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ABSTRACT
Background: This study aimed to establish an automatic and accurate method for 
identifying patient activity using wearable devices to facilitate simple measurement 
of the severity of disease, such as chronic obstructive pulmonary disease (COPD), and 
accurate diagnosis of arrhythmias using Holter electrocardiogram (ECG).

Methods: Nine-axis accelerometers were attached to five different parts of the body 
of 30 healthy participants, and nine different activities were performed in sequence.

Results: Overall, the dominant wrist, non-dominant wrist, and chest yielded high 
recognition accuracy, whereas the hip and thigh yielded lower recognition accuracy 
for some activities. Lying in the supine position, standing, walking, and running were 
identified with high accuracy by the accelerometer on the non-dominant wrist. Lying 
in the supine position, brushing teeth, walking, ascending/descending the stairs, and 
running were identified with high accuracy by the accelerometer on the chest.

Conclusions: The movements related to the severity of COPD and those related to a 
diagnosis made via Holter ECG could be identified with reasonable accuracy when the 
nine-axis accelerometer was attached to one part of the body: the dominant wrist, 
non-dominant wrist, and chest. The accuracy was higher when the accelerometers 
were attached to five parts of the body.

*Author affiliations can be found in the back matter of this article

mailto:mizuki@okayama-u.ac.jp
https://doi.org/10.5334/paah.313
https://doi.org/10.5334/paah.313
https://orcid.org/0000-0003-3251-384X
https://orcid.org/0000-0001-8592-5499


30Yamane et al.  
Physical Activity and 
Health  
DOI: 10.5334/paah.313

INTRODUCTION
Measurement of the symptoms present and the type of activities performed by the patients 
must be performed for accurate diagnosis of the disease or assessment of the severity of some 
diseases. Shortness of breath even during light daily physical activity has been reported in 
patients with chronic obstructive pulmonary disease (COPD) (Satoh et al. 2009). The timing of 
arrhythmias on an electrocardiogram (ECG) is correlated with the type of activity performed by 
patients while wearing the Holter ECG (Miao et al. 2015).

COPD is a chronic respiratory disease caused by smoking. It is the fourth leading cause of death 
worldwide (Lozano et al. 2012). Patients with COPD report feeling out of breath even after light 
daily physical activities, such as brushing teeth, eating meals, and taking the stairs (Satoh et 
al. 2009). Consequently, their physical activity level decreases (Kawagoshi et al. 2011). Low 
levels of physical activity is related to high readmission and mortality rates (Nguyen et al. 2014; 
Waschki et al. 2011). Thus, it is important to maintain the amount of physical activity for a 
better prognosis. The severity of COPD is measured using the 6-min walking test at present; 
however, this test is cumbersome for some patients with low respiratory capacity as it involves 
walking as far as possible in a straight line, covering a distance of 30 meters and returning to 
the starting position within a 6-min time frame (Holland et al. 2014). Moreover, the manner 
in which medical personnel communicate instructions to patients is not standardized, which 
influences the distance covered by the patient (Weir et al. 2013). Thus, the 6-min walking test is 
considered less objective. Therefore, the development of a new method that can automatically 
measure the types of physical activity of patients with COPD and the amount of each activity is 
necessary to objectively estimate the severity of COPD without imposing a burden on patients.

Holter ECG is a long-term dynamic ECG technology invented by the American physicist Norman 
J. Holter (Kennedy 2006). It is attached to the chest of the patient for 24 h to record the ECG 
continuously. Patients are instructed to perform their routine activities and fill in a record paper 
when they experience symptoms such as chest pain, palpitations, and shortness of breath. 
The time, symptoms, and activity triggering the symptoms are recorded (UNM Hospitals). 
Arrhythmias are observed when patients perform a certain activity; thus, it is important that 
the patients identify the type of activities they are performing. Physicians compare the ECG 
with the record paper for diagnosis. Patients must take notes by themselves in the Holter 
ECG method, and the diagnosis would be less accurate if they forget to do so. Therefore, the 
development of a new way to automatically identify the patients’ activities and record them is 
necessary such that patients can be relieved from the burden of recording, and the accuracy of 
the diagnosis can be improved.

