
Massive open online courses (MOOCs) are 
“one of the most significant technologi-
cal developments in higher education in 
the past decade” (Deng, Benckendorff, & 

Gannaway, 2019, p. 48). MOOCs are large 
scale web-based courses developed by 
universities, solely or in cooperation with 
industrial partners (for example, Coursera, 
2015), in which anyone with internet 
access can participate. MOOCs are pub-
lished on provider platforms, for instance, 
Coursera, edX, XuetangX, FutureLearn, 
Udacity, MiriadaX. MOOCs are a relatively 
new instructional form – the term did not 
exist before 2008 (Major & Blackmon, 2016). 
However, their popularity grows fast – over 
a decade more than 800 universities offered 
to learners more than 9,400 MOOCs (Shah, 
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2018a). In 2018 the largest MOOC provider, 
Coursera, achieved the milestones of 36 mil-
lion registered learners and 3,000 courses 
(Shah, 2018b).

We consider courses from the world’s larg-
est MOOC provider (Shah, 2019), Coursera, as 
typical MOOCs. These courses are composed 
of modules, each of which lasts a week and 
is structured around a single topic (Coursera, 
n.d.a.). Modules consist of smaller units, 
lessons. A lesson is structured around one 
or two learning objectives within a module 
topic. Each lesson includes a set of video 
lectures, reading assignments and forma-
tive assessments. A video lecture lasts 4–9 
minutes and is accompanied by one or a 
set of formative assessment items that are 
incorporated in the lecture. It takes a stu-
dent about 30 minutes to complete a lesson. 
Weekly modules are concluded by summa-
tive assessment, which is realized via a test, a 
peer-review task, or a combination of them. 
However, there are differences between 
courses, for instance, in length, workload, or 
options for self-paced learning.

Learners, professors, and universities – 
the key partners involved in MOOCs, – have 
an interest in accurate learners’ proficiency 
measuring. Learners take an online course 
and want to study efficiently. Proficiency 
measuring specifies learner’s position on the 
course-line, helps him/her to identify his/her 
strong and weak points and map areas that 
need additional work. Professors and their 
teams develop and optimize the course con-
tent. Here, the aggregated proficiency meas-
ures show to what degree the content incites 
learning and suggest improvements of video 
lectures, practical tasks, and support materi-
als. Finally, universities award online course 
certificates to learners. The use of proficiency 
measures can provide evidence on whether 
and to what degree learners have mastered 
the course.

The learners’ proficiency is a latent con-
struct; its measuring is a key concern of a sci-
entific discipline within behavioral sciences 
– psychometrics (Borsboom & Molenaar, 
2015). Latent constructs cannot be observed 
or measured directly. To get the estimates of 

proficiency, psychometricians need observa-
ble indicators of proficiency and a set of rules 
for linking the observable side to the latent 
construct. The typical indicators are learners’ 
responses on assessments, while the rules 
are provided by psychometric theories and 
statistical models.

The rapid development and expansion of 
MOOCs resulted in a growing body of related 
research (see the structured reviews of 
Bozkurt, Keskin, and de Waard (2016), Ebben 
and Murphy (2014), Liyanagunawardena 
and Williams (2013), Raffaghelli, Cucchiara, 
and Persico (2015), and Veletsianos and 
Shepherdson (2015) to get an overview 
of trends, topics, and methodology). The 
empirical research, in particular, is oriented 
at the challenges of teaching and learning 
(Deng, Benckendorff, & Gannaway, 2019), 
the motivation of both learners and teach-
ers (Hew & Cheung, 2014), learners’ experi-
ence (Veletsianos, Collier, & Schneider, 2015). 
Surprisingly, although the aim of MOOCs is 
learning, in other words, a growth of learn-
ers’ proficiency, and MOOC platforms state 
that enhancing learning is a key focus (edX, 
n.d.; Coursera, n.d.b.), there is a lack of stud-
ies developing or using psychometric tech-
niques in MOOC research. For instance, 
MOOC researchers and learning analytics still 
use grades, the simple proportion of correctly 
solved items in assessments or the (cumula-
tive) proportion of assessments completed in 
a course, as a proxy for learners’ proficiency 
(for example, de Barba, Kennedy, & Ainley, 
2016; Guo & Reinecke, 2014; Phan, McNeil, 
& Robin, 2016), which are simple and intui-
tive approaches but the use of them has a 
risk of bias due to oversimplification and 
ignoring factors of learners, content, and 
context. Abbakumov, Desmet, and Van den 
Noortgate (2018) mentioned that a Science 
Direct search revealed no papers for the com-
bination of ‘MOOC’ and ‘psychometrics’ (or 
related keywords), the field within behavioral 
sciences focused on measurement. Finally, 
concluding a recently published review, Deng, 
Benckendorf, and Gannaway (2019) stated 
that MOOC research needs “theoretically 
driven, psychometrically sound” instruments.
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We find imprecise or biased measures 
hamper the improvement and develop-
ment of MOOCs and believe it is important 
to connect psychometric approaches and 
MOOC research. In this conceptual paper, 
we try to establish such a connection. First, 
we describe the principles of traditional 
approaches for measuring learners’ profi-
ciency in education. Second, we discuss the 
qualities of MOOCs which hamper a direct 
application of these approaches based on the 
general principles in MOOCs. Third, we dis-
cuss recently developed solutions and poten-
tially applicable approaches for measuring 
proficiency. Finally, we draw directions in 
psychometric modeling that might be inter-
esting for future MOOC research.

