock, indicating RSL rose by 20 ± 10 cm 
between 1840 and 2009 (Figure 7b). As at Portmarnock, 
some decadal-scale variation is hinted at but is too subtle 
to be distinguished by the model. The EIV-IGP model 
indicates RSL at Bull Island rose at a long term (century-
scale) rate of 1.3 ± 1.5 mm yr–1 (Figure 7b).

The RSL records from our two sites indicate a consistent 
pattern of RSL rise since the middle of the 19th Century. In 
light of this consistency, we combine the data from both 
sites to produce a single, composite RSL record for Dublin 
spanning 1785–2009 (Figure 7c). This record indicates 
that RSL rose at a long-term rate of 1.5 ± 0.9 mm yr–1.

5. DISCUSSION

5.1 COMPARING THE GTG RECORD WITH THE 
DUBLIN PORT TIDE GAUGE
The Dublin Port tide gauge record, extending back to 
1938, is Ireland’s longest sea-level time series and 
provides a useful reference against which to assess 
the most recent portion of our saltmarsh-based RSL 
reconstructions. When recalibrated to adjust for biased 
high-water measurements, the tide gauge indicates RSL 
in Dublin Bay rose at a rate of 1.1 ± 0.5 mm yr–1 between 
1953 and 2016 (Shoari Nejad et al., 2022). Although 
covering different time intervals, this instrumental rate 
of RSL rise overlaps with the longer-term rate inferred 
from our GTG-based approach, and the Dublin tide gauge 
record plots within the 95% confidence interval of the 
reconstruction for much of its length (Figure 7c).

The annually resolved Dublin Port tide gauge exhibits 
substantial decadal-scale variability with two intervals 
of unusually low MSL, centred around 1980 and the 
mid-1990s, which fall outside of the modelled 95% 
confidence interval of our RSL reconstruction. Shoari 
Nejad et al. (2022) note that these intervals of lower sea 
level are not apparent in the tide gauge records from 
Newlyn (UK) or Brest (France), and their precise cause is 
currently unknown.

Figure 7 Errors in Variables Integrated Gaussian Process model results for County Dublin sites (a) Portmarnock (orange), (b) Bull Island 
(blue) and (c) a combined record including results from Portmarnock and Bull Island (yellow) showing mean with 95% confidence 
interval. Dublin Port tide gauge RSL data is also shown as annual (black line) and 8-year (turquoise) averages.
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To evaluate whether such a signal is theoretically 
detectable in our saltmarshes, in which a 1 cm thick 
sample equates to sediment accumulation over 
approximately c. 8 years, we replot the Dublin Port tide 
gauge record as the average of consecutive 8-year 
bins (Figure 7c). The results indicate that whilst the two 
reductions in RSL would be resolvable in the time domain, 
their small magnitude (c. 10 cm) is only half the size of 
the vertical uncertain represented by the EIV-IGP 95% 
confidence interval, and so would not be detectable in the 
foraminifera-based reconstructions. Whilst unresolved in 
the biostratigraphic data, we note that two intervals of 
elevated LOI are evident in BIC at 5.5 cm depth (1978) and 
1.5 cm depth (2000), separated by a marked reduction 
in organic content at 3.5 cm depth (1991) (Figure 6c). 
It is therefore possible that the supply of minerogenic 
sediment onto the saltmarsh platform at Bull Island 
also varied in conjunction with the unusual pattern of 
sea-level change recorded by the Dublin Port tide gauge. 
However, we note that a similar signal is absent in the 
Portmarnock core which indicates that whatever was 
responsible for this decadal-scale variability is expressed 
as a local process within Dublin Bay itself. We suggest 
that this could be an anthropogenic signal related to the 
development or dredging of the port, which would have 
significantly affected the tidal amplitude locally.