An increasing number of studies have been conducted on the recognition of daily human 
activities in recent years, which are expected to be applied to the assessment and diagnosis 
of the beforementioned diseases. Acceleration data obtained using an accelerometer were 
used for machine learning to enable the automatic differentiation of daily activities. This 
approach is less burdensome and more objective than the conventional methods as it only 
requires patients to wear a device and lead their daily life. Acceleration data are automatically 
collected. Moreover, these accelerometers have been miniaturized in recent years; thus, they 
can be easily mounted on smartwatches and Holter ECG. Several studies have attempted to 
identify daily activities using an accelerometer (Kaneko, Yoshida & Yuda 2019; Ankita et al. 
2021; Leotta, Fasciglione & Verri 2021). However, to the best of our knowledge, few studies 
have aimed to identify activities that can trigger shortness of breath in patients with COPD 
(Yamane et al. 2023) or listed in the Holter ECG recording paper. Triaxial accelerometers were 
attached to the dominant wrist and hip to identify COPD-related activities in our previous study. 
This method was developed further in the present study, and five nine-axis accelerometers 
were used simultaneously to further improve the recognition accuracy. In addition, some of 
the activities to be recognized were changed to ensure that more types of diseases could be 
targeted.

The goal of this study was to develop a simpler and more accurate method for the 
measurement of the severity and/or diagnosis of diseases wherein the type of activity of 
the patients is important, using a wearable device. Some activities were not recognized 
accurately in our previous study wherein triaxial accelerometers were used; thus, we 
assumed that attaching nine-axis accelerometers to five parts of the body would enable 
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accurate recognition of most types of activities. However, it was important to investigate 
whether attachment to one part of the body would facilitate accurate recognition of 
activities, as attaching accelerometers to five parts of the body in daily life is not realistic. 
It was especially important to determine whether attachment to the non-dominant wrist 
(attachment position of the wristwatch type device) and chest (attachment position of the 
Holter ECG) would facilitate the accurate recognition of activities when the accelerometer 
was attached to only one part. We also aimed to determine the relationships between the 
attachment position of the accelerometer, the type of activity, and the accuracy of activity 
recognition to further improve accuracy. In short, two objectives were set in this study. The 
first objective was to assess the accuracy of activity recognition based on the attachment 
position of the accelerometer. The second objective was to evaluate the accuracy of activity 
recognition based on the type of activity.

METHODS
STUDY POPULATION

Thirty healthy participants (13 males and 17 females) provided written informed consent to 
participate in the study. The mean age of the participants was 21.0 ± 0.87 years (range: 19–23 
years). Twenty-nine participants among the 30 participants were right-handed, whereas the 
remaining one participant was left-handed. This study was conducted in accordance with the 
principles of the Declaration of Helsinki and was approved by the Ethics Committee of Okayama 
University (approval number: R2203-001, approved on April 14, 2022).

DEVICE

The ActiGraph GT9X Link (ActiGraph LLC, Pensacola, FL, USA) is an activity monitor equipped with 
a three-axis accelerometer and complete inertial measurement unit (IMU). The IMU houses a 
secondary tri-axis accelerometer, tri-axis gyroscope, tri-axis magnetometer, and temperature 
sensor that measure the acceleration, rotational velocity, magnetic flux, and temperature, 
respectively. The IMU can provide information regarding rotation and position for advanced 
applications.

PROCEDURE

Figure 1 illustrates the experimental procedure and data analysis.

The following five ActiGraph GT9X Link were attached on to the participants (Figure 2):

(i) One ActiGraph GT9X Link on the dominant wrist with the help of the link wristband.

(ii) One ActiGraph GT9X Link on the nondominant wrist with the help of the link wristband.
(iii) One ActiGraph GT9X Link on the chest with the aid of a pouch and belt.
(iv) One ActiGraph GT9X Link on the hip on the opposite side of the dominant wrist with the 

aid of a link belt clip.

Figure 1 Experimental 
procedure and data analysis.
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(v) One ActiGraph GT9X Link on the thigh on the opposite side of the dominant wrist with the 
aid of a pouch and belt.

The IMU recordings were performed at a sampling frequency of 100 Hz for all positions. The idle 
sleep mode was disabled. The participants performed nine activities in the following order: lying in 
the supine position, standing, sitting, taking a meal, brushing teeth, using the restroom, walking, 
ascending/descending the stairs, and running. Activities performed between taking a meal and 
brushing teeth were categorized as “other movements.” The activities from lying in the supine 
position to brushing teeth were performed in one room, whereas those after brushing teeth were 
performed in the same building. Running activities were performed in a gymnasium. All activities 
were performed for 2 min and self-paced wherever applicable. The participants returned to 
the first room after the completion of all activities, and the accelerometers were removed. The 
participants were provided with a JPY 1,000 prepaid card as a reward. All measurements, except 
for those recorded while using the restroom, were obtained simultaneously for two participants. 
Measurements were acquired individually while using the restroom.

