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HOW TO STATISTICALLY SHOW THE ABSENCE 
OF AN EFFECT

Etienne QUERTEMONT[1]

University of Liège

In experimental studies, the lack of statistical significance is often interpreted
as the absence of an effect. Unfortunately, such a conclusion is often a serious
misinterpretation. Indeed, non-significant results are just as often the conse-
quence of an insufficient statistical power. In order to conclude beyond reason-
able doubt that there is no meaningful effect at the population level, it is nec-
essary to use proper statistical techniques. The present article reviews three dif-
ferent approaches that can be used to show the absence of a meaningful effect,
namely the statistical power test, the equivalence test, and the confidence inter-
val approach. These three techniques are presented with easy to understand
examples and equations are given for the case of the two-sample t-test, the
paired-sample t-test, the linear regression coefficient and the correlation coef-
ficient. Despite the popularity of the power test, we recommend using prefera-
bly the equivalence test or the confidence interval.

State of the problem: absence of evidence is not evidence of absence

At the end of a study, it is not unusual to obtain a non-significant result. When
this occurs, the lack of statistical significance is often interpreted as the
absence of an effect (for example no difference between two groups, no rela-
tionship between two variables, …). Unfortunately, such a conclusion is often
a serious misinterpretation of non-significant findings and not warranted.
Such misinterpretation of non-significant results is quite common despite a
substantial and established literature warning against it (e.g., Altman &
Bland, 1995; Dunnett & Gent, 1977). A very simple example can illustrate the
problem. Suppose a study in which reaction times to a specific category of
stimuli were recorded with a computer. Ten participants were recruited and
randomly divided into two groups. The experimental group was submitted to
a specific experimental treatment before the recording of reaction times,
while the control group was tested without the experimental treatment. Figure
1 shows the mean reaction times for both groups. In this simple experiment,
as there is no evidence of a serious violation of the normality assumption, the
difference between the means of the two groups is tested with a two-sample
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110 HOW TO STATISTICALLY SHOW THE ABSENCE OF AN EFFECT

t-test, which provides the following non-significant difference: t(8) = 2.07;
p = 0.07.

In the example, it would be a serious mistake to conclude that the experimen-
tal treatment had no effect on the reaction times. As shown on Figure 1, the
mean difference between the two groups is 56 ms, which is quite substantial
even if not statistically significant. Had the same difference (with a similar
variance) occurred in a study with 20 participants in each group, the effect of
the experimental treatment would have been highly significant (p = 0.00019).
Under the assumption of no effect at the population level, the p-value of 0.07
only means that there is a 7% chance of getting a larger than 56 ms difference
between the experimental and control group with two samples of 5 partici-
pants. In this example, the correct interpretation of the data, therefore, is a
lack of sufficient evidence to conclude for an effect of the treatment. As
absence of positive evidence of a difference is not positive evidence of equiv-
alence, we are not allowed to conclude that the control and experimental
groups are equivalent.

In any study, non-significant results can occur for three different reasons:
1. Mistakes have been made during the collection or encoding of the

data, which mask otherwise significant results. This also includes
measurement error (imprecision).

Figure 1
Results of a fictitious study comparing the reaction times to specific stimuli in a 

control and an experimental group (mean ± SD).
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2. The study did not have enough statistical power to prove the exist-
ence of an otherwise real effect at the population level. The result is
a “false equivalence”, due to a sampling error.

3. There is actually no real effect (or a negligible effect) at the popula-
tion level. The result is a “true equivalence”.

As most investigators would be adamant that no mistakes were made in the
collection of their data (and are much more likely to double check for such
mistakes when the results go against their expectations than when they con-
firm the predictions), we can discard the first explanation and focus on the last
two possible origins of non-significant results. With most non-significant
results, it is often impossible to know whether they indicate a true equivalence
or a false equivalence. In other terms, it is very difficult to distinguish
between the absence of an effect at the population level and an insufficient
statistical power in the study.