5.2 TWO CENTURIES OF DUBLIN RSL CHANGE 
IN A REGIONAL CONTEXT
We compare our new RSL record from Dublin with the 
regional pattern of MSL change inferred from a recent 
compilation of tide gauge data from Britain (Hogarth et al., 
2021). In order to place local records of MSL rise into a regional 
context, it is necessary to correct RSL records for vertical 
land movement and changes in the geoid associated with 
the ongoing process of glacio-isostatic adjustment (GIA). 
RSL data from Britain and Ireland have featured extensively 
in GIA model development, with several different models 
available for the region (e.g., Lambeck, 1996; Brooks et al., 

2008; Bradley et al., 2011, 2023; Kuchar et al., 2012). As the 
choice of model will influence the final GIA-corrected value 
of MSL change, we use the ICE-6G (VM5a) model of Peltier 
et al. (2015) for consistency with the results presented by 
Hogarth et al. (2021).

After correction for GIA, the GTG record from Dublin 
indicates that over the past two centuries, MSL rose 
at a long-term rate of 1.6 ± 0.9 mm yr–1. This rate is in 
agreement with a regional value of 1.5 ± 0.2 mm yr–1 
calculated by the EIV-IGP model from the Hogarth et al. 
(2021) instrumental dataset (Figure 8). Whilst both 
approaches indicate the same amount of MSL rise since 
the start of the 19th century, the greater precision and 
sampling density of the tide gauge compilation allows 
the EIV-IGP model to extract the time-evolving rate of 
change, indicating that sea-level rise accelerated over the 
past 200 years. This trajectory of MSL rise lies within the 
95% confidence interval of our reconstruction, but the 
magnitude of the vertical uncertainties associated with 
the PME estimates mean that analysing multidecadal-
scale variability is beyond the resolution of our saltmarsh-
based reconstruction.

5.3 APPLICATIONS AND CHALLENGES FOR THE 
GTG APPROACH
The reproducibility of the saltmarsh-based RSL 
reconstructions from Dublin, and their close agreement 
with the century-scale rates of MSL change inferred from 
tide gauge records, demonstrates the utility of the GTG 
approach in the minerogenic saltmarshes of Ireland. The 
capacity to develop RSL reconstructions spanning the last 
few centuries from locations where tide gauge records 
are short, or absent, provides a means of augmenting the 
information provided by existing instrumental datasets 
(Kopp et al., 2016). For example, in Ireland, only two tide 
gauges outside of Dublin have records of sufficient length 
to analyse long period MSL changes and both of these 
gauges (Malin Head and Belfast Harbour) are located in 
the northern part of the country where directions and 

Figure 8 Errors in Variables Integrated Gaussian Process model results for County Dublin (yellow) and the UK (blue; Hogarth et al., 2021) 
with 95% confidence interval.



12Roseby et al. Open Quaternary DOI: 10.5334/oq.121

rates of GIA differ significantly from those experienced 
further to the south and west (e.g., Bradley et al., 2011, 
2023). GIA in the northeast reduces RSL rise, whereas GIA 
in south and west increases RSL rise. The GTG approach has 
the potential to greatly increase the spatial and temporal 
coverage of RSL data, filling the gaps where instrumental 
measurements are not available, and extending record 
duration where gauges have only been operating for a 
limited period of time. In addition to quantifying local 
scale background rates of RSL change, a more densely 
sampled network of sea-level reconstructions will help 
constrain spatial patterns of GIA and refine existing 
models, both of which are key components for accurately 
projecting future regional sea-level change (e.g., Edwards 
et al., 2017; Palmer et al., 2018; Kirby et al., 2023). The 
GTG approach has the potential to improve data coverage 
in other regions where similar minerogenic saltmarsh 
deposits are both available and suitable.