ACTIVITY TYPES

Nine activities were selected for this study from two categories of activities: basic activities 
(lying in the supine position, standing, sitting, walking, ascending/descending the stairs, and 
running) that were identified by a tri-axis accelerometer in previous studies (Sumikawa et al. 
2018; Trost, Zheng & Wong 2014) and daily living activities during which patients with COPD 
reported shortness of breath in the 24-item questionnaire (Eakin et al. 1998) or those listed in 
the Holter ECG recording paper (taking a meal, brushing teeth, and using the restroom).

(i) Lying in the supine position

The participants took off their shoes and stood on a sheet prepared beside the bed. They laid 
down on the bed on their backs and maintained a resting posture for 2 min for measurement 

Figure 2 The five attachment 
positions of ActiGraph GT9X 
Link. i) On the dominant wrist: 
attached with the help of the 
link wristband. ii) On the non-
dominant wrist: attached with 
the help of the link wristband. 
iii) On the chest: attached with 
the aid of a pouch and belt. iv) 
On the hip on the contralateral 
side of the dominant wrist: 
attached with the aid of a link 
belt clip. v) On the thigh on 
the contralateral side of the 
dominant wrist: attached with 
the aid of a pouch and belt.
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when the experimenter provided a signal. Subsequently, they stood on the original sheet when 
the experimenter provided another signal. The participants then put on their shoes. They were 
instructed to remain in the same resting position during the measurement. Movements related 
to changing their position from standing to supine and from supine to standing were not used 
for data analysis.

(ii) Standing

The participants were seated on a chair. They were instructed to stand up when the experimenter 
provided a signal and maintain a resting posture for 2 min. Subsequently, the participants sat 
on the chair when the experimenter provided a signal. They were instructed to remain in the 
same resting position during the measurement. Movements related to changing their position 
from sitting to standing and from standing to sitting were not used for data analysis.

(iii) Sitting

The participants were instructed to stand in front of a chair and sit on the chair when the 
experimenter asked them and maintain a resting position for 2 min. They stood up when the 
experimenter provided another signal. The participants were instructed to remain in the same 
resting position during the measurement. Movements related to changing their position from 
standing to sitting and from sitting to standing were not used for data analysis.

(iv) Taking a meal

The participants were instructed to pretend to eat a meal using empty dishes and chopsticks 
while looking at a picture of a meal in a sitting position. They performed the simulated behavior 
when the experimenter provided a signal and continued for 2 min. The task was completed when 
the researcher provided another signal. The participants were instructed to simulate behaviors 
such as chewing, changing dishes, and drinking. The participants were not provided any specific 
instruction regarding whether to say, “Thank you for the food,” with their hands clasped together 
before and after eating. When two participants underwent this measurement simultaneously, 
they were placed in a position such that their backs were facing each other to avoid distraction.

(v) Brushing teeth

The participants were instructed to brush their teeth at the tap. They prepared their toothbrushes 
by placing toothpaste on them and held the toothbrushes in their mouth when the preparation 
was complete. The participants began brushing their teeth when the experimenter provided 
a signal. The activity was measured for 2 min. They continued to brush their teeth until the 
researcher provided an additional signal. They gargled and cleaned up after the measurement 
was completed. The participants were instructed to bring their toothbrushes and were free to 
use their toothpaste. As some participants may have felt that the tap water in the room was not 
clean, bottled water and paper cups were provided for gargling. The participants were instructed 
to hold the toothbrush with their dominant hand at all times during the measurements.

(vi) Using the restroom

The experimenter led the participants to the entrance of the restroom. The participant entered 
the restroom at the signal and performed simulated actions, such as doing their business, 
wiping with toilet paper, and washing hands. The participants were given a stopwatch to wear 
around their necks and were instructed to take at least two minutes from entering the restroom 
to coming out. They were instructed to shift and use Western-style toilets. As the accelerometer 
was attached to the thigh, the participants performed the simulated movements with their 
pants on. When two participants performed the task simultaneously, one participant used the 
restroom, and the other waited in the room where they had brushed their teeth. When the first 
participant finished using the restroom, they returned to their original room, and the second 
participant performed the activity as the first participant.

(vii) Walking

The experiment was conducted in a corridor that allowed participants to take one lap around 
the courtyard and return to their original location. The participants started walking when 
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the experimenter provided a signal. They changed direction and made another circuit in the 
opposite direction after circling the hallway and returning to their original location such that 
both rightward and leftward movements would be performed. This process was repeated until 
the walking time reached 2 min. They walked to the end of the lap on being told that it was their 
last lap. The participants were instructed to walk at a constant speed that was comfortable for 
them. Most participants completed three laps. When two participants walked simultaneously, 
one participant walked counterclockwise in the first lap, and the other participant walked 
clockwise in the first lap. They started walking at the same time but ended at different times 
depending on the walking speed of each participant. If only one participant was performing the 
task, the initial direction of walking was determined such that the total number of participants 
who walked counterclockwise on the first lap was the same as that of the participants who 
walked clockwise on the first lap.

