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TOWARDS A MENTAL PROBABILITY LOGIC

Niki PFEIFER & Gernot D. KLEITER
Universität Salzburg, Austria

We propose probability logic as an appropriate standard of reference for eval-
uating human inferences. Probability logical accounts of nonmonotonic rea-
soning with SYSTEM P, and conditional syllogisms(MODUS PONENS, etc.) are
explored. Furthermore, we present categorical syllogisms with intermediate
quantifiers, like the “MOST …” quantifier. While most of the paper is theoreti-
cal and intended to stimulate psychological studies, we also summarize our
empirical studies on human nonmonotonic reasoning.

Introduction

This journal issue is devoted to human thinking and reasoning with incon-
sistency. The present paper, though, is written within an approach that is
deeply obliged to subjective probability and to a property that is at the very
core of subjective probability theory, namely coherence. With respect to the
present paper the expectations of the reader may mislead him or her. We will
neither treat an incoherent approach to human inference, nor shall we try to
explain incoherent inferences. On the contrary, we will argue that the tradi-
tional gold standard of human reasoning, namely classical logic, is too strong
to be an appropriate standard for everyday reasoning and that weaker systems
such as subjective probability and nonmonotonic reasoning are more appro-
priate standards with which human inference should be evaluated. Thus, we
will try to re-concile the reader’s expectations and the content of our contri-
bution by relaxing the normative standards by which human inference is
evaluated.

Why do we consider probability theory to be relevant to human inference?
In particular, why do we consider probability theory to be relevant even in
tasks that apparently do not to involve probabilities or do not explicitly men-
tion uncertainties? Let us anticipate just three main reasons, the details of
which will be given in the sequel:

1. Monotonicityis the central property of the classical logical consequence
relation: the set of conclusions can only increase but not decrease by

Pfeifer  25-05-2005  14:34  Pagina 71



72

adding further premises. This means conclusions cannot be retracted in
the light of new evidence. Since retracting conclusions in the light of new
evidence makes psychological sense, it is implausible to assume classical
logic as the normative standard of reference for evaluating human rea-
soning - on a priori grounds.

2. Many inferences in propositional logic involve conditionals of the form if
A then Bin their premises. We do not think that the ordinary conditional
appearing in everyday life is the material implication of classical logic.
Rather, people evaluate the probability of B given, hypothetically, A, as
suggested by Ramsey 80 years ago and recently in psychology (Evans &
Over, 2004). In everyday contexts it seems to be more plausible to inter-
pret conditionals not by material implications, but by much weaker con-
ditional probabilities.

3. Likewise, the universal (“all …”) and existential (“at least one …”) quan-
tifiers of predicate calculus are psychologically too strict. For the well-
known syllogisms intermediate quantifierswere proposed in the litera-
ture. As nonmonotonic conditionals, they allow for exceptions and admit
a probabilistic interpretation.

We propose a combination of logic and probability, namely probability logic,
as an adequate normative standard of reference.

Logic

There is a tradition of nearly one-hundred years of experiments on deduc-
tive reasoningand a tradition of nearly fifty years of experiments on judg-
ment under uncertainty. Usually, the experimental tasks and the normative
theories of deductive reasoning are closely related to logic, while the exper-
imental tasks and the normative theories of uncertain reasoning are closely
related to probability theory. For many years both traditions were clearly sep-
arated. Only recently has the psychology of deductive and of probabilistic
reasoning begun to merge (Chater & Oaksford, 1999, 2004; Evans et al.,
2003; Evans & Over, 2004; Oberauer & Wilhelm, 2003; Over & Evans,
2003; Pfeifer & Kleiter, 2003, in press, 2005a; Politzer & Bourmaud, 2002).
Today probabilistic principles are applied to model deductive reasoning and,
likewise, principles originally developed in the tradition of deductive reason-
ing are extended to cover uncertain reasoning.

Chater and Oaksford (2004) were among the first who proposed a proba-
bilistic account of Wason’s Selection Task (Oaksford & Chater, 1998), con-
ditional syllogisms (Oaksford, Chater, & Larkin, 2000), and categorical syl-
logisms (Chater & Oaksford, 1999). Mental probability logic (as proposed in
the present paper) is a framework to investigate human reasoning experi-
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mentally and theoretically. It is in many respects closely related to the
Probability Heuristics Model (Chater & Oaksford, 2004). Probability logic,
though, seems to be a more systematic approach. It explicitly combines logic
and probability. Logic is the language of inferences under certainty and prob-
ability logic is the language of inferences under uncertainty.

We are challenging the question of the choice of an appropriate normative
standard of reference for modeling and evaluating human reasoning. Why is
classical logic not an adequate standard of reference for evaluating human
reasoning? We discuss two crucial sets of problems: one concerns the mate-
rial implication, A →B. The other one, which is more general, concerns the
monotonicity property of the classical logical consequence relation.

Problem 1: Material Implication
The problem with the material implication is that it is too strict for mod-

eling human inference. It neither allows exceptions nor does it allow uncer-
tainty. Furthermore, it is well known that the material implication leads to
valid but highly implausible inference rules (Adams, 1975, 1998). Consider
the following list:

¬A ∴ A →B

B ∴ A →B

¬A ∴ A →¬A

¬(A →B) ∴ A

C →B ∴ C ∧ A →B

Why are these inference rules implausible (we omit the proof of their log-
ical validity)? Hardly anyone would infer that “IF The sun is shining, THEN It
is raining”, (A → B), from “IT IS NOT THE CASE THAT: The sun is shining”,
(¬A). Likewise, “IF The sun is shining, THEN It is raining”, (A →B), will not
be plausibly inferred from “It is raining”, (B). Subjects will not infer “IF The
sun is shining, THEN IT IS NOT THE CASE THAT: The sun is shining”, (A →¬A),
from “The sun is shining”, (A). Should we really conclude that “The sun is
shining”, (A), from “IT IS NOT THE CASE, THAT: IF The sun is shining, THEN It
is raining”, (¬(A →B))? Finally, it is also very implausible to conclude that
“ IF The aeroplane is flying at timet AND The aeroplane is hit by a missile at
time t, THEN All guests at the aeroplane are rather safe at time t”, 
(C ∧ A →B), from the conditional “IF The aeroplane is flying at time t, THEN

All guests at the aeroplane are rather save at time t”, (C →B).
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Such implausible, though logically valid, inferences which are conse-
quences of the material implication led many authors to rethink the interpre-
tation of everyday reasoning with expressions of the form “IF A, THEN B”.
One attempt to avoid such problems is to combine logic and probability. Let
us now turn to the second psychologically problematic property of classical
logic.