Often, investigators mistakenly believe that a very small effect in a sam-
ple, for example a very small difference or even a lack of difference between
two groups, necessarily means the absence of an effect at the population level.
For example, many investigators would probably interpret a correlation of
0.00 in a sample of ten participants as strong evidence for the absence of a
relationship between two variables. Unfortunately, they forget that random
sampling error may lead to the absence of an effect in a sample even when
there is a substantial effect at the population level. For instance, with a sample
of 10 participants, a correlation of 0.50 at the population level leads to sample
correlations of 0.00 or lower in about 9% of the cases. Even a population cor-
relation of 0.80 sometimes leads to a sample correlation of 0.00 or lower (this
would happen in 1.7% of the samples with n = 10). Thus, even the total
absence of an effect in a sample does not necessarily prove the absence of an
effect at the population level, especially with small sample sizes.

In order to conclude beyond reasonable doubt that there is no meaningful
effect at the population level, i.e., to show that the study reports a true equiv-
alence, it is necessary to use proper statistical techniques. Before describing
these techniques, it is important to keep in mind that it is impossible to show
the total absence of an effect in the population. What the techniques below
can show is the likelihood that the size of an effect in the population is lower
than some value considered to be too low to be useful. To come back to our
reaction time example, the techniques we discuss cannot show that the exper-
imental treatment has no effect on reaction time at all. However, they can
demonstrate that the effect of the treatment on reaction times is lower than,
for example, 15 ms, which may be considered as negligible and non relevant
for practical purposes. As a consequence, all the techniques used to show the
absence of an effect start with defining what would be considered as the
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112 HOW TO STATISTICALLY SHOW THE ABSENCE OF AN EFFECT

threshold between a negligible and a useful effect. It is important to keep in
mind that this threshold is defined on theoretical grounds and not from a sta-
tistical point of view. In our example, we will therefore first have to decide
what would be a negligible difference. For instance, we could decide that all
differences equal to or lower than 15 ms are unlikely to be of practical use. In
such a case, if we can prove that the effect of the experimental treatment is
unlikely to be higher than 15 ms at the population level, we can conclude that
the group difference is negligible. In other words, the effect of the treatment
would be scientifically and practically trivial. It is clear that a decision about
the threshold is disputable and somewhat arbitrary. Different investigators
may have slightly different definitions of what is a negligible effect for a par-
ticular study. However, by making the estimate available we are much more
open about what we conclude from a null-effect, and divergent assumptions
can be tested.

In the following paragraphs, we will review three different approaches to
test the absence of an effect, namely the statistical power test, the equivalence
test, and the confidence interval approach[2]. In order to illustrate the calcula-
tions, we will use the two examples summarised in Table 1. The first example
reports the results of the fictitious study depicted in Figure 1. This example
illustrates a non-significant result that may reflect a real effect at the popula-
tion level, i.e., a possible false equivalence. Note, however, that it is impossi-
ble to conclude from these results whether or not there is a substantial differ-
ence at the population level. As we will see below, the first example illustrates
a study from which it is impossible to conclude anything, due to the small
sample size. The right conclusion for this study is “statistical indeterminacy”.
The second example illustrates, using the same scenario, data that are more
compatible with a true equivalence, i.e., a study in which it is reasonable to
conclude that there is no substantial effect at the population level.

Statistical power test

The statistical power test is probably the most popular method to show the
lack of an effect in the case of non-significant results. It is also the test most
often asked by reviewers, although it is not the most straightforward in terms

2. There are other, more sophisticated, methods, e.g., Bayesian and resampling methods, to
test for the absence of a meaningful effect at the population level. However, for the sake of
simplicity and because the present paper is aimed at the largest possible audience, we have
limited the discussion to statistical approaches that can be adapted from the traditional
hypothesis testing and confidence interval approaches. We also limit the discussion to a dif-
ference between two conditions, as this is what most conclusions in scientific research boil
down to.
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of calculation and interpretation. The test is based on a line of reasoning that
can be summarised as follows:

1. Define what would be the minimal value of a useful effect size in
your study. This is the threshold to be used for the power calculation.