(viii) Ascending/descending the stairs

This measurement was conducted in a six-story building, with the starting point in front of 
the stairs on the third floor. The participants were instructed to ascend/descend the stairs 
when the experimenter provided a signal. They ascended and descended the stairs for 2 min 
and continued until the end of the lap when they were told that this was the last round trip. 
The participants were instructed to walk at a constant speed that was comfortable for them. 
Most participants completed four round trips. When two participants performed the task 
simultaneously, one participant ascended/descended the stairs between the third and fourth 
floors starting from the top, and the other participant ascended/ descended the stairs between 
the third and second floors starting from the bottom. They started ascending/descending the 
stairs at the same time and finished at different times depending on their walking speed. When 
only one participant was performing the task, the initial direction of ascending/descending was 
determined such that the total number of participants who walked between the third and 
fourth floors was the same as that of the participants who ascended/descended the stairs 
between the third and second floors. The staircase had one landing between the third and 
fourth floors and between the third and second floors.

(ix) Running

The measurement was performed at a martial arts hall in a space with tatami mats. The 
participants ran in a counterclockwise circular motion. They started running when the 
experimenter provided a signal. They ran for 2 min and continued running until the experimenter 
provided another signal. They were instructed to run at a constant speed that was comfortable 
for them. The participants were allowed to take off their masks but were instructed not to 
speak without their masks to prevent the spread of the coronavirus infection. The participants 
were also free to remove their socks and run barefoot.

DATA PROCESSING AND FEATURE EXTRACTION

Raw data were extracted from the devices using ActiGraph software (ActiLife Version 6.13.4). The 
data were saved in raw format as .gt3x files and converted to .csv format for data processing. The 
.csv file contained 11 columns: Timestamp, Accelerometer X, Accelerometer Y, Accelerometer 
Z, Temperature, Gyroscope X, Gyroscope Y, Gyroscope Z, Magnetometer X, Magnetometer Y, 
and Magnetometer Z. The data, except for timestamp and temperature, were segmented into 
sequences of 10-s non-overlap-time-domain or 10-s non-overlap-frequency-domain features 
(Liu, Gao & Freedson 2012), as shown below: mean, standard deviation, variance, maximum, 
minimum, root mean square, signal magnitude area, correlation between the axes, entropy, 
energy, kurtosis, skewness, median, interquartile range, and autoregressive. There was one 
measure per axis for the mean, standard deviation, variance, maximum, minimum, root mean 
square, entropy, energy, kurtosis, skewness, median, and interquartile range, whereas there were 
four measures per axis for autoregression. The correlation between axes was computed with a 
combination of x and y, x and z, y and z. The signal magnitude area was computed from the three 
axes. In total, 156 features were used for each 10-s window during model training and testing.

MODEL TRAINING AND TESTING

Leave-one-subject-out (LOSO) cross-validation was used for model training and testing 
(Esterman et al. 2010). The dataset of 30 participants was split into two non-overlapping 
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subsets: a training subset comprising the data of 29 participants and a test subset comprising 
the data of one participant. Label-encoding, an encoding technique that converts labels into 
numerical form to handle categorical variables, was used. The random forest classifier model 
(Breiman 2001) was trained using the training data. Random forest (RF) is a supervised learning 
algorithm wherein multiple decision trees are built and merged to obtain more accurate and 
stable predictions. This algorithm can be used to solve classification and regression problems 
(Donges 2023). The trained model was evaluated using the test data after training. The training 
and evaluation procedures were repeated 30 times while changing the combinations of the 
training and test subsets. Scikit-learn (Pedregosa et al. 2011), an open-source data analysis 
library for the Python programming language, was used for model training and testing. Python 
version 3.6.8 and scikit-learn version 0.23.2 were used in this study. The following scikit-learn 
functions were used: train_test_split, accuracy_score, random forest classifier, classification_
report, and confusion_matrix. The hyperparameters include the following: n_estimators = 
2,500, criterion = “gini,” max_depth = 30, min_samples_split = 2, min_samples_leaf = 1, and 
random_state = 42.

MODEL EVALUATION

The following indices were used to evaluate the performance of the classifier.

Precision: Precision is defined as the ratio of predicted positive cases that were 
actually correct. Precision was determined using the following equation: Precision = 
(True positive)/(True positive + False positive).