General Principles for Measuring 
Proficiency
There are two common theories in psycho-
metrics – classical test theory and item 
response theory.

Classical Test Theory
In 1888, Edgeworth suggested to decompose 
observed test scores into a true score and an 
error component (Edgeworth, 1888). Using 
an example on the evaluation of person 
essays, he stated that the mean judgment of 
competent raters represents the true score 
and deviations from that represent errors 
(Borsboom, 2005). Later this suggestion was 
elaborated into a theory which conceptual-
izes proficiency through the true score con-
cept and now is known as the classical test 
theory (CTT; Lord & Novick, 1968; Novick, 
1966), although the true score is not con-
sidered directly as latent in the theory. The 
respective classical test model:

,j j jY θ ε= +  (1)

is the most famous equation in educational 
and psychological measurement (Borsboom, 
2005). According to this model, the test 
score of the j’th person (Yj) is the result of 
his/her proficiency (θj) with a random meas-
urement error (εj). The error term (εj) has 
an expected value of zero, and is assumed 

normally distributed, unrelated to the profi-
ciency: 2( ) 0,  (0, ),j jE N εε ε σ= ∼  and ρεθ = 0. 
Thus, the expected value of Yj, E(Yj), is θj. As a 
result, when persons are given multiple tests 
measuring the same proficiency, the average 
score is randomly distributed around θj with 
variance 2 / nεσ  with n being the number of 
observations. Hence, the more observations, 
the closer the average score is in general to 
the proficiency.

The classical test model is simple for under-
standing which explains the high popularity 
of CTT among educational scholars and psy-
chologists. At the same time, the simplicity 
leads to critical disadvantages. First, profi-
ciency measures conceptualized through the 
test scores have a highly restricted area of 
generalization (Borsboom, 2005): conclu-
sions are limited to the test itself or to an 
equivalent form, both statistically and in con-
tent domain, which is hard to find in practice. 
Second, proficiency measures are dependent 
on test difficulty: when the test is difficult, the 
person receives a low estimate of proficiency 
and when the test is easy, the person receives 
a high estimate of proficiency (Hambleton & 
Jones, 1993; Kean & Reilly, 2014; Kline, 2005). 
In practice, it means we cannot be confident 
about the proficiency measures’ comparabil-
ity, even in case of replacement of a single 
item in a test. This is not only because these 
tests might not be equal in difficulty, they can 
also be different in content. Thus, proficiency 
measures conceptualized through the same 
test scores might not reflect the same profi-
ciency in a content domain.

Item Response Theory
Item response theory (IRT; Lord, 1952; Rasch, 
1960; Birnbaum, 1968; van der Linden, 2016;  
Hambleton, Swaminathan & Rogers, 1991) 
was proposed as an alternative to CTT. The 
main idea of IRT is that a latent construct is 
considered to be unobserved determinant 
of a set of observed scores. For instance, a 
researcher who views proficiency in a specific 
domain as a latent variable assumes that the 
proficiency is the common cause of the per-
son’s responses to a set of specific test items. 
IRT presents a broad class of models with 
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nonlinear linking between person’s item 
responses (observable side) and his/her pro-
ficiency (latent construct). In the basic IRT 
model, the Rasch model (Rasch, 1960),
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the probability (πij) of the correct response 
of person j to the item i is described by a 
logistic function of the difference between 
the person’s proficiency parameter (θj) and 
the item difficulty parameter (δi). To fit the 
Rasch model, a marginal maximum likeli-
hood procedure is often used to estimate the 
item difficulty parameters (Bock & Aitkin, 
1981), assuming that the persons are a ran-
dom sample from a population in which the 
person proficiencies are normally distributed 
with 2(0, ),j N θθ σ∼  while the items have 
fixed difficulty. Individual person parameters 
can be estimated afterwards using empirical 
Bayes procedures (Van den Noortgate, De 
Boeck, & Meulders, 2003). Later this meas-
urement model was extended to model com-
plex observed variables (for instance, Bock, 
1972; Samejima, 1969; Thissen & Steinberg, 
1984) using complex latent constructs (for 
instance, Adams, Wilson, & Wang, 1997; 
Embretson, 1980; Maris, 1995; Whitely, 
1980).

