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Separating a song into vocal and accompaniment components is an active research topic, and recent years 
witnessed an increased performance from supervised training using deep learning techniques. We propose 
to apply the visual information corresponding to the singers’ vocal activities to further improve the 
quality of the separated vocal signals. The video frontend model takes the input of mouth movement and 
fuses it into the feature embeddings of an audio-based separation framework. To facilitate the network 
to learn audiovisual correlation of singing activities, we add extra vocal signals irrelevant to the mouth 
movement to the audio mixture during training. We create two audiovisual singing performance datasets 
for training and evaluation, respectively, one curated from audition recordings on the Internet, and the 
other recorded in house. The proposed method outperforms audio-based methods in terms of separation 
quality on most test recordings. This advantage is especially pronounced when there are backing vocals in 
the accompaniment, which poses a great challenge for audio-only methods.
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1. Introduction
Vocal performance is an important art form of music. The 
task of singing voice separation is to isolate vocals from 
the audio mixture, which contains other instrumental 
sounds that help to define the harmony, rhythm, and 
genre. Singing voice separation is often the first step 
towards many application-oriented vocal processing tasks 
including pitch correction, voice beautification, and style 
transfer, as implemented in some mobile Apps such as 
WeSing and Smule. It is also often a preprocessing step 
for other research tasks such as singer identification 
(Berenzweig et al., 2002), lyrics alignment (Fujihara et al., 
2006), and tone analysis (Fujihara and Goto, 2007).

There are various scenarios when video recordings 
are available for singing performances, such as operas, 
music videos (MV), and self-recorded singing activities. 
In pop music, creative visual performances give artists a 
substantial competitive advantage. Moreover, due to the 
rapid growth of Internet bandwidth and smartphone 
users, videos of singing activities are becoming popular in 
a number of video sharing platforms such as TikTok and 
Instagram.

Visual information, e.g., lip movement, has been 
incorporated and shown its benefits in speech signal 
processing, such as audiovisual speech separation (Lu 
et al. 2019), enhancement (Afouras et al., 2018), and 

recognition (Petridis et al., 2018). Visual information has 
also been incorporated in music analysis (Duan et al., 
2019), such as source association (Li et al., 2019a; 2017a, 
c), source separation (Zhao et al., 2019), multi-pitch 
analysis (Dinesh et al., 2017), playing technique analysis 
(Li et al., 2017b), cross-modal retrieval (Li and Kumar, 
2019) and generation (Chen et al., 2017; Li et al., 2018). 
For singing performances, however, little work has been 
done. It is reasonable to think that visual information 
would also help to analyze singing activities, and in 
particular, separate singing voices from background 
music. This is based on the fact that mouth movements 
and facial expressions of the singer are often correlated 
with the singing voice signal fluctuations. The advantages 
of audiovisual analysis over audio-only analysis can be 
best shown on songs with multiple vocal sources but 
only one target vocal source for separation, e.g., songs 
with backing vocals in the accompaniment. However, to 
what extent the incorporation of visual information helps 
singing voice separation is still a question. Different from 
speech signals, singing voices (except for rap music) often 
contain prolonged vowels and less frequent consonants 
(Mesaros and Virtanen, 2010), which shows less apparent 
matching with mouth movements (Cadalbert et al., 1994). 
Furthermore, some musically important fluctuations of 
the singing voice such as pitch modulations show little, 
if any, correlation with mouth movements (Connell et al., 
2013).