Recall: Recall is defined as the ratio of actual positive cases that were correctly 
classified. Recall was determined using the following equation: Recall = (True 
positive)/(True positive + False negative).

F-value: The F-value is defined as the harmonic mean of precision and recall. The 
F-value was determined using the following equation: F = 2 • (Precision • Recall)/
(Precision + Recall).

F-value varies from 0 to 1 (Bull et al. 2018). An activity with an F-value of ≥0.7 was considered 
recognizable. Confusion matrices were constructed to summarize the prediction results of 
activity classification.

The participants wore a GT9X Link on their dominant wrist, nondominant wrist, chest, hip, 
and thigh. The following six methods were used to evaluate the performance of activity 
classification: (1) using data from the dominant wrist position for prediction (dominant wrist 
classifier), (2) using data from the non-dominant wrist position for prediction (non-dominant 
wrist classifier), (3) using data from the chest position for prediction (chest classifier), (4) using 
data from the hip position for prediction (hip classifier), (5) using data from the thigh position 
for prediction (thigh classifier), and (6) using data from all five positions (all classifiers).

RESULTS
Acceleration data measured using the nine-axis accelerometers were used to examine the 
recognition accuracy of each activity. An activity was considered recognizable when the F-value 
was ≥0.7.

The F-values were >0.7 for all activities in all classifiers (using data from all five positions), 
dominant wrist, non-dominant wrist, and chest classifiers, whereas the F-values of the hip 
and thigh classifiers were <0.7 for some activities (Table 1). The F-values for lying in the supine 
position, walking, and running were >0.9 for all or five of the six classifiers; however, the F-values 
for sitting, taking a meal, using the restroom, and other movements were <0.9 for all or five 
of the six classifiers. Thus, lying in a supine position, walking, and running were considered 
well-identified. Sitting, taking a meal, using the restroom, and other movements were not well 
identified.

Figure 3 presents the confusion matrices for the activity-type predictions provided by the non-
dominant wrist, chest, hip, and thigh classifiers. As shown on the diagonal of the confusion 



Table 1 Evaluation results. 
Emboldened values represent 
F-values of 0.9 or higher.

PRECISION RECALL F-VALUE

Lying in the supine position d-wrist 0.9668 0.9791 0.9689

nd-wrist 0.9446 0.9737 0.9552

Chest 0.9956 1.0000 0.9976

Hip 0.9810 1.0000 0.9877

Thigh 0.7483 0.7925 0.7445

All positions 1.0000 1.0000 1.0000

Standing d-wrist 0.9548 0.9897 0.9662

nd-wrist 0.9350 0.9459 0.9306

Chest 0.8528 0.8675 0.8094

Hip 0.7305 0.7256 0.6920

Thigh 0.9220 0.8741 0.8692

All positions 0.9585 0.9949 0.9714

Sitting d-wrist 0.9137 0.8699 0.8728

nd-wrist 0.9171 0.8690 0.8769

Chest 0.8119 0.7667 0.7591

Hip 0.7232 0.7897 0.7336

Thigh 0.7028 0.7103 0.6749

All positions 0.9592 0.9615 0.9602

Taking a meal d-wrist 0.8616 0.8677 0.8584

nd-wrist 0.8650 0.9068 0.8712

Chest 0.8442 0.8161 0.8187

Hip 0.7119 0.6971 0.6669

Thigh 0.8448 0.8340 0.8213

All positions 0.9555 0.9393 0.9363

Brushing teeth d-wrist 0.9214 0.9051 0.9112

nd-wrist 0.8433 0.7979 0.8104

Chest 0.9386 0.9171 0.9224

Hip 0.8180 0.7944 0.7775

Thigh 0.7347 0.7863 0.7457

All positions 0.9471 0.9333 0.9372

Using the restroom d-wrist 0.7916 0.8806 0.8228

nd-wrist 0.7904 0.7634 0.7588

Chest 0.8567 0.8569 0.8420

Hip 0.8094 0.7224 0.7223

Thigh 0.8620 0.8057 0.8146

All positions 0.9529 0.9245 0.9309

Walking d-wrist 0.8964 0.9239 0.9064

nd-wrist 0.9295 0.9010 0.9039

Chest 0.9761 0.9593 0.9661

Hip 0.9328 0.9249 0.9205

Thigh 0.9047 0.8652 0.8769

All positions 0.9860 0.9636 0.9737

(Contd.)
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matrix, the majority of each activity was classified correctly. However, some areas were 
misclassified.