In comparison to CTT, person’s proficiency 
parameters in IRT are independent of the 
test difficulty. It allows comparing persons 
even in case of partial replacement of items. 
However, IRT is demanding in terms of 
required sample sizes to obtain stable param-
eter estimates. For instance, Hambleton and 
Jones (1993) suggest to use a minimum of 
500 persons to fit the model.

Issues on Measuring Proficiency in 
MOOCs
The key issues which hamper the direct use 
of the common psychometric techniques in 
MOOCs are linked to understanding the con-
cept of proficiency itself.

First, both CTT and IRT assume the profi-
ciency does not change within a test (Lord 
& Novick, 1968). This way of understand-
ing critically contrasts to the reality of pro-
cesses in MOOCs and any learning process 
where the main product is the change of 
proficiency. MOOCs generate a change in 
proficiency at multiple levels. The first level 
is the level of assessment. Typically, a MOOC 
learner is allowed to use several (even an 
infinite number of) attempts to solve assess-
ment tasks (Coursera, n.d.c.). If the learner 
fails at one attempt, he/she can be provided 
with help information, review a video lec-
ture, use external materials, and then make a 
new attempt. Thus, the learner’s proficiency 
may change with each new attempt to solve 
the certain task or the assessment in a whole. 
The second level is the level of a course. A 
MOOC learner watches video lectures, prac-
tices with formative assessments, discusses 
problems on a course forum. These activities 
are the main source of learning. Obviously, 
the learner’s proficiency is not the same in 
two certain points of a course. Therefore, we 
cannot neglect the dynamic character of pro-
ficiency while estimating it.

Second, IRT assumes that proficiency (or a 
set of proficiencies) is a common cause of the 
learners’ responses. However, MOOC learn-
ers have a high degree of freedom because 
of low-stakes of such courses, especially in 
case of low or no integration in a curriculum. 
Online learners’ performance and reten-
tion are linked to a number of unrelated 
to knowledge emotional and motivational 
characteristics (de Barba, Kennedy, & Ainley, 
2016; Hart, 2012; Hew & Cheung, 2014). 
Thus, the learner’s proficiency might not be a 
single determinant of correctness in his/her 
responses in MOOCs. Therefore, neglecting 
the importance of such factors in perfor-
mance explanation might result in biased 
conclusions on proficiency – learners may 
perform weakly, not because they have low 
proficiency, but rather because they experi-
ence the lack of motivation.

At the same time there are at least two 
specific issues related to the observable side, 
indicators of proficiency, in MOOCs. First, 
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changes in tests are relatively frequent in 
MOOCs – professors often replace or add new 
items on the fly. This is a critical limitation 
for CTT as discussed above, but also induced 
additional complexity for using IRT as the dif-
ficulty of new items typically is not known. A 
second issue is that IRT requires a relatively 
large number of items in assessments to pro-
vide accurate proficiency measures. Kruyen, 
Emons, and Sijtsma (2012) stated that the 
minimally required test length for individ-
ual level decisions is 40 items. By contrast, 
MOOCs often offer 15 or even fewer items 
in summative assessments which is a signifi-
cant constraint for direct use of IRT. In addi-
tion, although the sample size issue might 
hamper the use of IRT in MOOCs due to the 
number of learners drops quickly, taking into 
account that the average number of MOOC 
enrollers is 43,000 and the average course 
completion rate is around 10% (Ferenstein, 
2014), most courses meet the IRT require-
ment to use a minimum of 500 persons to fit 
the model (Hambleton & Jones, 1993).

As can be seen from the above, the com-
mon psychometric models of CTT and IRT 
are not tailored to use directly for measuring 
proficiency in MOOCs and should be tuned 
up accordingly.

Current Developments on Measuring 
Proficiency in MOOCs
Recently, several extensions of the Rasch 
model were proposed for modeling the learn-
ers’ performance in MOOCs. These include 
extensions for modeling the dynamics in 
proficiency on multiple levels (Abbakumov, 
Desmet, & Van den Noortgate, 2018; 2019) 
and the inclusion of additional latent vari-
ables (Abbakumov, Desmet, & Van den 
Noortgate, in press).

General IRT Framework
Extending the Rasch model without run-
ning into computational issues of model 
overidentification became possible by the 
use of the reformulation of the Rasch model 
proposed by Van den Noortgate, De Boeck, 
and Meulders (2003). In this reformulation 
based on the principle of cross-classification 

multilevel models, we have the intercept, 
and two residual terms referring to the per-
son j and the item i respectively:

( ) 0 1 2 ,ij j iLogit b u uπ = + +  (3)

where 2
1 1(0, )j uu N σ∼  and 2

2 2(0, )i uu N σ∼ ,  
and Yij~Bernoulli(πij). As the mean of both 
residual terms equals zero, the intercept cor-
responds to the estimated logit of the prob-
ability of the correct response for an average 
person on an average item. The first residual 
term, u1j, this residual term can be inter-
preted as the proficiency of person shows 
the deviation of the expected logit from 
person j from the mean logit. The higher 
this deviation, the higher the expected per-
formance. In terms of the original formula-
tion of the Rasch model from Equation 2, 
this residual term can be interpreted as the 
proficiency of person j, and is equivalent to 
θj. The second residual term shows the devia-
tion of the expected logit from item i from 
the overall logit. Here, the larger the residual 
– the higher the probability of the correct 
response is. In that sense, the residual term 
u2i presents the relative difficulty of item i, 
compared to the mean item difficulty, b0. 
Therefore, the difficulty parameter δi from 
the original formulation of the Rasch model 
is equivalent to –(b0 + u2i) in the reformula-
tion from Equation 2. Thus considering both 
items and persons as random leaves degrees 
of freedom to estimate the effect of predic-
tors. The general principles of extending the 
Rasch model and other psychometric models 
by including explanatory predictors might 
be found in the work of De Boeck and Wilson 
(2004) and collaborators.

Proficiency Dynamics within the 
Assessment
As we mentioned above, the key assumption 
of IRT is that the proficiency does not change 
within a test (Lord & Novick, 1968). In MOOCs 
this assumption is met only partly. We may 
indeed expect that the learner’s proficiency 
remains constant within particular summa-
tive assessment which typically does not lasts 
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longer than 30–45 minutes. However, if the 
learner takes several attempts, the chances 
for the correct response grow with each new 
attempt. The first reason for this is learning. 
For instance, MOOCs typically provide learn-
ers with hints in case of a wrong response. 
This instructional content is aimed at helping 
the learner to understand his/her mistake, 
guiding through relevant learning materials 
and preparing for the next attempt. The sec-
ond reason is that sometimes the learner may 
simply enumerate possibilities, for example, 
by clicking repeatedly on alternative options 
in multiple-choice questions.

Abbakumov, Desmet, and Van den 
Noortgate (2018) proposed to consider two 
components of proficiency within weekly 
summative assessment in a MOOC – a con-
stant and a dynamic component, – and 
introduced the following model for learners’ 
performance:

( )
( )

0 10 1

1 2

( ) *

    ,

ij j ij

j i ij ij

Logit b b b attempt

u u andY Bernoulli

π

π

= + +

+ + ∼  (4)

where b0 equals the estimated logit of prob-
ability of the correct response of an average 
student on an average item in weekly sum-
mative assessment; attemptij is 0, 1, 2, 3 or 4 
and means the first, the second, the third, the 
fourth, or the fifth or higher attempt respec-
tively; b10 is overall effect of attempt, while 

2
1 1(0, )j bb N σ∼  is a deviation of the attempt 

effect for student j from the overall effect; 
and 2

1 1)(0,j uu N σ∼  and 2
2 2(0, )i uu N σ∼ .  

Thus, the random deviation u1j can be 
interpreted as the proficiency of learner j, 
which is hardly changing within summa-
tive assessment, and is equivalent to θj in 
the Rasch model from Equation 2, while 
the dynamic component (b10 + b1j)*attemptij 
shows learner’s j individual increase in 
chances to solve the item i correctly with 
a new attempt which can be interpreted as 
learner’s j local learning about item i which 
came with the use of the instructional con-
tent associated to item i or just repeated 
guessing. The authors showed that learners 
who use a higher number of attempts have 

lower ‘local learning’ (this is the increase 
of the chance on a correct answer with an 
additional attempt), which can help to dis-
tinguish between learners who learn and 
who use attempts to enumerate the item 
options. The researchers also noted that the 
effect of an additional attempt may vary 
from item to item, for example, a multiple-
choice item with four options could be 
solved correctly (using simple enumeration) 
by four attempts maximum, while for solv-
ing an open-ended item, where the student 
should indicate a number or a word, the 
number of attempts may be much higher. 
In order to account for this variation, they 
proposed the following composition of 
the dynamic component (b10 + b1j + b1i)* 
attemptij, where 2

1 1(0, )i bb N σ∼  is a deviation 
of the attempt effect for item i from the 
overall effect. Finally, the authors showed 
that learners who perform better in practice 
and more active with watching video lec-
tures have higher chances to solve summa-
tive assessment items correctly.

It is worth to mention that including all 
learners’ responses into analysis, while 
accounting for the number of attempts, 
gives an unbiased view on the proficiencies 
and moreover allows to study the evolu-
tion of the performance over attempts. In 
contrast, analysis of all responses without 
accounting for the number of attempts 
would obscure real differences between stu-
dents in their proficiency, while including 
only the scores at the first attempt, would 
reduce the amount of information used and 
hence decrease the accuracy of estimates 
and the power of statistical tests. The cross-
validation on the data from three MOOCs 
from the Coursera platform revealed 6% 
improvement in accuracy of predicting the 
correctness of learners’ responses on sum-
mative assessment items for the extended 
model in comparison to the traditional 
Rasch model (Abbakumov, Desmet, & Van 
den Noortgate, 2018). These improvements 
show that including learners’ responses with 
accounting for the number of attempts to 
the analyses gives a more accurate view of 
the learners’ proficiencies.
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Proficiency Dynamics through the Course
Another type of change in learners’ profi-
ciency in MOOCs which is not accounted 
for in the common psychometric models 
is growth through the course. Taking into 
account that video lectures are the cen-
tral instructional tool in MOOCs (Coursera, 
n.d.d.), researchers proposed to measure the 
growth via the estimation of individual effect 
of the cumulative sum of video lectures a 
learner watched before a certain assessment 
task on the correctness of his/her response 
this task in a MOOC (Abbakumov, Desmet, & 
Van den Noortgate, 2019). Thus the growth 
in learners’ proficiency from video lectures 
is considered as the growth through the 
course.