Therefore, it is our intention to answer the following 
research question in this paper: Can visual information 
about the singer improve singing voice separation, and if 
yes, how much? It is noted that while traditional singing 
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voice separation tasks (e.g., MIREX,1 SiSEC2018,2 or 
MDX20213) define all vocal components in a song as the 
singing voice, in this work we define it as separating the 
solo singing voice from the accompaniment, where the 
accompaniment may contain backing vocals. We argue that 
our definition makes sense for many songs as it separates 
the solo part, typically presenting the main melody, 
from accompaniment, typically presenting harmony. 
Separating the solo voice enables many applications such 
as solo vocal pitch correction (Grell et al., 2009) and vocal 
effect generation for the soloist without affecting the 
backing vocal sources. The solo singing voice separation 
problem is somewhat similar to speech enhancement 
with babble noise (Vincent et al., 2018). However, music 
accompaniment is typically much louder and richer in 
timbre than background noise in speech enhancement 
settings. In addition, music accompaniment, especially 
backing vocals, shows very strong correlations with the 
solo vocal signal. These factors make the problem at hand 
very challenging.

To answer the above-mentioned research question, we 
design an audiovisual neural network model to separate 
the solo singing voice from the accompaniment that may 
contain backing vocals. This network model takes both 
the audio mixture signal and the mouth region of the 
singing video as input. The audio processing sub-network 
is designed based on the MMDenseLSTM (Takahashi et 
al., 2018), the champion of SiSEC2018 (the latest music 
separation campaign running blind evaluations by the 
time of mid 2021). The visual processing sub-network 
uses convolutional and LSTM layers to encode mouth 
movements of the singer. The audio and visual encodings 
are fused before they are used to reconstruct the solo 
singing magnitude spectrogram. The training target 
of the proposed audiovisual network is to minimize 
the Mean-Square-Error (MSE) loss of the magnitude 
spectrogram reconstruction of the solo singing voice. To 
facilitate the network to learn audiovisual correlation of 
singing activities, we add extra vocal signals unrelated to 
the solo singer to the audio mixture during training. To 
investigate the benefits of visual information, we compare 
the proposed audiovisual model with several state-of-
the-art audio-based singing separation methods and an 
audiovisual speech enhancement method. We further 
vary the architecture and input of the visual processing 
sub-network to compare their performances.

One challenge we encounter in this work is the lack of 
audiovisual datasets of singing performance. For training, 
this can be addressed by randomly mixing solo singing 
videos downloaded from the Internet with unrelated 
accompaniment music. We download a cappella audition 
vocal performance videos and randomly mix their 
audio with other accompaniment resources to generate 
mixtures. We name this the Audition-RandMix dataset, and 
partition it into training, validation and test subsets. For 
evaluation on real songs, however, we need audiovisual 
recordings of singing with its relevant accompaniment 
music in separate tracks. To our best knowledge, no such 
dataset exists. Therefore, we record a new audiovisual 
dataset named URSing, where singers are recruited to sing 

along with prepared accompaniment tracks in front of a 
camera.

We conduct experiments on both the Audition-RandMix 
test set and the URSing dataset. Results on both sets 
show that the proposed audiovisual method outperforms 
baseline methods in most test conditions, whether the 
accompaniment tracks contain backing vocals or not. We 
further conduct subjective evaluations on a cappella video 
performances in the wild to prove the advantages of our 
proposed method.

The contributions of this paper include:

•	 The	first	work	to	incorporate	visual	information	with	
a state-of-the-art music source separation framework 
to address the singing voice separation problem,

•	 A	proposal	of	solo	voice	separation	where	backing	
vocal components, if they exist, are regarded as ac-
companiment tracks, which better fits many applica-
tion scenarios, and

•	 The	first	audiovisual	singing	performance	dataset,	
URSing, free for download.4