Examples of raw acceleration, rotational velocity, and magnetic field data are presented in 
Figures 4, 5, and 6. The participants’ activities were recorded during the experiments and 
synchronized with the accelerometer output (marked as 0–9 in Figures 4, 5, and 6). Different 
types of activities and positions of the accelerometer resulted in different fluctuation patterns of 
acceleration, rotational velocity, and magnetic field strength values. The results of the F-values, 
confusion matrices, and raw acceleration data suggest that the recognition of the activities 
examined in this study is feasible when data from all five positions or only the dominant wrist, 
non-dominant wrist, or chest data are used.

DISCUSSION
Our activities are characterized by the movement of various parts of the body, which move 
depending on the type of activity. These characteristics are reflected in the waveforms of 
acceleration, rotational velocity, and magnetic field, which can be measured using a nine-
axis accelerometer. The specificity or similarity of the waveform movements can improve or 
deteriorate the accuracy of activity recognition. Comparison of the F-values for each position 
revealed that the dominant wrist, non-dominant wrist, and chest showed high or moderate 
accuracy for all movements. Attachment to all five parts resulted in accurate recognition of 
almost all activities with F-values of >0.9. However, the F-values were low for the hip and thigh 
for some activities. As we are particularly interested in the non-dominant wrist and chest, 
which are the attachment positions of the wristwatch type device and Holter ECG, respectively, 
this section mainly focuses on these sites.

Based on the F-values, lying in a supine position, standing, walking, and running were well 
identified when the accelerometer was attached to the non-dominant wrist. This may be 
because lying in the supine position and standing were stationary movements, whereas walking 
and running were regular movements. The wrist remained stationary in the supine position and 
standing positions, and the acceleration, rotational velocity, and magnetic field waveforms 
exhibited constant values. In contrast, the arms moved back and forth regularly during walking 
and running, and the waveforms oscillated regularly. In particular, the amplitude values of the 

PRECISION RECALL F-VALUE

Ascending/descending the stairs d-wrist 0.9203 0.8957 0.8983

nd-wrist 0.8979 0.8920 0.8890

Chest 0.9532 0.9785 0.9641

Hip 0.9382 0.9294 0.9310

Thigh 0.8855 0.9353 0.8990

All positions 0.9632 0.9901 0.9756

Running d-wrist 1.0000 0.9974 0.9987

nd-wrist 0.9974 0.9897 0.9926

Chest 1.0000 0.9889 0.9933

Hip 0.9976 0.9923 0.9944

Thigh 0.9797 0.9949 0.9855

All positions 1.0000 1.0000 1.0000

Other movements d-wrist 0.7806 0.6952 0.7224

nd-wrist 0.7316 0.7423 0.7192

Chest 0.7917 0.7777 0.7739

Hip 0.7929 0.7600 0.7336

Thigh 0.7719 0.7274 0.7280

All positions 0.8777 0.8837 0.8704



Figure 3 Confusion matrices 
comparing predicted and 
correct activities. The rows 
correspond to the actual 
activities, whereas the 
columns correspond to the 
activities predicted by the 
activity classifier. (a) Non-
dominant wrist classifier. 
The light blue underline 
indicates misclassification 
between taking a meal 
and other movements. The 
orange underline indicates 
misclassification between 
using the restroom and other 
movements. The red underline 
indicates misclassification 
between walking and 
ascending/descending the 
stairs. The purple underline 
indicates misclassification 
among brushing teeth, 
standing, and taking a 
meal. (b) Chest classifier. 
The light blue underline 
indicates misclassification 
between taking a meal and 
using the restroom. The 
orange underline indicates 
misclassification between 
using the restroom and 
other movements. The 
green underline indicates 
misclassification between 
standing and sitting. (c) 
Hip classifier. The light 
blue underline indicates 
misclassification among 
taking a meal, sitting, and 
using the restroom. The 
green underline indicates 
misclassification between 
standing and sitting. (d) Thigh 
classifier. The blue underline 
indicates misclassification 
between lying in the supine 
position and sitting.



Figure 4 Example of waveform 
data along the x axis. The red 
and green lines correspond 
to the data of the non-
dominant wrist and chest data, 
respectively. The numbers 
represent the activities: 0, 
lying in a supine position; 1, 
standing; 2, sitting; 3, taking 
a meal; 9, other movements; 
4, brushing teeth; 5, using 
the restroom; 6, walking; 
7, ascending/descending 
the stairs; 8, running. (a) 
acceleration along the x-axis. 
(b) angular velocity along 
the x-axis. (c) magnetic field 
strength along the x-axis.