2. Calculate the a priori probability of rejecting the null hypothesis if
the threshold value were the actual effect size at the population level.
This will provide you with an estimate of the power of your test.

3. If the power calculated under 2 is sufficiently high (usually defined
as 0.80 or higher), you can conclude that chances of a population
effect larger than the threshold value are very small given the null
result you obtained. Therefore, you can conclude that the true effect
size at the population level is unlikely to be of practical value and,
therefore, that there is no real difference between the conditions.

CI: 95 % Confidence Interval 

To illustrate the power calculation test, we apply it to the two examples in
Table 1. We have defined above that we consider a difference in reaction
times of 15 ms to be negligible and not relevant for practical purposes. This
will be our minimal threshold value. Now we can calculate the power, i.e., the
probability of rejecting the null hypothesis if the difference is postulated as
15 ms at the population level. Most of the common statistical software pack-
ages provide power calculation tests. You can also freely use power calcula-
tors on the internet. For instance, you can use Russ Lenth’s power calculator
at http://www.stat.uiowa.edu/~rlenth/Power/ (checked on April 7, 2011; use
a search robot if the link no longer works). This website looks as shown in
Figures 2 and 3 (make sure your computer supports Java).

Table 1
Results of two fictitious studies

Example 1
Possible false equivalence

Example 2
True equivalence

Number of subjects n = 5 / group n = 150 / group
Mean (± SD) for control group 402.61 (± 38.42) 402.98 (± 41.79)
Mean (± SD) for experimental group 459.09 (± 47.53) 407.24 (± 41.77)
Comparison of the two groups t(8) = 2.07; p = 0.07 t(298) = 0.88; p = 0.38
Power 0.077 0.873
Equivalence test t(8) = 1.52; p = 0.92 t(298) = –2.23; p = 0.013
CI for the difference between groups –6.55 to 119.51 –5.23 to 13.76
Conclusion of the study Not enough evidence to 

draw any conclusion
Experimental treatment has 
a trivial effect of no practi-
cal importance
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ETIENNE QUERTEMONT 115

Select the option “two-sample t-test” in Figure 2. This gives you the panel of
Figure 3, in which you can enter all values (click on the small rectangles next
to each variable to enter numeric values if you do not want to work with the
sliding rulers):

From the panel in Figure 3 we can read the a priori chances of obtaining a
statistically significant effect for a difference of 15 ms given standard devia-
tions of 38.42 and 47.53 and sample sizes of 5. These chances were .077 or
7.7%.[3] We should never have run this study given its abysmal power to
detect differences as low as 15 ms. Such a low power clearly indicates that we
cannot conclude to the equivalence of the two groups on the basis of our study
and, therefore, to the absence of an effect at the population level.

The same power analysis for the second example returns a value of .8727,
meaning that a priori our study was expected to return a significant test result
in 87.3% of the cases if the difference between the groups was 15 ms and the
sample sizes were 150. Finding a null result in this situation is much more

Figure 3
Two-sample t-test on Russ Lenth's power calculator at 

http://www.stat.uiowa.edu/~rlenth/Power/

3. The calculations presented here are based on a two-sided t test for independent samples.
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116 HOW TO STATISTICALLY SHOW THE ABSENCE OF AN EFFECT

informative about the likely effect size at the population level. Since the study
led to non-significant results, we can reasonably conclude that the true popu-
lation difference is below 15 ms, a difference we would interpret as negligible
and not relevant for practical purposes.