In the proposed Rasch model extension,

( )
( )

0 10 1

1 2

( ) *

    ,

ij j ij

j i ij ij

Logit b b b video

u u andY Bernoulli

π

π

= + + +…

+ + ∼
 (5)

where b10, this is the effect of the progressive 
sum of videos looked at, can be interpreted 
as the overall growth through the course, 
while b1j is the deviation of the progressive 
sum effect for student j from the overall 
effect, interpreted as the deviation of the 
individual growth through a course from the 
overall growth over subjects; u1j and b1j are 
assumed to follow univariate normal distri-
butions, 2

1(0, )uN σ , 2
1(0, )bN σ , or a multivari-

ate normal distribution N(0,Σ) with Σ as the 
variance-covariance matrix. The value of u1j 
can be considered as the initial proficiency 
of learner j (θ0j), while the value u1j + (b10 + 
b1j)* videoij corresponds to the proficiency 
of learner j at the moment of responding 
on item i (θij), when the number of videos 
looked at by learner j equals videoij.

The use of the extension showed that the 
probability of the correct response grows 
with every new watched lecture and the 
growth effect is specific for individual learn-
ers – for some learners, the growth may be 
intensive, while for some learners it may 
be almost flat through the whole course. 
In the cross-validation study, the quality of 

predicting correctness of learners’ responses 
on summative assessment items tested 
on the data from three MOOCs from the 
Coursera platform improves with 3.3% while 
using the extension in comparison to the use 
of original Rasch model. This fact promotes 
the use of extensions as a better approach in 
measuring the learners’ proficiency and its 
growth in MOOCs.

A complementary solution can be adapted 
from educational online games. Researchers 
proposed an IRT model (Kadengye, 
Ceulemans, and Van den Noortgate, 2014; 
2015) where learners’ proficiency is consid-
ered as a function of time within learning ses-
sions and the time between learning sessions:

( ) ( ) ( )
( )

( )

0 0 1 1

2 2* *  

  ,

ij j j

ij j ij i

ij ij

Logit

wtime btime v

andY Bernoulli

π α ω α ω

α ω

π

= + + +

+ + +

∼
 (6)

where α0 is the overall initial learners’ profi-
ciency, ω0j is the deviation of the initial profi-
ciency of learner j from α0, wtimeij and btimeij 
is the amount of time that passed for learner 
j while respectively using and not using the 
learning environment, up to the moment 
learner j’s response to item i, α1 and α2 are 
overall population linear time trends within 
and between sessions respectively, and ω1j 
and ω2j are deviations of the time trends from 
learner j from α1 and α2 respectively. The 
learner-specific random effects are assumed to 
have a multivariate normal distribution, and 
vi are random item effects with 2(0, )i vv N σ∼ . 
Thus, the authors introduce a dynamic con-
cept θij = (α0 + ω0j) + (α1 + ω1j)*wtimeij + (α2 
+ ω2j)*btimeij, which corresponds to the profi-
ciency of learner j at the moment of respond-
ing item i. However, to apply this solution in 
MOOCs, the platform has to log the time a 
learner works with an online course. This is 
not yet a common practice.

Additional Latent Effects on the 
Performance
The first additional latent effect on the learn-
ers’ performance in MOOCs which was tested 
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is interest (Abbakumov, Desmet, & Van den 
Noortgate, 2020). Interest has been chosen 
because it is a “critical cognitive and affec-
tive motivational variable” (Renninger & Hidi, 
2011, p. 169), which improves learners’ per-
formance in different domains. The research-
ers decided to test the effect of interest in 
formative assessments (ungraded practice 
assessments that guide and support learning) 
in MOOCs because in comparison to summa-
tive assessments (graded assessments that 
measure progress toward learning objectives) 
these items are incorporated into video lec-
tures, thus, learners’ performance might not 
only be determined by proficiency, but also by 
learners’ interest to the specific video lecture.