Figure 5 Example of waveform 
data along the y axis. The red 
and green lines correspond 
to the data of the non-
dominant wrist and chest data, 
respectively. The numbers 
represent the activities: 0, 
lying in a supine position; 1, 
standing; 2, sitting; 3, taking 
a meal; 9, other movements; 
4, brushing teeth; 5, using 
the restroom; 6, walking; 
7, ascending/descending 
the stairs; 8, running. (a) 
acceleration along the y-axis. 
(b) angular velocity along 
the y-axis. (c) magnetic field 
strength along the y-axis.



Figure 6 Example of waveform 
data along the z axis. The red 
and green lines correspond 
to the data of the non-
dominant wrist and chest data, 
respectively. The numbers 
represent the activities: 0, 
lying in a supine position; 1, 
standing; 2, sitting; 3, taking 
a meal; 9, other movements; 
4, brushing teeth; 5, using 
the restroom; 6, walking; 
7, ascending/descending 
the stairs; 8, running. (a) 
acceleration along the z-axis. 
(b) angular velocity along 
the z-axis. (c) magnetic field 
strength along the z-axis.
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running waveform were much larger than those of the other activities, reflecting the intense 
movements of running, which may have contributed to the very high accuracy of running 
recognition.

Lying in a supine position, brushing teeth, walking, ascending/descending the stairs, and 
running were identified with high accuracy when the accelerometer was attached to the 
chest. This is possibly due to the movement of the chest caused by activities such as tooth 
brushing. The waveform oscillated finely with a constant value in the case of tooth brushing. As 
lying in the supine position was stationary, the waveform exhibited constant values. Walking, 
ascending/descending the stairs, and running were regular movements; thus, the waveforms 
oscillated regularly. As with the non-dominant wrist, the amplitude values of the waveforms, 
especially for running, were very different from those of other activities, which may have 
contributed to the very high accuracy of the recognition of running. A previous study that used 
an accelerometer built into a Holter ECG (Kaneko, Yoshida & Yuda 2019) also identified lying in 
the supine position and walking with good accuracy.

According to the confusion matrix of the non-dominant wrist, walking and ascending/
descending the stairs were misclassified. Both movements involved swinging the arms back 
and forth; thus, distinguishing between them based on wrist movement alone was difficult. In 
particular, walking and ascending/descending the stairs exhibited almost the same motion on 
stair landings. To differentiate among activities that involve translation in only one dimension, 
such as walking, the correlation between the axes was selected as one of the features. For 
instance, walking and running can be distinguished from ascending/descending the stairs 
using correlation. Walking and running usually involve translation in one dimension, whereas 
ascending/descending the stairs involves translation in multiple dimensions (Ravi et al. 2005). 
However, walking and ascending/descending the stairs were not well classified. Extending the 
window frame from 10 s could improve the recognition accuracy, which would enable the 
window frames to contain information on movements observed in stair landings and normal 
stairs.

Brushing teeth was misclassified as standing or taking a meal. The non-dominant wrist made 
regular and small movements while brushing teeth owing to the influence of the dominant 
arm moving the toothbrush. However, these minute movements were not sufficiently large to 
be detected as acceleration and could have been misclassified as standing or taking a meal. 
Brushing teeth and standing were sometimes misclassified as the other (i.e., brushing teeth 
was sometimes misidentified as standing, and vice versa). Both activities had similar standing 
movements and waveforms, which may have led to them being misclassified. However, 
it must be noted that although brushing teeth was misclassified as taking a meal, taking a 
meal was rarely misclassified as brushing teeth. When consuming a meal, the non-dominant 
arm performed actions such as holding a bowl or grabbing a plate. These movements were 
characteristic of the arm and could be classified as taking a meal. In contrast, brushing teeth 
was not a characteristic of the arm and was likely misclassified as taking a meal. The waveform 
for taking a meal oscillated irregularly, reflecting the complex motions involved in taking a meal. 
Combined with a wearing position other than the wrist, it is possible to capture the movement 
characteristics of brushing teeth and improve the recognition accuracy.

Taking a meal and using the restroom were misclassified as other movements and other 
movements were misclassified as taking a meal and using the restroom. Taking a meal and 
using the restroom were misclassified as other movements owing to the irregular and complex 
hand movements. The waveforms of the movements oscillated irregularly, reflecting multiple 
movements. Taking a meal included movements such as lifting a bowl or grabbing a plate, 
whereas using the restroom included movements such as picking up toilet paper or washing 
hands. In this study, other movements were defined as movements between taking a meal 
and brushing teeth; however, the accuracy may differ on changing the definition.