Problem 2: Monotonicity
Monotonicity is the central property of the classical logical consequence

relation: the set of conclusions can only increase but not decrease by adding
further premises. Conclusions cannot be retracted in the light of new evi-
dence. Logics that do not have this problematic property were developed in
the field of nonmonotonic reasoning.1

Nonmonotonic logics allow one - contrary to classical (monotone) logics
- to withdraw conclusions in the light of new evidence. The classical exam-
ple is the “Tweety” argument: Assume as premises that birds can fly, and that
Tweety is a bird. Therefore, you conclude that Tweety can fly. As soon as you
learn that Tweety is a penguin you will withdraw the conclusion that Tweety
can fly. Classical logic is monotone in the sense that adding arbitrary premis-
es to arguments monotonically increases the set of conclusions, i.e. conclu-
sions cannot be withdrawn. Since withdrawing conclusions in the light of
new evidence is natural in everyday reasoning, classical logic appears to be
an a priori implausible standard of reference for human reasoning.

Nonmonotonic reasoning systems are often claimed to mimic human
common sense reasoning. Compared with the long tradition of psychological
experiments on classical logics and syllogistics (Rips, 2002, 1994; Johnson-
Laird, 1999; Johnson-Laird & Byrne, 1994; Bacon et al., 2003; Newstead,
2003; Morley et al., 2004), only a few studies, though, have investigated non-
monotonic reasoning empirically (Benferhat et al., in press; Da Silva Neves
et al., 2002; Ford & Billington, 2000; Ford, in press, 2004, 2005; Pfeifer,
2002; Pfeifer & Kleiter, 2003, in press; Pelletier & Elio, 2003; Schurz, in
press).

TOWARDS A MENTAL PROBABILITY LOGIC
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1 Default reasoning(Reiter, 1980; Poole, 1980), Autoepistemic (nonmonotonic reasoning)

logic (McDermott & Doyle, 1980; Moore, 1985; Konolige, 1994), Circumscription (McCarthy,
1980; Lifschitz, 1994), Defeasible reasoning(Pollock, 1994; Nute, 1994), Default inheritance
reasoning(Touretzky, 1986), Possibility theory(Dubois & Prade, 1988; Dubois et al., 1994), and
Conditional and preferential entailment: conditional logic-based (Delgrande, 1988; Schurz,
1998), preferential model-based (Kraus, Lehmann, & Magidor, 1990; Lehmann & Magidor,
1992), expectation-ordering-based (Gärdenfors & Makinson, 1994), and probabilistic entail-
ment-based approaches (Gilio, 2002; Adams, 1975; Pearl, 1988, 1990; Schurz, 1998), just to
mention some of the most important. For an overview refer to Gabbay & Hogger (1994),
Antoniou (1997).
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Subjective Probability

There are several different approaches to probability.2 From a psycholog-
ical perspective it is highly plausible to compare human uncertain reasoning
with an approach that is “close” or “affine” to psychology. This is, no doubt,
the subjective approach. Since modern subjective probability theory may not
be so well known, we summarize some major points that are relevant to psy-
chology. For details the reader is referred to Coletti & Scozzafava (2002).

Subjective probabilities are coherent descriptions of partial knowledge
states. Subjective probabilities are not (objective) physical properties of the
external world. Thus, the primary psychological question is how humans
process partial knowledge. The question is not how human subjects under-
stand probabilities, where probabilities are conceived as physical properties
of the external world. This would lead to what we call the “psychophysics
metaphor”, comparing, e.g., actual relative frequencies with estimated rela-
tive frequency (Kleiter et al., 2002). The subjective approach conceives prob-
abilities as a mapping of incomplete knowledge states to degrees of beliefs,
coherently expressed by numbers between 0 and 1. Relative frequencies and
proportions can be important in reducing uncertainty and updating degrees of
belief, but they should not be confused with probabilities. Of course, whether
human judgments and inferences actually are coherent or not, in which con-
ditions, and to what degree, are empirical questions.

The “carrier entities” to which probabilities are assigned are propositions
or events. Propositions are either “true” or “false” and the truth values follow
the usual rules of Boolean algebra. Truth values in the context of condition-
al events, though, behave fundamentally different from truth values of non-
conditional events.

Let Ai and Bi be two propositions and Ai|Bi denote the conditional event Ai

given Bi. We denote by Ai , Bi , and Ai|Bi  the indicator functionof the
respective propositions, mapping the truth values of the propositions into
numbers, typically 1 (“true”) and 0 (“false”). What are the truth values of a
conditional event Ai|Bi? If Bi is true the answer is straightforward.

TOWARDS A MENTAL PROBABILITY LOGIC
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2 One can distinguish objective (e.g., classical probability, Laplace etc.; probabilities as rel-

ative frequencies in the long run, von Mises) from subjective (e.g., probabilities as degrees of
belief, de Finetti (1974), Ramsey, Savage, Coletti, & Scozzafava (2002)), and mixtures of objec-
tive and subjective accounts (Good, Halpern et al. (1996)). Furthermore, there are several dif-
ferent proposals about the entities to which probability-values are assigned: sets (e.g.,
Kolmogorov (1933)), events, propositions (e.g., early Carnap), etc. Most authors start by intro-
ducing absolute (one-place) probabilities, P(·), and then define conditional (two-place) proba-
bilities, P(·|·). Others (originally Popper (1994) and Rényi (1955), later Coletti, Gilio, or
Scozzafava) start by giving the axioms of P(·|·).
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What is the truth value of Ai|Bi if Bi is false? For this case de Finetti proposed
a third truth value “undetermined”, denoted by * ,

An obvious consequence is that conditioning cannot be treated by the usual
operators of negation, conjunction, and disjunction. There is no logical oper-
ator of conditioning. “Logic lacks a conditioning operator corresponding to
conditional probability” (Goodman et al., 1991). This is a fundamental prop-
erty (Lewis triviality result), that distinguishes conditioning from material
implication. De Finetti’s proposal was improved by Gilio (2002) and Coletti
and Scozzafava (2002). If the conditioning proposition is false, then the indi-
cator value of Ai|Bi is the probability of Ai:

This proposal makes it possible to determine upper and lower probabilities
by elegant and general methods of linear algebra. If the conditioning event
turns out to be false we do not learn anything about the probability of Ai. The
probability is equal to its “base rate”. It remains the same as if we would
know nothing about Bi. Expressed in terms of bets, the bet is called off and
the prize of the bet is payed back. A similar proposal was made by Ramsey
originally in 1929:

“If two people are arguing “If p will q?” and are both in doubt as to
p, they are adding p hypothetically to their stock of knowledge and
arguing on that basis about q; […] We can say they are fixing their
degrees of belief in q given p. If p turns out false, these degrees of
belief are rendered void.” (Ramsey, 1994, p. 155, Footnote)

TOWARDS A MENTAL PROBABILITY LOGIC

|Ai|Bi| =




1 : if Ai = 1 and Bi = 1,

0 : if Ai = 0 and Bi = 1.

|Ai|Bi| =




∗ : if Ai = 1 and Bi = 0,

∗ : if Ai = 0 and Bi = 0.

|Ai|Bi| =




1 : if Ai = 1 and Bi = 1,

0 : if Ai = 1 and Bi = 1,

P (Ai) : if Bi = 0.
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Subjective probability theory provides a tailor-made framework that per-
fectly fits the structure of logical inference problems. We consider a family
of arbitrary conditional events F = (A1|B1, …, An|Bn), an associated probabil-
ity assessment Pn = (p1, …, pn), and one further conditional event An+1|Bn+1.
In the context of probability logic the set F corresponds to the premises, Pn

to the probabilities of the premises, and An+1|Bn+1 to the conclusion.
In both verity logic (i.e., logic in the classical sense) and in probability

logic we consider a set of premises and a conclusion. In verity logic the truth
values of the premises are given and the inference problem consists in find-
ing the truth value of the conclusion. In probability logic the probabilities of
the premises are given and the inference problem consists in finding the
probability of the conclusion. The set F corresponds to the premises, Pn to the
probabilities of the premises, and An+1|Bn+1 to the conclusion. The problem is
solved when P(An+1|Bn+1) is determined. If the probabilities of the premises
are precise (point probabilities), then the probability of the conclusion is
obtained by the Fundamental Theoremof de Finetti. If the probabilities of
the premises are imprecise (upper and lower probabilities, intervals), then the
probability of the conclusion is obtained by theorems based on generalized
coherence (g-coherence, Biazzo et al., 1999, 2002).

F need not be an algebra. That is an important difference to the standard
approach. When considering conditional events, we are not supposed to
know the probability of any other events not occurring in the premises. In the
case of a probabilistic modus ponens, e.g., only P(A|B) and P(B) are sup-
posed to be known, not the probability of any of the elementary constituents
like P(A ∧ B). Moreover P(A|B) and P(B) need not be given in the form of
point probabilities. They may be imprecise and may be specified by upper
and lower probabilities only (or may even be given in the form of intervals
of a second order probability distribution). If we would suppose to know, say, 
P(A ∧ B), we would actually introduce an additional premise. This would be
analogous, say, to supposing that A ∧ B is true in a modus ponensin verity
logic. We would not need any of the premises of the modus ponensto infer
the truth of the conclusion. Likewise, assuming stochastic independence of A
and B would correspond to an additional premise.

The standard approach to probability theory is characterized by the syn-
tactical apparatus of measure theory (algebras, σ-algebras, Kolmogorov tra-
dition) and the semantical interpretation of relative frequencies in the long
run (von Mises tradition). In the subjective approach probability is syntacti-
cally processed as a linear operatorand semantically interpreted as a coher-
ent degree of belief.

Conceiving uncertainty in the way subjective probability theory does
poses two questions for the psychology of uncertain reasoning: First the syn-
tactical question, do human subjects have an intuitive understanding of the
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linear constraintsthat govern probability theory and probability logic? And
second, how do they process their own degrees of belief and those of other
people?

There are two equivalent ways how to introduce coherence. First, by the
well-known Dutch book condition: A probability assessment P = (p1, …, pn)
is coherent if it avoids sure loss. Second, by the relationship to the standard
approach: An assessment is coherent if the family F can be expanded to an
algebra A such that P satisfies the Kolmogorov axioms for finite sets of events
(Coletti & Scozzafava, 2002). Coherence can be generalized to situations in
which only lower and upper probabilities are given (Biazzo & Gilio, 1999).

Probability Logic

Probability logic combines probability and logic. We distinguish verity
logic and probability logic (Hailperin, 1996). Verity logic is concerned with
the truth or the falsity of propositions and with deductive inferences.
Classical argument forms like the MODUS PONENS, (A → B , A ∴ B), or the
MODUS TOLLENS, (A →B, ¬B ∴ ¬A), belong to verity logic. Probability logic
is an extension of verity logic that adds probabilistic valuations to the propo-
sitions involved in the inferences. It investigates the same argument forms as
verity logic, but propagates probabilities of the premises to the conclusions
instead of binary truth values.

The argument forms that are best known are syllogisms. There are two
kinds of syllogisms: conditional and categorical syllogisms. Conditional syl-
logisms only rely on propositional calculus, categorical syllogisms require
quantifiers.

Conditional syllogismsare part of the classical repertoire of verity logic.
Well known are the valid MODUS PONENSand MODUS TOLLENS, and the invalid
DENYING THE ANTECEDENT, (A → B , ¬A ∴ ¬B), and AFFIRMING THE CONSE-
QUENT, (A →B , B ∴ A). The verity versions of conditional syllogisms were
extensively investigated empirically (Evans, 1977; Kern et al., 1983; Marcus
& Rips, 1979; Markovits, 1988; Rumain et al., 1983; Taplin, 1971) in exper-
iments on deductive reasoning. For discussions see Evans et al. (1993), Rips
(1994), Braine & O’Brien (1998). Each of these verity versions has a paral-
lel form in probability logic.

Recently psychologists have used probabilistic models to explain deduc-
tive reasoning (Chater & Oaksford, 2004). Examples are Wason’s Selection
Task (Oaksford & Chater, 1994), matching or set size effects (Yama, 2001;
Evans, 2002; Oaksford, 2002), the suppression effect of the MODUS PONENS

(Bonnefon & Hilton, 2002), categorical syllogisms (Chater & Oaksford,
1999), and the expertise of a speaker of the premises (Stevenson & Over,
2001). The Probability Heuristics Model(Chater & Oaksford, 1999, 2004) is
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of course related to our approach, but these models are clearly not equivalent.
One difference to the probability heuristics models is that the probabilities
are often not made explicit to the subjects but are only used as parameters in
the computational models. A second difference is that the probability heuris-
tics models are not really using probability logic. Four examples of proba-
bility logical inferences are given below in the third section.