The researchers proposed the following 
extension:

( )
( )

0 10 1

1 2

( ) *

    ,

ij j ij

j i ij ij

Logit b b b interest

u u andY Bernoulli

π

π

= + +

+…+ + ∼
 (7)

where interestij reflects learner’s j interest 
to the video lecture in which the formative 
assessment item i is incorporated in terms of 
his/her response on a question “Please rate 
the level of your interest during the video” 
with five Likert-type options: “very high”, 
“high”, “neutral”, “low”, and “very low” which 
are scored as 0, –1, –2, –3, –4 respectively; 
b0 equals the estimated logit of the prob-
ability of the correct response of an average 
learner to an average formative assessment 
item incorporated into the video lecture of 
the course in case of very high reported inter-
est; b10 reflects the overall effect of interest 
on the expected performance, this is the 
expected increase of the logit when inter-
est increases with one unit; however, the 
effect of interest may not be the same for 
all learners, thus, to model such individual 
differences, the researchers used a random 
deviation of the interest effect for learner j 
from the overall effect, and 2

1 2(0, )j bb N σ∼ ; 
and 2

1 1(0, )j uu N σ∼  and 2
2 2(0, )i uu N σ∼ .

As a product of applying this extension an 
interesting finding was found where the inter-
cept variance, this is the variance between 

students in the effect of proficiency, was 
reduced by 25% by including a random inter-
est effect. This fact provides a more nuanced 
insight in the role of proficiency on the learn-
ers’ performance and confirms the importance 
of taking interest into account. However, there 
was no significant improvement in response 
prediction accuracy found compared to a 
model not taking into account interest.

Further Directions in Measuring 
Proficiency in MOOCs
In this section we highlight a set of promis-
ing directions for further development of 
psychometrics of MOOCs: the measurement 
of complex outcomes and latent constructs, 
the tracking learners’ progress on-the-fly, the 
improved understanding learners’ perfor-
mance by the use of explanatory psychomet-
ric modeling approaches, the advancement 
in the quality of predictions by increasing 
the model complexity, the synergy of differ-
ent psychometric methods and their combi-
nation with machine learning for precise and 
interpretable conclusions on learners.

Measuring Complex Outcomes and Latent 
Constructs
Learners interact with MOOC content in differ-
ent ways: they watch video lectures, read PDF 
assignments, discuss on forums, they attempt 
solving assessments. All these activities are 
interlaced and result in complex outcomes, for 
instance, a partly correct response made with 
a hint, after re-watching the video lecture and 
after discussing on the forum. To have a more 
nuanced view on learners’ proficiency, in this 
case a researcher should consider extending 
a model from polytomous IRT family (see 
Ostini & Nering (2005) for an overview) which 
model outcomes scaled in more than two cat-
egories (for example, “correct/partially cor-
rect/wrong” instead of dichotomous “correct/
wrong”). Moreover, a researcher should con-
sider including predictors describing learners’ 
activity before his/her response alongside as 
well as their interaction.

MOOCs use not only test-based assessments. 
An important type of assessment is peer-
reviewed assignments. In such assignments 
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a learner’s work is generally assessed by at 
least three peers using a schema provided 
by a course professor. An important problem 
of such assessments is a lower precision or 
validity due to peers’ subjectivism (Admiraal, 
Huisman, & van de Ven, 2014; Kravchenko, 
2018). For instance, a learner may get low 
score not because of his/her low proficiency, 
but because of high severity of the peer who 
assessed the work. In order to assess and cor-
rect for bias that arose by peers’ leniency or 
severity, a researcher should consider tuning 
up models which look at a learner’s score as 
a common effect of his/her proficiency, dif-
ficulty of the task, and raters’ effect. These 
models are well developed in IRT framework 
(Linacre, 1992; Myford & Wolfe, 2003; Myford 
& Wolfe, 2004).

MOOCs combine multiple domains within 
one course – one course may form a number 
of skills. Learners’ responses in assessments 
might be caused by a set of proficiencies, for 
instance, to solve a specific task in bioinfor-
matics a learner might need a knowledge in 
calculus, programming, biology. Thus, under-
standing a single proficiency as a common 
cause of this response seem to be oversimpli-
fied. In this case a researcher should consider 
a multidimensional solution (Reckase, 2009) 
which in general case replaces θj in the origi-
nal Rasch model from Equation 2 with Σkbikθjk 
where θjk is the proficiency of learner j on the 
kth dimension, and bik is the factor loading of 
item i on dimension k. Another psychometric 
way to model complex latent constructs is to 
use cognitive diagnostic models (CDM; Bolt, 
2007; Junker & Sijtsma, 2001; de la Torre, 
2009). These models assume a latent cogni-
tive profile that represents mastery status on 
a set of specific skills involved in answering 
an item. Thus, CDMs enable researchers to 
better understand each learner’s strengths 
and weaknesses in terms of each specific skill 
and support fine-grained formative feed-
back on each skill. An alternative to IRT and 
CDM approaches to deal with complex latent 
constructs is a Knowledge Space Theory 
approach (KST; Doignon & Falmagne, 1985). 
The KST assumes that every knowledge 
domain can be represented as a set of items 

and dependencies between these items in 
that knowledge of a given item (or a subset 
of items) may be a prerequisite for knowl-
edge of another, more difficult or complex 
item. Thus, a researcher can estimate what 
a learner can do now and what a learner is 
ready to learn.