Whilst our GTG reconstruction accurately reproduces 
the long-term rate of regional MSL rise over the past two 
centuries, the Dublin record highlights several limitations 
in the application of this approach in a NW European 
context. The size of the vertical uncertainty in our 
reconstructions effectively precludes the identification 
of (multi)decadal-scale changes in rate, such as those 
observed in the tide gauge compilation of Hogarth et al. 
(2021) and in the Dublin Port record (Shoari Nejad et al., 
2022). The vertical error term primarily reflects the 
precision with which PME can be reconstructed which, 
in turn, is determined by the tidal range and the detail 
with which this vertical range can be sub-divided into 
discrete elevation zones. In the case of the Dublin record, 
our vertical uncertainty is around 6% of the tidal range 
which compares favourably with the performance of 
saltmarsh foraminifera-based reconstructions elsewhere 
in the Atlantic region (Barlow et al., 2013). As tidal range 
is dictated by study site location, increasing the precision 
of a given record will depend upon improvements in the 
estimation of PME from proxy data.

Further work to better understand the factors 
controlling modern foraminifera distributions in Ireland 
is required to isolate the assemblages and components 
that carry the strongest elevation signals, but this will 
not resolve some of the limitations inherent with the 
use of this individual proxy (Edwards and Wright, 2015). 
The use of Bayesian models offers one way of improving 
vertical precision by incorporating prior information from 
complementary data to help constrain the plausible 
bounds of elevation zones. The potential of this approach 
has been demonstrated by Kemp et al. (2012) who used 
carbon isotopes in combination with foraminiferal data 
to refine PME estimates in New Jersey, USA. The marked 
difference between the organic content of saltmarsh and 
tidal flat sediments identified in our cores, and noted in 
previous studies (e.g., Plater et al., 2015), indicates that 

organic content in general could be used to formally 
constrain the lower bound of saltmarsh deposits, although 
the influence of post-depositional processes such as 
decomposition should be considered (Plater et al., 2015).

Similarly, resolution in the upper marsh could be 
improved by incorporating a terrestrial ‘end member’ 
that would be restricted to the highest elevation 
contexts around the upper limit of marine influence. 
Testate amoebae have the potential to fulfil this role as 
they exhibit distinctive vertical assemblage zones around 
the high marsh to upland transition which directly 
complement the information provided by saltmarsh 
foraminifera (Barnett et al., 2017; Kemp et al., 2017a). 
For example, a double peak in the relative abundance 
of E. macrescens is evident in our surface foraminiferal 
dataset, with the upper peak located at the top of the 
intertidal zone and a lower peak evident around MHW 
(Figure 2). The incorporation of testate amoebae into 
our training set could help discriminate between these 
peaks and improve the precision of PME reconstructions 
above MHW. At present, little is known about the 
distribution of testate amoebae in Irish saltmarshes, but 
their occurrence at sites across the North Atlantic region 
suggests the development of this multi-proxy approach 
has great potential, especially in the region of Ireland 
where high rainfall results in saltmarshes with typically 
lower salinity regimes than elsewhere (Cott et al., 2012).

Further limitations of our record are its comparatively 
short duration, reflecting the fact that the saltmarsh 
sequences in Dublin are thin, and recovering reliable 
RSL information from minerogenic tidal flat sediments 
is problematic. The GTG approach works best where 
near continuous sequences of organic-rich, high-marsh 
sediments accumulate, as illustrated by the large 
number of records that have been developed from these 
contexts along the Atlantic coast of North America (e.g., 
Gehrels, 2000; Gehrels et al., 2002; Kemp et al., 2009, 
2012, 2017b, 2018). The utility of these deposits stems 
from an abundance of material easily dateable by 14C 
for developing detailed chronologies, coupled with rich 
microfossil assemblages from which to infer PME. Finding 
comparable material in the minerogenic saltmarshes of 
NW Europe is challenging, with many coastal sequences 
characterised by intercalated deposits of peat and silty-
clay, and a general paucity of organic saltmarsh units in the 
late Holocene (e.g., Allen, 2000; Long et al., 2000). Where 
longer saltmarsh units are present, they are typically less 
organic than their North American counterparts, often 
lack recognisable plant macrofossils, and are generally 
less suitable for the production of detailed, radiocarbon-
based chronologies (Edwards, 2023). In these settings, 
researchers often rely on dating bulk sediment samples 
which incorporate carbon from multiple sources. This 
results in reduced precision of sample-specific age ranges 
and also potentially increases the risk of erroneous age 
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estimates (e.g., Barlow et al., 2014). The development of 
Ramped Pyrolysis Oxidation (RPyOx) radiocarbon dating, 
which separates carbon fractions thermally, may assist 
in correcting bulk radiocarbon dates for contamination 
and improve the resulting chronologies (Rosenheim 
et al., 2008; Rosenheim et al., 2013; Suzuki et al., 2021) 
as would further utilisation of luminescence techniques 
for dating the minerogenic sediment fraction (Plater 
et al., 2000; Edwards, 2004; Bateman, 2015; Pannozzo 
et al., 2022).