Usually logical operators are interpreted by a verity function(or valuation
function) V that assigns a truth value υ ∈ {0, 1} to a (formalized) proposition.
Let A and B be arbitrary (atomic or compound) propositions. Then the verity
function V is defined as follows (adapted from Hailperin (1996, p. 23f)):

where “1” and “0” can be interpreted as the truth-values “true” and “false”,
respectively.

We write arguments in the form of inference rules. The validity of an
inference rule is defined analogously to the validity of an argument: an infer-
ence rule is valid if it is impossible to infer a false conclusion from premises
that are assumed to be true. The general form of an inference rule is:

where the literal “P1, P2, …, Pn” indicates the elements of the premise set
(where n is the number of the premises, n ≥ 0, n ∈ N). The premise set can
be empty.3 “∴” is an indicator of the conclusion set. C stands for the con-
clusion set (there are of course infinitely many conclusions). An example of
an inference rule is the following:

A, B ∴ A ∧ B,

TOWARDS A MENTAL PROBABILITY LOGIC

V (A) ∈ {0, 1}

V (¬A) =def. 1 − V (A)

V (A ∧ B) =def. min(V (A), V (B))

V (A ∨ B) =def. max(V (A), V (B))

V (A → B) =def. V (¬A ∨ B)

P1 , P2 , . . . , Pn ∴ C ,

—————
3 Logically true propositions, e.g., can always be inferred from the empty premise set.
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which is read: If A is a premise and if B is a premise, then infer A ∧ B as the
conclusion. This is a mere syntactical definition of an inference rule, since no
reference to truth valuesor to any meaningis made. A semanticaldefinition
of an inference rule is given in terms of the verity function V: For any verity
function V

V (P1) ∈ α1, V (P2) ∈ α2, …, V (Pn) ∈ αn ∴ V (C) ∈ β,

where α1, α2, …, αn, and β are elements of {0,1}.
A natural way of extending inference rules of propositional logic to infer-

ence rules of propositional probability logic can be defined as follows: For
any probability function P

P(P1) ∈ α1, P(P2) ∈ α2, …, P(Pn) ∈ αn ∴ P(C) ∈ β,

where α1, α2, …, αn, and β are real-valued intervals in [0,1].
The analogy of this definition to the definition of the inference rule in

terms of the verity function V is apparent: P replaces V and the truth-value
set {0, 1} is extended to the unit interval [0, 1], such that 0 ≤ x* ≤ x* ≤ 1, 
where x* is called the lower and x* the upper bound of the probability inter-
val αi (or β). In case of x* = x* we also say that αi (or β) is a point proba-
bility value.

Examples of reasoning with interval-valued and imprecise probabilities
are given in the subsequent sections. The next section gives a summary of
some of our empirical studies on nonmonotonic reasoning.

Nonmonotonic Reasoning - System P

Among various formal systems of nonmonotonic reasoning, SYSTEM P

(Adams, 1975; Kraus et al., 1990; Gilio, 2002) has been broadly accepted by
the nonmonotonic reasoning community and has gained considerable impor-
tance: every nonmonotonic system should at least satisfy SYSTEM P proper-
ties. SYSTEM P focuses on the very general notion of nonmonotoniccondi-
tionals,

α |~β (read: if α, normally β),

where α and β stand for propositions. Contrary to the logical conditional,
nonmonotonic conditionals permit exceptions: penguins are exceptions to the
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Pfeifer  25-05-2005  14:34  Pagina 80



81

generic conditional that birds normally can fly. SYSTEM Pconsists of a set of
rules designed for reasoning with nonmonotonic conditionals and are:4

• REFLEXIVITY (axiom): α |~α

• LEFT LOGICAL EQUIVALENCE: from |=α ↔ β and α |~γ infer β |~γ

• RIGHT WEAKENING: from |=α →β and γ |~α infer γ |~β

• OR: from α |~γ and β |~γ infer α ∨ β |~γ

• CUT: from α ∧ β |~γ and α |~β infer α |~γ

• CAUTIOUS MONOTONICITY: from α |~β and α |~γ infer α ∧ β |~γ

• AND (derived rule): from α |~β and α |~γ infer α |~β ∧ γ

The rules serve as rationality postulates for nonmonotonic reasoning. SYS-
TEM P is nonmonotonic, because it contains the nonmonotonic conditional that
allows for exceptions (i), and all the rules that it entails are nonmonotonic in
the sense that they allow for withdrawing conclusions (ii), i.e., monotonic
rules like MONOTONY (from α |~β infer α ∧ γ |~β, also known as “strength-
ening of the antecedent”), TRANSITIVITY (from α |~β and β |~γ infer α |~γ,
also known as “hypothetical syllogism”), or CONTRAPOSITION (from α |~ β 
infer ¬β |~¬α) are not a consequence of SYSTEM P. FOR SYSTEM P, concerning
preferred model semantics (Kraus et al., 1990) and infinitesimal (Adams,
1975; Pearl, 1988) and non-infinitesimal probability semantics (Gilio, 2002;
Schurz, 1997), a central theorem holds: they all are formally adequate, i.e.,
complete and correct (Schurz, 1998, p. 67). Moreover, SYSTEM Pis general in
the sense that every nonmonotonic system should at least satisfy the SYSTEM P

properties. We cannot discuss further details or extensions here; see Benferhat
et al. (2000), Biazzo et al. (2002), and Gilio (2002).

We focus only on a probability semanticsof SYSTEM P (Adams, 1975;
Schurz, 1997; Gilio, 2002). The nonmonotonic rule α |~β is interpreted as
the conditional probability P(β|α) > 0.5. More specifically, the nonmonoton-
ic conditional is then written as α |~x β, s.t.:

α |~x β is interpreted as P(β|α) ∈ [x*, x*],

TOWARDS A MENTAL PROBABILITY LOGIC
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4 The operators ∧ (“and”), ∨ (“or”), →(material implication), ↔ (material equivalence), and

¬ (“not”) are defined as usual, and “|=α →β“ denotes “α implies logically β” (stronger than the
mere material implication).
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where x is an element of the probability interval [x*, x*] and “x*” denotes 
the lower and “x*” denotes the upper bound of the interval, 0 ≤ x* ≤ x* ≤ 1.
Gilio (2002) developed a non-infinitesimal probability semantics for SYSTEM

P. It provides rules for inferring the probability intervals associated with the
conclusion from the probabilities associated with the premises.5 The seman-
tics is based on coherence, as described above. As an example consider the
AND Rule: If α |~x β and α |~y γ, then α |~z β ∧ γ. The probability of the con-
clusion is in the interval

max(0, x + y – 1) ≤ z ≤ min(x, y).