According to the confusion matrix of the chest, standing and sitting positions were misclassified 
with each other, as the chest position in both positions was perpendicular to the ground. It 
might be useful to use the difference in the height of the center-of-gravity between standing 
and sitting positions to distinguish between these activities. However, it is difficult to determine 
the mean height of the center-of-gravity from acceleration. This is because if the relative 
motion remains the same, the time variation of the acceleration will also remain the same, 



43Yamane et al.  
Physical Activity and 
Health  
DOI: 10.5334/paah.313

even if the height of the center-of-gravity is different. Since these distinctions were difficult 
to make even in previous studies that used the tri-axis accelerometer built into the Holter 
electrocardiogram to classify activities, an analysis that included pre- and post-activity was 
attempted, and a convolutional neural network (CNN) was applied to track the changes in the 
height of the center-of-gravity at certain boundary points, such as sitting > standing and supine 
> sitting (Kaneko, Yoshida & Yuda 2019).

Taking a meal was misclassified as using the restroom, as both activities were performed while 
sitting down, and the chest movements were supposed to be similar. Using the restroom and 
other movements were misclassified with each other. Using the restroom was a complex 
movement that combined multiple movements; thus, it was probably classified as other 
movements.

The F-value for the hip position was <0.7 for standing and taking a meal. The confusion matrix 
indicated that standing and sitting were misclassified as the movements of standing and 
sitting were similar when measured at the hip. Taking a meal was misclassified as sitting and 
using the restroom, as these movements involved sitting movements. The F-value for the thigh 
position was <0.7 for sitting. The confusion matrix indicated that sitting and lying in a supine 
position were misclassified as the thigh position was parallel to the ground in both activities.

Smartwatches, including the Apple Watch, are equipped with nine-axis accelerometers and 
peripheral blood oxygen saturation measurement functions at present. The Apple Watch can 
provide SpO2 values not so different from that of medical devices under experimental conditions 
(Rafl et al. 2022). In this study, activities during which patients with COPD reported shortness of 
breath were identified with high accuracy by the wrist-worn nine-axis accelerometer, indicating 
the possibility of using a smartwatch to monitor the type of activities performed by patients with 
COPD and the peripheral blood oxygen saturation levels, which would allow to determine the 
severity of COPD. In other words, the severity of COPD is determined by measuring the degree 
of decrease in SpO2 while performing activities associated with the tendency to experience 
shortness of breath. Furthermore, in this study, a chest-worn nine-axis accelerometer was able 
to identify activities with high accuracy. The use of nine-axis accelerometers in Holter ECGs 
is not common at present. However, the identification of patient activities using a nine-axis 
accelerometer would reduce the difficulty in recording the patients’ activities and lead to a more 
accurate diagnosis of arrhythmia. Therefore, the implementation of nine-axis accelerometers 
in Holter ECGs is desirable in the future.

This study has some limitations. First, the participants were young healthy individuals. The 
activity patterns of young individuals differ from those of elderly individuals. Similarly, the 
activity patterns of healthy individuals differ from those of patients. In subsequent studies, 
we aim to investigate the accuracy of the accelerometer in identifying elderly individuals and 
patients. Second, the activities were performed under experimental settings. Therefore, they 
differed from the activities performed in daily life. It is possible that the results would differ if 
the data were collected under free-living conditions.

CONCLUSIONS
The main purpose of this study was to establish an automatic and accurate method to identify 
the activities of the patients using wearable devices, thereby facilitating the convenient 
measurement of the severity of disease and accurate diagnosis. As the first step towards this 
purpose, the extent to which a combination of accelerometers and machine learning can 
be used to identify activities that require automatic recognition in medical care was clarified 
to apply activity recognition using accelerometers in wearable devices. The activities during 
which patients with COPD reported shortness of breath and the activities described in the 
Holter ECG recording form were selected as the activities, and nine-axis accelerometers were 
attached to five locations on the body. A comparison of the recognition accuracy for each 
position where the accelerometer was attached revealed that the recognition accuracy was 
high for the dominant wrist, non-dominant wrist, and chest but low for the hip and thigh. 
A comparison of the recognition accuracy for each activity revealed that the recognition 
accuracy was high when lying in the supine position, standing, walking, and running when the 
accelerometer was attached to the non-dominant wrist. The accuracy was high for identifying 
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lying in the supine position, brushing teeth, walking, ascending/descending the stairs, and 
running when the accelerometer was attached to the chest. These results indicate that activity 
recognition could be used to measure the severity of COPD and for more accurate detection of 
arrhythmia by automatically performing activity recognition from accelerometer data built into 
smartwatches (often attached on the non-dominant wrist) and Holter ECGs (often attached 
on the chest). This will improve the quality of medical care by reducing the burden on patients 
and medical staff and enabling more accurate treatment according to the severity of COPD and 
type of arrhythmia. This will be of great benefit to our society, where the number of patients is 
expected to increase with the aging population.
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