Equivalence test

Although the statistical power test is best known[4], it is also possible to show
the likelihood of trivially small effect sizes more easily within the traditional
hypothesis testing approach (Parkhurst, 2001; Rogers, Howard, & Vessey,
1993). When we compare two groups with a traditional t-test, the aim is to
show that there is a difference between the groups, and the null hypothesis
posits that the group means are equivalent at the population level. An alterna-
tive is to define the null hypothesis in such a way that the difference between
the groups is expected to be at the threshold value or above, while the alter-
native hypothesis asserts that the difference is below the threshold value.
Such a test is called an equivalence test.

For our example, assuming that the threshold value for a practical differ-
ence in reaction times is 15 ms, the null and alternative hypotheses would
be[5]:

H0: │µ1 – µ2│≥ 15 ms
H1: │µ1 – µ2│ < 15 ms

where µ1 is defined as the population mean for the experimental group and µ2
as the population mean of the control group.

As in traditional hypothesis testing, the aim of our equivalence test is to
reject the null hypothesis in order to conclude that the alternative hypothesis
is demonstrated beyond reasonable doubt. In our example, if we can reject the
null hypothesis defined above (i.e., that the difference between the two
groups is higher than or equal to 15 ms), we are allowed to conclude that the
mean difference between the groups at the population level is below 15 ms, a
value defined as trivial. Therefore, the conclusion would be that the effect of
the experimental treatment is practically or scientifically unimportant. In con-
trast, if the null hypothesis is not rejected, the conclusion would be that we do

4. At least in terms of its name, given that very few people really know how to calculate the
power values.

5. Equivalence tests are usually based on the definition of an equivalence interval. In our
example, we have defined a symmetrical interval from –15 ms to 15 ms. With such an inter-
val, we define the two groups as equivalent if the difference between their means at the
population level is lower than 15 ms and higher than –15 ms. However, it is possible to
define different lower and upper limits for this interval, for instance an equivalence interval
defined as –10 ms to 15 ms. In that case, the single test as described above would have to be
replaced by two equivalence tests. See Rogers et al. (1993) for more details.
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ETIENNE QUERTEMONT 117

not have enough evidence to conclude that the effect of the treatment is unim-
portant.

In equivalence tests, the formula and calculations are identical to those in
the traditional hypothesis tests, only the formulations of the null and alterna-
tive hypotheses change. For the t-test for independent samples, the formula is:

where  and  are the sample means of the two groups, N1 and N2 the
sample sizes of the two groups,  is the pooled variance of the two groups,
and δ is the minimal threshold value as defined above. Note that the test works
with the absolute value of the difference between the means, because it is a
non-directional test. Indeed, equivalence means that neither of the groups is
significantly higher than the other.

The precise calculations for various situations are given in the appendix.
For example 1, we get the following result: t(8) = 1.52; p = 0.92. So, the null
hypothesis cannot be rejected. Given the observed difference of 56 ms, we do
not have enough evidence to conclude that the mean difference in reaction
times between the experimental and the control group at the population level
is unimportant, i.e., below 15 ms. For example 2, the results are quite differ-
ent. We get t(298) = –2.23; p = 0.013. This allows us, on the basis of our
observed difference of 4.3 ms, to reject the null hypothesis and to conclude
that the mean difference between the groups at the population level is unlikely
to be larger than 15 ms. Therefore, there is enough evidence to say that the
effect of the experimental treatment is too small in terms of reaction times to
have practical consequences.

The confidence interval approach

In line with the hypothesis testing approach, the aim of the above tests was to
allow us to make yes/no decisions (Is the test powerful enough to find evi-
dence for the threshold value? Is the evidence strong enough to reject a dif-
ference between the groups beyond the threshold value?). The main weakness
of those approaches is that people may question the threshold value deter-
mined (i.e., Is a difference of 15 ms between the groups really trivial?).