In our empirical studies of SYSTEM P (Pfeifer, 2002; Pfeifer & Kleiter,
2003, 2005a, in press) we presented the premises in short vignette stories and
let the subjects infer the probabilities of the conclusions. Subjects were free
to respond either in terms of point values or in terms of interval values with
lower and upper bounds. Each subject received a booklet containing a gen-
eral introduction, one example with a point, and one with interval percent-
ages. Three target tasks were presented on separate pages. Eleven additional
target tasks were presented in tabular form. Here is a typical example:

Please imagine the following situation: In a train station a tourist party from
Alsace is waiting for their train connection. About this tourist party we know
the following:

exactly 89% speak German.
exactly 91% speak French.

Please try to determine the percentage of this tourist party that speaks both
German and French. The solution is either a point percentage or a percentage
between two boundaries (from at least … to at most …):
a.) If you think that the correct answer is an point percentage, please fill in
your answer here:

Point percentage

Exactly…% of the tourist party
speak German and French.

b.) If you think that the correct answer lies within two boundaries (from at
least … to at most …), please mark the two values here:

TOWARDS A MENTAL PROBABILITY LOGIC
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0 25 50 75 100 %

—————
5 Table II of Pfeifer & Kleiter (in press) summarizes the rules of SYSTEM Pand the propaga-

tion rules for the probability bounds.
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Within the bounds of:

At least…%, and at most…%,
of the tourist party speak German
and French.

Here, the correct answer is an interval from 80 to 89%. All interval or
point responses that lie between these boundaries are coherent probability
assessments and we call them “coherent intervals” (or “coherent interval
responses”). These boundaries are derived from the inequality given above.

In Europe it is well known that people from Alsace are very likely to 
speak both German and French. This can be regarded as a salient heuristic
stereotype. To control this variable we presented our subjects a tourist party
from England. Of this tourist party it is very untypical that there are many
people that speak two languages. According to the Heuristics & Biases
framework, subjects should infer higher values for the tourist party from
Alsace compared with the tourist party from England. Our data did not sup-
port this hypothesis. The subjects used similar strategies for solving the prob-
lems and were not influenced by the representativeness heuristic that was
varied in the premises. This may be due to the fact that the subjects were
asked to think hard.

Let us stress that our tasks allow for investigating the lower probability
bound: to our knowledge, the lower probability bounds have been neglected
in the psychological literature (the conjunction fallacy is a violation of the
upper bound only). The lower probability of P(A ∧ B) is greater than zero if
P(A) + P(B) > 1. If P(A) = P(B) = .8, e.g., P(A ∧ B) ≥ (.8 + .8) – 1 = .6.
Subjects’ lower bounds can be below, within, or above the coherent intervals,
and the subjects’ upper bounds can be above, within or below the coherent
intervals. Six possible categories of interval responses result (cf. Figure 1):
too wide intervals (a), only the upper (b) or only the lower bound is coherent
(c), the whole interval is below (d) or above (f) the coherent interval (e).

In our studies on the AND-Rule we found a pattern of results that was con-
sistent over all tasks. The mean frequency of coherent interval responses over
all 14 tasks was 25.57 (n = 40, SD = 3.74). That is, 63.93% of the subjects
responded coherently. Because the coherent category contains the majority
of responses compared with the other five categories of the possible incoher-
ent intervals, this may be interpreted as a good agreement of our subjects
with the rationality norms. We found clearly more violations of the lower
bound (frequencies in categories (b) and (d)) than of the upper bound. This
is different from the results reported in the Heuristics & Biases tradition
(Kahneman et al., 1982), where subjects committed upper bound violations
(conjunction fallacies). Too wide intervals (category (a)) are rather seldom. 

TOWARDS A MENTAL PROBABILITY LOGIC

|——————————–|

0 25 50 75 100 %
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For details see Pfeifer and Kleiter (in press). The frequency of coherent
responses does not depend upon the size of the normative interval: in one
task, the coherent interval was 62-63% and 23 of 40 subjects responded
coherently. In another task, the coherent interval was 28 times larger (35-
63%) and again 24 of 40 subjects responded coherently.

Besides the AND Rule, we investigated the LEFT LOGICAL EQUIVALENCE, the
RIGHT WEAKENING, the OR and the CAUTIOUS MONOTONICITY Rule of SYSTEM P

(Pfeifer & Kleiter, in press, 2005a, 2003; Pfeifer, 2002). In the LEFT LOGICAL

EQUIVALENCE task 95% of the subjects (n = 20) responded coherent lower and
coherent upper bounds. The result was replicated in a second experiment
(Pfeifer & Kleiter, in press). A similar result was found in a study on the
RIGHT WEAKENING Rule where 90% of the subjects (n = 20) gave interval
responses within the normative lower and upper bounds. 56.80% of these
subjects gave the normative lower and the normative upper bounds (Pfeifer
& Kleiter, 2005a). Thus, for both the LEFT LOGICAL EQUIVALENCE and the
RIGHT WEAKENING Rule good agreement was found between SYSTEM Pand the
actual inferences of the subjects.

In another experiment, we compared the CAUTIOUS MONOTONICITY Rule
with its “incautious” monotonic counterpart, the MONOTONICITY Rule, that is
not contained in SYSTEM P. The second premise of the cAUTIOUS MONOTONIC-
ITY Rule (from α |~β and α |~γ infer α ∧ β |~γ) was omitted in the MONOT-
ONICITY condition (from α |~ β infer α ∧ γ |~ β). The investigation of the
MONOTONICITY Rule is of special interest, since—contrary to the rules of SYS-
TEM P—only the non-informative unit interval, [0, 1], can be inferred what-
ever the probability value of the premise is. We found that our subjects were
sensitive to the non-informativeness of the MONOTONICITY Rule: subjects
inferred wide intervals with bounds relatively close to 0 and 100%. In accor-
dance with our previous results, the data suggest that people reason nonmo-
notonically: the subjects in the CAUTIOUS MONOTONICITY condition inferred

TOWARDS A MENTAL PROBABILITY LOGIC

Figure 1.Categories of possible interval responses.