Tracking the Progress On-the-Fly
The approaches from Equations 5 and 6 work 
for post-hoc measuring, not for dynamic 
growth tracking. The on-the-fly progress 
estimation, crucial for navigation and rec-
ommendations engines which decide about 
when to support a learner or to advance him/
her through a course, could be realized by the 
use of the Elo Rating System (ERS; Elo, 1978). 
The ERS was initially developed for ranking 
chess players where the rank update is based 
on the weighted difference in match result 
and expected match result. The research-
ers (Brinkhuis & Maris, 2009; Klinkenberg, 
Straatemeier, & van der Maas, 2011) sug-
gested to use the ERS to dynamically update 
learners’ proficiency based on the results 
of solving items in an online educational 
game. There the proficiency of learner j at 
the moment of responding item i is com-
puted as θ�ij = θ�(i–1)j + K{Yij–E(Yij)}, where K is 
the constant term presenting a step size in 
learners’ proficiency update, which in learn-
ing environments is typically set to be 0.4, Yij 
is actual response of learner j on item i which 
is coded dichotomously, where 0 stands for 
an incorrect response and 1 stands for a cor-
rect response, and E(Yij) is his/her expected 
response on this item. The expected response 
can be computed using the Rasch model 
from Equation 2, more specifically as a func-
tion of the difference between the ability as 
estimated before the response was given, 
θ�(i–1)j, and the difficulty of the item, δi. This 
approach is widely used in learning environ-
ments (Pelanek, 2016; Oefenweb, n.d.) and is 
potentially applicable in MOOCs.

An alternative modeling approach is 
Bayesian Knowledge Tracing (BKT; Corbett 
& Anderson, 1995) frequently used in the 
field of Intelligent Tutoring Systems (ITS; 
Psotka, Massey, & Mutter, 1988) for tracking 
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the process of learners’ knowledge acquisi-
tion. The approach also serves as the basis 
for selecting the next skill that a learner 
should work on, once the current skill has 
been mastered. In BKT, skills are modeled 
as dichotomous variables (where 1 stands 
for mastered skill and 0 stands for not mas-
tered skill) and learning is characterized as 
a transition between 0 and 1. The standard 
BKT model utilizes five global parameters per 
skill denoting the probability that a learner 
is in the mastery state for the skill before 
interacting with an item utilizing that skill, 
has mastered or has not mastered the skill 
or has guessed or has slept while interacting 
with an item utilizing that skill. Although the 
original BKT model does not permit learner-
specific or item-specific parameters, a set of 
extensions has been developed, including 
effects of learners’ individual characteristics 
(Yudelson, Koedinger, & Gordon, 2013) and 
item difficulty (Pardos & Heffernan, 2011). 
In addition, there is a recent development 
on combining BKT and IRT frameworks 
(Deonovic, Yudelson, Bolsinova, Attali, & 
Maris, 2018).

Explanatory Modeling
There are two general psychometric 
approaches that might be involved in work 
with learners’ responses on assessment items 
in MOOCs. The first type is the measurement 
approach. This approach seeks the optimal 
way of locating an individual learner on the 
latent scale, the scale of proficiency. In other 
words, a researcher tries to estimate an indi-
vidual learner’s proficiency as precisely as 
possible, and all the techniques we discussed 
above belong to measurement approaches.

The second type is an explanatory approach. 
This approach is focused on explaining learn-
ers’ responses in terms of other variables. For 
instance, a MOOC researcher might be inter-
ested in studying the relationship between 
the learners’ performance and their previous 
learning experience to understand the opti-
mal way to structure this experience in order 
to improve the performance. For instance, 
recent results of Abbakumov, Desmet, and 

Van den Noortgate (2018), showing that 
MOOC learners who are productive with 
formative assessments have higher chances 
to solve summative items correctly, may sug-
gest us to try to intensify practice in courses. 
Another interest would be to explore design 
variations in the items compose the assess-
ment, to see if performance on the items 
depends on, specific item features (for 
instance, multiple choice response or typed 
response) in order to optimize the assessment 
composition. As can be seen, the level of con-
clusions here is not the individual learner, 
but rather the general inferences that can be 
made about the relationship of explanatory 
variables across the learners and the items. 
Therefore, the explanatory approach might 
be very useful in A/B tests (large-scale online 
randomized controlled experiments) which 
seek the optimal way to organize learning 
experience within the digital environment, 
for instance, in comparing two types of video 
lectures – produced in professional studio 
(A) and hand-crafted (B) – by their effect on 
learners’ performance in a MOOC (Kizilcec & 
Brooks, 2017; Savi, Williams, Maris, & van der 
Maas, 2017).