An alternative approach consists of providing readers with the range of
effect sizes that are likely to exist at the population level, given the outcome
of the study. It involves computation of the confidence interval around the
effect size obtained in the sample. This immediately gives readers informa-
tion about the highest difference likely to exist at the population level. If the
entire confidence interval falls below a sensible threshold value, it will be

t
X1 X2–( ) δ–

SP
2 1

N1
------ 1

N2
------+⎝ ⎠

⎛ ⎞
------------------------------------,= df N1 N2 2–+=

X1 X2
SP

2
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118 HOW TO STATISTICALLY SHOW THE ABSENCE OF AN EFFECT

possible to conclude that the true effect size at the population level is negligi-
ble.

A further advantage of the confidence interval approach is that nearly all
statistical software packages compute confidence intervals for means, differ-
ences between means, correlations, regression coefficients, etc… (although
one should be careful about repeated measures designs, as the confidence
intervals of these often are calculated incorrectly; see Brysbaert, 2011; or
Masson & Loftus, 2003). It is therefore very easy to use the confidence inter-
val approach to examine whether a null-effect could be of practical conse-
quence or not.

Table 1 shows that the 95% confidence interval for the difference between
the control and experimental groups is –6.55 to 119.51 ms for example 1[6]

(see the appendix for the calculations). Therefore, we are 95% confident that
the true difference between the groups at the population level is between
–6.55 ms (the mean reaction time of the experimental group is about 7 ms
below that of the control group) and 119.51 ms (the mean reaction time of the
experimental group is about 120 ms above that of the control group). As is
clear from this confidence interval, it is dangerous to conclude on the basis of
this evidence that there is no effect at all at the population level. Indeed, the
confidence interval indicates that a difference as high as 119 ms could exist
between both groups at the population level. This is well above the 15 ms we
have defined as the threshold for a non-negligible effect size. At the same
time, the confidence interval informs us that we do not have sufficient evi-
dence to conclude that the experimental treatment has a real effect. Indeed, a
difference of 0 ms is included within the confidence interval as well, which
indicates that it is possible that there is actually no difference in the mean
reaction time between the control and the experimental group. Clearly, this
large confidence interval indicates that we cannot conclude anything from the
results of example 1.

In contrast, the 95% confidence interval of example 2 is much smaller:
–5.23 to 13.76 ms. Furthermore, both limits of the confidence interval are
below the threshold value of 15 ms, which we defined as the minimum
requirement for a meaningful effect. This means that we are allowed to con-
clude that the experimental treatment had no effect of practical importance.
With our 95% confidence interval, the estimated difference between the two
groups is at best 13.76 ms at the population level, which remains below the
value we have defined as the threshold for practical or scientific importance.

6. To be operationally identical to the equivalence test, however, 1 – 2α (not 1 – α) confidence
interval should be computed. In the present case, a 90% confidence interval should be com-
puted instead of a 95% confidence interval. See Schuirmann (1987) or Rogers et al. (1993)
for explanations. However, this minor point does not notably change the general discussion
of the confidence interval approach.
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ETIENNE QUERTEMONT 119

Relative to the other two approaches described above, the confidence
interval approach has several advantages. The underlying reasoning is easier
to understand than the reasoning behind the equivalence test and, most cer-
tainly, the reasoning behind the power test. Confidence intervals are also easy
to compute as most statistical software packages have options to compute
them. In contrast, many simple statistical software packages do not allow easy
computation of equivalence tests. Finally, another main advantage of the con-
fidence interval approach is that the investigators and their audience do not
have to agree on the precise value of the threshold for a minimal effect size.
In the power and equivalence tests, a threshold value must be introduced into
the calculations and the outcome depends on the value entered. This threshold
value can often be disputed and, therefore, seems like an arbitrary decision to
the audience. With the confidence interval approach, readers can form their
own opinion about whether the interval limits are small enough to be of no
practical significance. The confidence interval is interpretable throughout its
range, whereas the probabilities of the power test and the equivalence test
critically depend on the threshold value chosen (with which the reader may
disagree). For example 2, somebody defining the minimal threshold value at
10 ms would obtain the same confidence interval, but would reach a different
conclusion, namely that the evidence is not strong enough to determine that
there is no effect of practical value at the population level.