Coherent interval responses (e). Incoherent interval responses: too wide intervals (a),
intervals with both bounds too low (d) or too high (f), intervals where only the upper
(b) or only the lower bound (c) are coherent.

0% 100%

coherent interval

(e)

(b) (c)

(f)(d)

(a)
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significantly tighter intervals and close to the coherent intervals compared
with the subjects in the incautious MONOTONICITY condition (Pfeifer &
Kleiter, 2005a).

Overall, we observed good agreement between the results and the predic-
tions of the probability interpretation of SYSTEM P. The results corroborated
our hypothesis that nonmonotonic reasoning is a plausible candidate for
modeling human reasoning. The conditionals of the form α |~β are associ-
ated with high probabilities. We think that this is the reason for our finding
that humans tend to violate lower probability bounds more often as compared
with upper bounds.

The following list summarizes our studies on SYSTEM P(Pfeifer & Kleiter,
in press, 2005a, 2003):

• Good overall agreement with SYSTEM P

• AND Rule:
– Far less upper bound violations (conjunction fallacies) than lower 

bound violations

• Good agreement of the MONOTONICITY and the cautious MONOTONICITY rules:
– Intervals of the MONOTONICITY Rule are greater than CAUTIOUS

MONOTONICITY Rule

• OR Rule: relatively good agreement

• LEFT LOGICAL EQUIVALENCE Rule: very good agreement

• RIGHT WEAKENING Rule: very good agreement

Our studies on the probabilistic interpretation of SYSTEM P suggest nonmo-
notonic reasoning as a plausible candidate for a theory of human reasoning
not only at the normative but also at the descriptive level.

Conditional Syllogisms

In this section we give four examples of probability logic “at work”. As
we are not aware of empirical data of the probability logical versions of these
examples, we focus on the formal aspects only.

There are two probabilistic forms of the modus ponensdepending on how
the “IF A THEN C” connective in the first premise is interpreted, whether (i)
as a conditional proposition or (ii) as a material implication. The difference
between the two interpretations was emphasized by Karl Popper long ago.

TOWARDS A MENTAL PROBABILITY LOGIC
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We present the MODUS PONENSand the MODUS TOLLENS and two of their
invalid counterparts in their conditional and material form. As mentioned
above, the Probability Heuristics Model (Chater & Oaksford, 2004) is relat-
ed but not equivalent to probability logic. Let A and C be propositions,
“antecedent” and “consequent”, respectively.

Modus ponens

1. Verity form

2. Conditional proposition (Hailperin, 1996: 232)

Numerical example: From p = .9 and q = .5 we conclude P(C) ∈
[.45, .95] .

3. Material implication (Hailperin, 1996: 203f)

Numerical example: From p = .9 and q = .5 we conclude P(C) ∈
[.40, .90] .

4. Probability Heuristics Model (Chater & Oaksford, 2004)

where ∈ is the probability of exceptions of the dependency 
between A and C.

5. The non-probabilistic MODUS PONENSis actually endorsed by 89-
100%6 of the subjects.

When P(A) = q = 1, that is, when the “instantiating data” are given for
sure, the conditional proposition and the material implication intervals

TOWARDS A MENTAL PROBABILITY LOGIC

A → C,A � C (logically valid) .

P (C|A) = p, P (A) = q � P (C) ∈ [pq, 1 − (1 − p)q] .

P (A → C) = p, P (A) = q � P (C) ∈ [max(0, p + q − 1), p] .

P (C|A) = 1 − ε ,

—————
6 The percentages are taken from Evans et al. (1993, p. 36, Table 2.4), where seven studies

of the non-probabilistic (material) versions are summarized. Evans et al. selected studies w.r.t.
broad similarity in procedure. 89% endorsement was found in a study with abstract material.

ε
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coincide. When both premises have the probability .5, then the material
implication gives the interval [0, .5] while conditioning gives the sym-
metric interval [.25, .75]. The differences between the upper and the
lower probabilities of both forms are the same, namely 1 + pq – p – q.

Denying the antecedent

1. Verity form

2. Conditional proposition

Numerical example: From p = .9 and q = .5 we conclude P(¬C) ∈
[.05, .55] .

3. Material implication

Numerical example: From p = .9 and q = .5 we conclude P(¬C) ∈
[.10, .60] .

4. Probability Heuristics Model

5. The non-probabilistic DENYING THE ANTECEDENT is endorsed by 
17-73%7 of subjects.

Affirming the consequent

1. Verity form

TOWARDS A MENTAL PROBABILITY LOGIC

A → C,¬A �� ¬C (not logically valid) .

P (C|A) = p, P (¬A) = q � P (¬C) ∈ [1 − q − p(1 − q), 1 − p(1 − q)]

P (C → A) = p, P (¬A) = q � P (¬C) ∈ [1 − p,min(1 + q − p)] .

P (¬C|¬A) =
1 − b − aε

1 − a
.

A → C,C �� A (not logically valid) .

—————
7 17% endorsement was found in a study with concrete material (Evans et al., 1993, p. 36).
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2. Conditional proposition

Numerical example: From p = .9 and q = .5 we conclude P(¬C) ∈
[0, .56].
The argument form requires a kind of “inverse probability”,
reminding us at first sight of Bayes’ Theorem. Let A be a disease
and C be a symptom. We know the conditional probability of the
symptom given the disease, P(C|A), and the probability of the
symptom to be present, P(A). What can we say about the proba-
bility of the disease? The answer is tricky. When the symptom
probability q is greater than p and close to one, the probability
interval of the disease is getting smaller and smaller and is finally
approaching zero. The upper probability obtains a maximum
when q = p. We see that AFFIRMING THE CONSEQUENTis actually
very different from Bayes’ Theorem.

3. Material implication

Numerical example: From p = .9 and q = .5 we conclude P(A) ∈
[.10, .60].

4. Probability Heuristics Model

5. The non-probabilistic AFFIRMING THE CONSEQUENTis endorsed by
23-75% of subjects (Evans et al., 1993, p. 36).

Modus tollens

1. Verity form

TOWARDS A MENTAL PROBABILITY LOGIC

P (C|A) = p, P (C) = q � P (A) ∈

[
0,min

(
q

p
,
1 − q

1 − p

)]
.

P (A → C) = p, P (C) = q � P (A) ∈ [1 − p,min(1, 1 + q − p)] .

P (A|C) =
a(1 − ε)

b
,

where a = P (A), b = P (C) and ε = P (¬C|A).