Our study sites were selected on the basis of their 
proximity to the long Dublin Port tide gauge record and 
are not optimally located for the development of longer 
records of change. However, thicker saltmarsh deposits 
are likely to be recovered from other parts of the Irish 
coastline, especially in regions to the south and west 
where models suggest more rapid subsidence linked to 
GIA resulting in greater accommodation space for the 
accumulation of intertidal deposits. The development of 
longer records with improved resolution would provide 
a useful input for the analysis of spatial trends in RSL 
change around the North Atlantic margin (Walker et al., 
2022), which can ultimately be used to test the relative 
importance of processes driving RSL change (e.g., Kopp 
et al., 2016; Kemp et al., 2018; Walker et al., 2022).

6. CONCLUSIONS

We present new surface and core data from two sites in 
Dublin, Ireland, to test the applicability and reproducibility 
of the saltmarsh foraminifera-based GTG approach to RSL 
reconstruction. Our data demonstrate that saltmarsh 
foraminifera in Ireland are vertically zoned and contain 
similar assemblages to those reported elsewhere in the 
region. We combine these foraminifera assemblages 
to produce a Bayesian transfer function for tide level 
capable of reconstructing PME with an RMSEP of 20 cm.

When applied to coastal sediment cores from two 
different saltmarshes, the GTG approach produces RSL 
records that are essentially identical to each other with 
long-term (century-scale) rates that overlap with the 
longest tide gauge record available. Following correction 
for GIA, the saltmarsh-based rates of RSL for the last two 
centuries are comparable with the long-term rate of MSL 
rise derived from a regional compilation of tide gauge data 
from Britain spanning the same time period. On this basis, 
we conclude that the GTG approach is robust, reproducible 
and accurate within the defined limits of uncertainty.

Our relatively short Dublin record is currently incapable 
of resolving the (multi)decadal-scale changes required to 
detect any acceleration in the rate of RSL rise during the 
study period or evaluate the timing of the onset of current 
rates of change. Future applications should focus on 
improving record resolution and duration by refining PME 

estimates and identifying longer sequences of saltmarsh 
sediment. Improving our understanding of the spatial 
variability and controls on modern saltmarsh foraminifera 
distributions will assist in accurately quantifying PME, as 
will the incorporation of informative priors (e.g., organic 
content, testate amoebae data) into the Bayesian 
transfer function framework. Attention should now 
focus on producing longer records of RSL from the region 
to compare with the extensive dataset that has been 
developed along the Atlantic margin of North America.

Ireland is unusual in a European context in that its 
network of tide gauge observations was established 
relatively recently in the 2000s (Cámaro García et 
al. 2021). Ongoing data archaeology efforts provide 
intermittent estimates of sea-level rise (Pugh et al. 2021) 
but these require continuous estimates to fill the blanks. 
Therefore, the GTG approach naturally complements these 
estimates of RSL change and plays a key role in delivering 
the information necessary for understanding Ireland’s 
vulnerability to rising sea levels in a changing climate.
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