Conclusion

We have discussed three procedures to investigate whether an effect is negli-
gible at the population level. Although they often lead to similar conclusions,
the confidence interval approach is probably the easiest to implement and
understand. Despite its popularity, the power test involves a convoluted rea-
soning that is frequently misunderstood, leading to misinterpreted results
(Hoenig & Heisy, 2001). Furthermore, there is evidence that the power
approach may be inferior to the other approaches (e.g., Schuirmann, 1987).
We therefore recommend the use of either the equivalence test or the confi-
dence interval to show the lack of a real effect at the population level. The
procedures reviewed above were illustrated by an example in which the aim
was to compare the means of two independent groups. These procedures can
easily be extended to other statistical analyses (correlations, regression coef-
ficients, analysis of variance …). Some examples are given in the Appendix
(see also Goertzen & Cribbie, 2010 for equivalence tests for correlations).

To conclude, we would like to point to one important limitation of these
three techniques. Similarly to most statistical procedures trying to demon-
strate a small effect size, they usually require high (and sometimes huge) sam-
ple sizes to demonstrate the lack of a real effect. In our example 2, we needed
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120 HOW TO STATISTICALLY SHOW THE ABSENCE OF AN EFFECT

150 subjects in each group to show that the mean difference in reaction times
between the groups was below 15 ms at the population level. If we had
defined a lower threshold for negligible effects, e.g., 10 or 5 ms, the required
sample size would have been even higher. To illustrate the importance of the
sample size, Table 2 shows the required number of participants to obtain a
power of 0.80 with various thresholds for negligible correlations. For exam-
ple, if we define 0.1 as the threshold of a negligible correlation at the popula-
tion level, we need 782 subjects to have a statistical power of 0.8 and there-
fore to convince the audience that there is only a trivial relationship between
our variables in case of non-significant results. Such sample sizes are quite
unusual in psychology studies. In many cases, a study in which the results are
not significant will, therefore, not allow the researcher to conclude that there
is a lack of an effect. In such conditions, the investigators have to recognise
statistical indeterminacy and suspend their judgment as there is no evidence
for or against anything (Tryon, 2001). The study provided no evidence of any
kind and additional data will be required to conclude something. Unfortu-
nately, such a conclusion of statistical indeterminacy is expected to be the
default in studies reporting non-significant results based on small numbers of
observations. Researchers should be aware that the sample sizes required for
demonstrating the lack of a real effect may be prohibitively large in many
cases.

Note: the calculations are based on a two-sided t-test.

In the present article, we have adopted a “post-hoc” approach, in which equiv-
alence tests were implemented at the end of a study when the investigator
found non-significant results. However, when the aim of the study is to show
the absence of an effect, it is also possible, and even recommendable, to plan
an equivalence approach before the start of the study. In such cases, the inves-
tigator will be able to define the sample size properly, which often will mean
testing a large number of participants. Note that in such studies with very
large sample sizes, it is quite possible to obtain a significant effect with the
traditional hypothesis testing approach together with a significant equiva-
lence test. This would be interpreted as showing an effect at the population
level, but an effect that is too small to be of practical value.

Table 2
Minimal sample sizes required for a statistical power of 0.8 with various population 

correlations that might be defined as trivial

Population correlation Sample size
0.05 3137
0.10 782
0.15 346
0.20 193
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Appendix
Equations and calculations

The following paragraphs show the equations and calculations that are used
to test for equivalence and to calculate the confidence intervals in the case of
(1) the t-test for two independent means, (2) the t-test for paired samples, (3)
simple linear regressions, and (4) Pearson’s correlation coefficient. Example
1 from Table 1 is used to illustrate the calculations for the comparison of inde-
pendent means, assuming a threshold value (δ) of 15 ms (see main text). New
examples are introduced for the paired samples, and the correlation coeffi-
cient. As is usual for parametric tests, all tests discussed rely on the assump-
tions of normality and homogeneity of variances.