A → C,¬C � ¬A (logically valid) .
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2. Conditional probability

Numerical example: From p = .9 and q = .5 we conclude P(¬A) ∈
[.44, 1].

3. Material implication

Numerical example: From p = .9 and q = .5 we conclude P(¬A) ∈
[.40, .90].

4. Probability Heuristics Model

5. The non-probabilistic MODUS TOLLENS is endorsed by 41-81% of 
subjects (Evans et al., 1993, p. 36).

The conditional syllogisms are just a selection of simple argument forms.
There are (infinitely) many others, of course.

We note an interesting difference when the data are given for sure (q = 1).
While in the conditional probability interpretation the conclusion holds with
a probability of 1, in the material implication interpretation the conclusion
holds with the probability of the rule only.

Categorical Syllogisms - 
Intermediate Quantifiers in Syllogistic Reasoning

There is an ongoing long tradition of psychological studies on classical
syllogisms (Chater & Oaksford, 1999; Johnson-Laird, 1999; Bacon et al.,
2003; Geurts, 2003; Newstead, 2003; Morley et al., 2004; Politzer, 2004;
Revlin et al., 2005). As with classical logic, we think that syllogistics is not
an appropriate standard of reference for evaluating human reasoning.
Specifically, the quantifiers involved in syllogistic reasoning are either too
strict or too weak. On the one hand, the all-quantifier is too strict because it
does not allow for exceptions - like the material implication! On the other

TOWARDS A MENTAL PROBABILITY LOGIC

P (C|A) = p, P (¬C) = q � P (¬A) ∈

[
1 − (1 − q)

p
, 1

]
.

P (A → C) = p, P (¬C) = q � P (¬A) ∈ [max(0, p + q − 1), p]

P (¬A|¬C) =
1 − b − aε

1 − b
.
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hand, the existential quantifier is too weak because it quantifies only over (at
least) one individual. Such quantifiers hardly ever occur in everyday life rea-
soning. Quantifications that - at least implicitly - actually occur in everyday
life reasoning like “most…”, “ almost-all …”, or “90 percent…” are not
expressible in traditional syllogistics. Since such quantifiers lie “in-between”
the existential and the all-quantifier they are called intermediate quantifiers
(Peterson, 2000). Intermediate quantifiers are promising candidates for
investigating and evaluating human syllogistic reasoning (Pfeifer & Kleiter,
2005b). We do not have empirical data yet. We sketch a formal system of
intermediate quantifiers to motivate empirical studies.

Let us summarize briefly some facts about classical syllogisms. A syllo-
gism is a two premise argument that consists of three out of four sentence
types, or moods (Table 1). The order of the predicates involved is regiment-
ed by the four figures (Table 2). This leads to 256 possible syllogisms,8 of
which 24 are syllogistically valid. From a predicate logical point of view,
only 15 syllogisms are predicate-logically valid. All 15 predicate logically
valid syllogisms are also syllogistically valid. The reason is that in syllogis-
tics you can deduce SiP from SaP, i.e.,

This holds because in syllogistics it is implicitly assumed that the subject
term Sxis not empty. This assumption is called “existential import”. In pred-
icate logic, ∀x(Sx → Px) does not entail ∃x(Sx ∧ Px). The reason is well
known: In predicate logic, formulae like ∀x(Sx → Px) can be “vacuously
true”. This is the case when there is no x such that x has the property S, i.e.,
when the antecedent of the implication within the scope of the universal
quantifier is “empty”. Then, clearly ∃x(Sx ∧ Px) is false (since ¬∃xSx is
assumed). Hence,

TOWARDS A MENTAL PROBABILITY LOGIC

∀x(Sx → Px) �syl ∃x(Sx ∧ Px)

—————
8 43 = 64 ways of constituting a two-premise argument (2 for the premises, 1 for the con-

clusion) by four moods (A, I, E, O). Multiply 64 by the four figures gives 64 x 4 = 256 possible
syllogisms.

∀x(Sx → Px) �pl ∃x(Sx ∧ Px)
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However, if we make an existential assumption explicit, we get:

Table 1.Moods involved in traditional syllogisms.

Mood name Notation Read

Universal affirmative (A) SaP All S are P

Particular affirmative (I) SiP Some S are P

Universal negative (E) SeP All S are notP

Particular negative (O) SoP Some S are notP

∀x(Sx→ Px) ∧ ∃xSx     |−pl ∃x(Sx∧ Px)

Do subjects make the existential import? How good are subjects in deter-
mining validity? Subjects are rather good at determining validity: the 24
valid syllogisms are judged as valid more often (51% of the time on average)
than invalid syllogisms (11%; Chater & Oaksford, 1999). We reanalyzed the
data summarized by Geurts (2003) and we distinguished syllogistic and
predicate-logical validity. The distinction reveals that there is a higher per-
centage of endorsement with respect to all predicate logically valid syllo-
gisms (75.13%) than with respect to all syllogistically valid syllogisms
(50.67%). Those syllogisms that are syllogistically but not predicate-logical-
ly valid are endorsed by only 9.89 % of the subjects. This is close to the per-
centage of the endorsement of all syllogistically invalid syllogisms (11%).
This finding is counter-intuitive (why should subjects not make the existen-
tial import?). We don’t have an explanation. 

An important factor for the difficulty of a syllogism problem is the figure
type: syllogisms of Figure 1 are the easiest, of Figure 4 the hardest, and those
of Figures 2 and 3 are in between (Geurts, 2003, p. 229). The two classical
psychological theories of reasoning - the mental modeltheory (Johnson-
Laird & Byrne, 1994; Johnson-Laird, 1999) and the mental ruletheory (Rips,
1994; Braine & O’Brien, 1998) - try to explain these findings.

Intermediate quantifiers are quantifiers “between” the all quantifier and
the existential quantifier. Examples of intermediate quantifiers are Almost-all
S are P, Most S are P, Many S are P or Fractionated quantifiers, n/m S are P.
We think that the traditional quantifiers are too strict to model human rea-
soning: sentences of the form All S are Phardly ever occur in everyday life
reasoning. Again, there are a priori grounds for preferring less strict quanti-
fiers for modeling human reasoning.

TOWARDS A MENTAL PROBABILITY LOGIC
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Intermediate quantifiers have hardly been investigated by psychologists.
Exceptions are the logic-based approach by Geurts (2003) and Chater and
Oaksford’s (1999) Probability Heuristics Model. We will not discuss these
approaches here. Studies on probability judgment can be close to studies on
fractionated quantifiers.