The explanatory movement has been 
started by De Boeck and Wilson (2004) with 
collaborators. Although there are a set of 
models developed for different explanatory 
strategies, for instance, to explain item-
related or person-related variance, we find 
the cross-classification multilevel logistic 
approach (Van den Noortgate, De Boeck, 
& Meulders, 2003) which combines the 
both strategies to be a universal and flex-
ible framework a MOOC researcher might 
use. The two approaches, the measurement 
approach and the explanatory approach, can 
be combined within this framework.

Improving Prediction
As we saw above, tuning the common psy-
chometric models results in improvements 
in the accuracy of predicting learners’ 
responses. However, these improvements are 
rather small, for instance, 3–6% (Abbakumov, 
Desmet, & Van den Noortgate, 2018; 2019). 
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Thus a researcher might be interested in bet-
ter predictive capacity from psychometric 
solutions, for instance, accurate predictions 
on learners’ performance are necessary in 
building adaptive learning experience, for 
instance, in automated navigation through 
learning materials or a system of personal-
ized hints and recommendations. There is 
substantive advancement in boosting pre-
dictive power in statistical learning theory, 
a framework for machine learning based 
on statistics, which deals with the problem 
of finding a predictive function based on 
data (Hastie, Tibshirani, & Friedman, 2009). 
In general, these improvements are linked 
to growing model complexity. A MOOC 
researcher should consider to move beyond 
linearity in order to improve the predic-
tive power. To this end, a MOOC researcher 
can use several techniques, for instance, 
polynomial regression or regression splines. 
Polynomial regression extends the linear 
model by adding predictors, got by raising 
each of the original predictors to a power (for 
instance, a quadratic regression uses two vari-
ables, X, and X2, as predictors). This approach 
provides a simple way to provide a nonlinear 
fit to data. Regression splines are more flex-
ible than polynomials. They split the range 
of a variable into K distinct intervals. Within 
each interval, a polynomial function is fit 
to the data. Thus, instead of fitting a high-
degree polynomial over the entire range of 
X, piecewise polynomial regression involves 
fitting separate low-degree polynomials over 
different intervals of X. This can produce a 
very flexible fit. However, advancement in 
prediction might come alongside with sig-
nificant decrease in model interpretability 
which can be a critical constraint for applica-
tions for educational purposes. The key focus 
of a MOOC researcher here is to find optimal 
quality of prediction without loss in under-
standing functional relationship between 
variables.

Mixing Methods
The popular term “there is no free lunch 
in statistics” (Wolpert & Macready, 1997) 

which means no one method dominates 
others over all possible situations and data 
sets spreads on psychometrics of MOOCs as 
well. For example, the Rasch model exten-
sions provide advantages in understanding 
learners’ performance in MOOCs, however, 
there still is a room in predictive power to 
fill in. Another example, ERS works well in 
updating learners’ proficiency in online edu-
cational games but may suffer from the cold-
start problem, when the program does not 
know a new learner’s proficiency level at the 
beginning of the learning. These examples 
draw a perspective direction on mixing psy-
chometric approaches and combining them 
with machine learning methods to cover 
gaps. For instance, to solve the cold start 
problem Park, Joo, Cornillie, van der Maas, 
and Van den Noortgate (2019) combine ERS 
and explanatory psychometric modeling. The 
same problem has been addressed in a work 
of Pliakos and colleagues (2019) but using a 
combination of IRT models and decision tree 
method from machine learning. As can be 
seen there are several alternative solutions 
for the same problem can be found.

There are a number of methods in machine 
learning a researcher may consider to com-
bine with psychometric approaches, for 
instance, tree-based methods, support vector 
machines, clustering. Using these methods 
may result in dramatic improvements in the 
quality of conclusions although there is no 
guarantee of such improvements (Wilson, 
Karklin, Han, & Ekanadham, 2016). However, 
the cost for these improvements is a signifi-
cant loss in interpretation, for instance, why 
in a given situation we have high or low per-
formance (or high or low learning), which 
makes machine learning methods somewhat 
‘black boxes’. At the same time, in compari-
son to many machine learning methods, a 
major advantage of psychometric models is 
their explanatory power: they give insight in 
what works, when and for whom, and there-
fore may help to further optimize MOOCs. 
Thus a researcher has to find an equilibrium 
in such combinations. In principal we agree 
with a direction on creating models that are 
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interpretable in the first place which is grow-
ing up now in data science (Rudin, 2019).

Conclusion
Psychometrics of MOOCs is a very recent 
development in the field. To find an answer 
on the question of when and why learning 
does happen in MOOCs, and how these digi-
tal learning products do work, it combines a 
century-old heritage of psychometrics and 
modern sources of the logged data. It has its 
unique properties, such as dynamic charac-
ter of learners’ proficiency and composite 
character of cause of learners’ performance. 
Although it is already showing improve-
ments in understanding the digital learn-
ers, its future is linked to moving towards 
computational direction involving complex 
data and advanced statistical procedures into 
modeling multidimensional dynamic con-
structs and processes in MOOCs.
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