1. Comparison of two independent means – two-sample t-test

1.1. Equivalence test

H0: │µ1 – µ2│≥ δ
H1: │µ1 – µ2│ < δ

where µ1 is defined as the population mean of the first group and µ2 as the
population mean of the second group,  and  are the sample means of
the two groups, N1 and N2 the sample sizes of the two groups,  is the
pooled variance of the two groups and δ is the threshold value for a non trivial
difference.

The estimated pooled variance is obtained by the following formula:

where  and  are the sample variances of the two groups,  and  the
sample sizes of the two groups and  is the pooled variance.

For example 1 (Table I) this gives,

t
X1 X2–( ) δ–

SP
2 1

N1
------ 1

N2
------+⎝ ⎠

⎛ ⎞
------------------------------------= df N1 N2 2–+=

X1 X2
SP

2

SP
2 N1 1–( )S1

2 N2 1–( )S2
2

+

N1 N2 2–+
-----------------------------------------------------------=

S1
2 S2

2 N1 N2
SP

2

SP
2 N1 1–( )S1

2 N2 1–( )S2
2

+

N1 N2 2–+
----------------------------------------------------------- 4 38.422×( ) 4 47.532×( )+

5 5 2–+
------------------------------------------------------------------ 1867.60= = =
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To calculate the p-value associated with the t-value obtained, we must deter-
mine the probability of observing a lower t-value, which is p(t(8) < 1.52) =
.92.[7] This gives us the probability for rejecting the null-hypothesis that the
effect size at the population level is equal to or larger than 15.

1.2. 95% confidence interval

where  and  are the sample means of the two groups,  and  the
sample sizes of the two groups,  is the pooled variance of the two groups,
and  is the critical two-tailed t-value for p < α and N1 + N2 – 2 degrees
of freedom (e.g., for a t-test with df = 8, the critical t.05 value is 2.306, as any
statistical handbook will tell you).

For example 1,

The confidence interval therefore is –6.55 to 119.51 ms.

2. Testing the mean difference – paired-sample t-test

To illustrate the calculations we use an example in which 5 participants rated
their mood, going from 1 (very bad) to 5 (very good), in the morning and the
evening

7. To obtain the p-value, you can use a calculator on the internet, or a built-in function in your
computer. For instance, Excel contains a function to calculate p-value of t-tests. By using a
one-tailed distribution, and subtracting the p-value from 1, you get what you need. Just try it.
Open an Excel sheet and write in a cell =1-TDIST(1.52,8,1) or =1-LOI.STUDENT(1,52;8;1)
if you use the French version of Excel. Do you get the expected rounded-off value of .92?

t
X1 X2–( ) δ–

SP
2 1

N1
------ 1

N2
------+⎝ ⎠

⎛ ⎞
------------------------------------ 459.09 402.61– 15–

1867.60 1
5
--- 1

5
---+⎝ ⎠

⎛ ⎞
----------------------------------------------------- 41.48

27.33
------------- 1.52= = = =

IC0,95 X1 X2–( ) tα 2⁄
SP

2

N1
------

SP
2

N2
------+±=

X1 X2 N1 N2
SP

2

tα 2⁄

IC0,95 X1 X2–( ) tα 2⁄
SP

2

N1
------

SP
2

N2
------+±=

459.09 402.61–( ) 2.306 1867.60
5

------------------- 1867.60
5

-------------------+±=

56.48 63.03±=
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2.1. Equivalence test

H0: │µD│≥ δ
H1: │µD│ < δ

where µD is defined as the mean population difference,  is the mean sample
difference, SD is the standard deviation of the difference scores, N is the
number of difference scores and δ is the minimal threshold value for a non
trivial difference.