Peterson (2000) provides algorithms to evaluate syllogisms with interme-
diate quantifiers. These algorithms are correctand complete with respect to
arbitrarily many intermediate quantifier syllogisms (1/5 S are P, 2/5 S are P,
n/m S are P, …). How are intermediate quantifiers interpreted? Consider the
following Venn diagram:

S, M, and P represent the subject, middle, and predicate terms, respec-
tively. Each term represents a class of objects (the S-class, the P-class, and
the M-class). a; …, h label the cardinality of the eight possible subclasses of
objects.

Most S are Pis then interpreted by the inequality b + e > a + d, where 
(b ≠ 0 or e ≠ 0). The “where …” clause makes the existential import explic-
it. Accordingly, Almost-all S are Pis interpreted as b + e >> a + d,9 where 

TOWARDS A MENTAL PROBABILITY LOGIC

Table 2.

The four figures of syllogisms. S, M, and P are the subject, middle, and predicate
term, respectively.

Figure 1 Figure 2 Figure 3 Figure 4

Premise 1 MP PM MP PM

Premise 2 SM SM MS MS

Conclusion SP SP SP SP
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a
b

c

d

e

f

g
h

—————
9 “>>” is read as “greatly exceeds”.
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(b ≠ 0 or e ≠ 0), and Many S are Pis ¬(a + d >> b + e), where (b ≠ 0 or e≠ 0).
“Exactly m/n of the S are P” is defined as “(m/n of the S are P) and (n-m

S are ¬P)” (Peterson, 2000, p. 208).
Under this interpretation the traditional square of oppositions can be gen-

eralized as in Table 3. Lists of valid syllogisms with intermediate quantifiers
and easy methods of proving their validity are given by Peterson (2000).
Finally, we note that Peterson’s logic of intermediate quantifiers can easily
be related to a probability interpretation based on relative frequencies.

A difference between the Probability Heuristics Model of syllogistic rea-
soning and probability logic is whether independence assumptions are made
or not. Chater and Oaksford (1999, p. 244) assume for their Probability
Heuristics Model of syllogistic reasoning conditional independence: the end
terms (subject and predicate term) are independent given the middle term. In
probability logic, this assumption is not made.

Concluding Remarks

We have raised the fundamental question of the choice of an appropriate
normative standard of reference for evaluating human reasoning. We tried to
show why classical logic alone should not serve as a standard. Furthermore,
we motivated the psychological advantages of subjective probability theory
over objective probabilities. After introducing probability logic, we explored
the nonmonotonic SYSTEM P and summarized our empirical studies.
Conditional syllogisms, like the MODUS PONENS, were probabilitized in the
third section in both versions, material and conditional. Finally, we present-
ed categorical syllogisms with intermediate quantifiers, like the “MOST …” 
quantifier.

Stanovich and West (1999; 2000) found that more intelligent subjects are
doing better in reasoning under certainty and uncertainty tasks than less intel-
ligent subjects. Now, more intelligent subjects may be supposed to be more
rational than less intelligent ones. Thus, the correlation between intelligence
and performance may be taken as a supporting criterion that an appropriate
normative model was chosen to evaluate performance. So why do we want to
consider normative models that are weaker than those used to evaluate rea-
soning performance? Do the weaker models make errors in human reasoning
to “disappear”? The answer is clearly no in the domain of reasoning under
uncertainty. A conjunction fallacy remains a conjunction fallacy, neglecting
base rates remains a neglect (Kleiter et al., 1997), etc. Though, it is not the
same when probabilistic models are applied to “purely” logical tasks. Using
a probabilistic model to Wason’s selection task does indeed lead to different
“normative” solutions than using classical logic. The probabilities used in the
probabilistic model were not mentioned in the task description given to the 
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subjects. In our experiments we provided the subjects with the relevant prob-
abilities.

We do not want to completely discard classical logic as a normative stan-
dard of reference for human reasoning. This is obvious from the fact that sub-
jective probability theory is based on the classical propositional calculus. In
a similar way as probability theory presupposes propositional calculus naïve
probabilistic reasoning presupposes a basic understanding of crisp truth or
falsity of propositions and of the elementary relationships between these

TOWARDS A MENTAL PROBABILITY LOGIC

Quantifier Affirmative Negative

Universal A: All S are P E: All S are ¬P

↓ ↓

Predominant P : Almost-all S are P B: Almost-all S are ¬P

↓ ↓

Majority T : Most S are P D: Most S are ¬P

↓ ↓

. . . . . . . . .

↓ ↓

Fraction (n ≥

2m)

More-than- n−m

n
S are P More-than- n−m

n
S are ¬P

↓ ↓

m

n
S are P m

n
S are ¬P

↓ ↓

. . . . . . . . .

↓ ↓

Common K: Many S are P G: Many S are ¬P

↓ ↓

Particular I : Some S are P O: Some S are ¬P

Table 3.

Generalized squares of opposition (Adapted from Peterson, 1985: 351ff). The solid
lines indicate contradictions, dashed contraries, dotted subcontraries, and arrows sub-
alternations (i.e. immediate entailments), respectively. ¬ is the negation.
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truth values in a set of propositions. Moreover, if the premises are given for
sure and known to be true, then we consider classical logic as the appropri-
ate standard of reference. In everyday reasoning premises are nearly never
known for sure, and then probability logic is the appropriate standards of ref-
erence.

Probability logic represents the appropriate class of models to evaluate
human inference under uncertainty. If “degrees of belief” really matter in
human reasoning, then we should make them explicit in our models. The
question whether humans are rational or not is not our main motivation (has
it been a fruitful question after all?). The question is how to appropriately
model reasoning under conditions of partial and incomplete knowledge and
to trace descriptive theories of the according cognitive processes. That is
what we mean by “mental probability logic”.

Probability logic is in no way restricted to such simple kinds of inferences.
It is in fact a highly general approach to probabilistic inference. An alterna-
tively powerful and general approach to probabilistic inference are graphical
independence models. Bayesian networks are the best known subclass of
these models. The variables instantiated by observations together with the
probabilities and conditional independence relations build the premises. The
remaining variables are candidates for conclusions. Actually, the role of the
variables is not that simple and the formulation of probabilistic inference in
Bayesian networks requires the properties of conditional independence, the
theory of Markov properties, etc.

A major difference between probability logic and graphical models is that
in graphical models probabilities are assumed to be known while in proba-
bility logic the information may be incomplete. Thus, the usual graphical
models process point probabilitiesand do not model imprecision.
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