For the example:  = 1, SD = 1.58, δ = .5, , df = 4, p = .74

2.2. 95% confidence interval

Confidence interval for the mean difference at the population level:

where  is the mean sample difference,  is the standard error for the dif-
ference scores, N is the number of difference scores and  is the critical
value of the t distribution for a two-tailed test with p < α and N – 1 degrees of
freedom (e.g., the critical value you would use for a two-sided t-test with
α = .05).

For the example 1.0 ± 2.776 (1.58/ ) = 1.0 ± 1.96 (i.e., the interval goes
from –.96 to + 2.96).

Morning Evening D
p1 3 1 2
p2 4 4 0
p3 4 1 3
p4 5 4 1
p5 4 5 -1

t D δ–
SD

N
--------

----------------,= df N 1–=

D

D t 1 .5–
1.58

5
----------

------------- .71= =

IC0,95 D tα 2⁄
SD

N
--------±=

D SD
tα 2⁄

5
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3. Testing for the slope of a regression – simple linear regression

3.1. Equivalence test

H0: │β│ ≥ δ
H1: │β│ < δ

where β is defined as the regression slope at the population level, b is the sam-
ple regression coefficient, Sb is the standard error for the regression coeffi-
cient and δ is the minimal threshold value for a non trivial regression slope[8].

3.2. 95% confidence interval

Confidence interval for the regression slope at the population level:

where b is the sample regression coefficient,  is the standard error for the
regression coefficient and  is the critical value on the t distribution for α
and N – 2 degrees of freedom.

4. Testing for a correlation – Pearson’s correlation coefficient

4.1. Equivalence test

H0: │ρ│≥ δ
H1: │ρ│ < δ

where ρ is defined as the population correlation coefficient, r is the sample
correlation coefficient, N is the sample size and δ is the minimal threshold
value for a non trivial correlation.

8. For the simple linear regression, the minimal threshold value has to be defined in terms of
regression coefficients, i.e., what is the definition of a trivial effect in terms of the changes
in the dependent variable for a one unit change on the independent variable.

t b δ–
Sb

--------------,= df N 2–=

IC0,95 b tα 2⁄ Sb±=

Sb
tα 2⁄

Z

ln 1 r+
1 r–
--------------⎝ ⎠
⎛ ⎞

2
-------------------------

ln 1 δ+
1 δ–
------------⎝ ⎠
⎛ ⎞

2
-----------------------–

1
N 3–
-------------

------------------------------------------------------=
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Note that  transformations are used to correct for the well known 

bias in the standard error of the correlation test statistic, which then refers to 
the standard normal distribution.

Suppose a sample with N = 50, r = .1, and δ = .2. Then

p(Z < –0.70) = .24.

4.2. 95% confidence interval

Confidence interval for the correlation coefficient at the population level:

where ρ is defined as the population correlation coefficient, r is the sample
correlation coefficient, N is the sample size and is the critical value on
the standard normal distribution for the defined probability of type 1 error (α)
(i.e., 1.96 for α = .05).
These lower and upper confidence limits, L1 and L2, may then be transformed
to ρ values with the following equation: 

For example, suppose a sample with N = 50 and r = .10,

ln 1 r+
1 r–
--------------⎝ ⎠
⎛ ⎞

Z

ln 1 r+
1 r–
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⎛ ⎞

2
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2
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1
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2
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⎛ ⎞
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1
N 3–
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IC0,95 for
ln 1 ρ+
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1
N 3–
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ln 1 0.10+
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⎛ ⎞

2
------------------------------ 1.96 1

50 3–
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0.10 0.286±=

psycho.belg.2011_2.book  Page 126  Tuesday, June 28, 2011  3:18 PM



ETIENNE QUERTEMONT 127

The confidence interval for ρ is therefore –0.18 to 0.37.
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L1 0.10 0.286– 0.186–= = L2 0.10 0.286+ 0.386= =

ρ1
e2 0.186–( )× 1–

e2 0.186–( )× 1+
------------------------------------- 0.18–= = ρ2

e2 0.386× 1–

e2 0.386× 1+
------------------------------ 0.37= =
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