2. Related Work
2.1 Singing Voice Separation
Early methods for singing voice separation include non-
negative matrix factorization (Vembu and Baumann, 
2005), adaptive Bayesian modeling (Ozerov et al., 2005, 
2007), robust principal component analysis (Huang et 
al., 2012; Chan et al., 2015), and auto-correlation (Rafii 
and Pardo, 2011). Some methods address the singing 
separation problem using extra information such as 
vocal pitches (Hsu et al., 2012) or voice activities (Chan 
et al., 2015). Recently, deep learning based methods are 
proposed to model convolutional (Chandna et al., 2017) or 
recurrent structures (Huang et al., 2014; Uhlich et al., 2017) 
of magnitude spectral representations of music signals. 
Some works also learn to reconstruct spectral phases in 
addition to magnitudes (Takahashi et al., 2018a; Choi 
et al., 2019), while others directly work on time-domain 
waveforms with an end-to-end training strategy (Lluis et 
al., 2019; Stoller et al., 2018). Official blind evaluations 
and comparisons of these methods can be found in 
the results of SiSEC2018 (Stöter et al., 2018), where the 
best performing method MMDenseLSTM (Takahashi 
et al., 2018) uses a DenseNet structure with a recurrent 
structure to process magnitude spectrograms. Since then, 
more systems have been proposed and open-sourced with 
comparable or better results, such as Open-Unmix (Stöter 
et al., 2019), Spleeter (Hennequin et al., 2019), D3Net 
(Takahashi and Mitsufuji, 2021), DEMUCS (Défossez et 
al., 2019), and LaSAFT (Choi et al., 2021). More recently 
proposed music separation systems can also be found in 
the AICrowd Music Demixing Challenge, another official 
contest to be conducted on music separation following 
SiSEC2018.

2.2 Audiovisual Source Separation
Most audiovisual separation works are proposed for 
speech signals. For speech separation, one challenge is the 
permutation problem where the separated components 
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need to be assigned to the correct talkers. Lu et al. (2018) 
specifically address the problem by applying the visual 
information as a post-processing step to adjust the 
separation mask. Later the same group proposes to fuse 
the visual information to an audio-based deep clustering 
framework to propose an audiovisual deep clustering 
model for speech separation (Lu et al., 2019). Another 
work is described by Ephrat et al. (2018), where the input 
is the mixture spectrogram and the face embeddings 
of all the speakers appearing in the audio sample. The 
training target is the complex mask that can be applied 
to the original spectrogram to recover the complex 
spectrogram of each speaker. It is noted that speech 
separation algorithms typically assume a noiseless or less 
noisy environment in which speech signals are mixed. 
In addition, speech signals to be separated are typically 
assumed to be from different speakers. Both assumptions 
are not true in solo singing separation, as the background 
music is often quite strong and the backing vocal may 
come from the same singer as the soloist (Tsai et al., 2015).

Speech enhancement aims at separating speech signals 
from background noise. It is more relevant to singing 
voice separation from background music considering 
the foreground-background relations of sources. Hou 
et al. (2018) address the speech enhancement problem 
using a two-stream structure that takes both noisy 
speech and frames of the cropped mouth regions as 
inputs to compute their features. These features are then 
concatenated by a fusion network which also outputs 
corresponding clean speech and reconstructed mouth 
regions. Another audiovisual speech enhancement work 
proposed by Afouras et al. (2018) uses 1D convolutional 
layers to reconstruct the magnitude spectrogram of the 
clean speech and uses it to further estimate its phase 
spectrogram. The input of the visual branch is the feature 
embeddings from the lip region that are pre-trained on lip 
reading tasks.

Less work has been proposed for audiovisual music 
separation. Parekh et al. (2017) apply non-negative 
matrix factorization (NMF) to separate string ensembles, 
where the bowing motions are used to derive additional 
constraints on the activation of audio dictionary 
elements. This method, however, is only evaluated on 
randomly assembled video scenes of string instruments 
where distinct bowing motions of each player are clearly 
captured. Zhao et al. (2018) propose to learn static 
audiovisual correspondences with cross-modal source 
localization. The correlation between each pixel in a 
given video frame and the sound component can then be 
constructed. Follow-up works on separating music sources 
include recognizing the audiovisual correspondence from 
visual motions (Zhao et al., 2019) and gestures (Gan et 
al., 2020) in musical instrument performances. Similar 
works have been proposed by Gao and Grauman (2019) 
and Tzinis et al. (2021a), where correspondences between 
audio and video are learned in an unsupervised manner 
to guide source separation. This line of research achieves 
promising results in audiovisual music separation for 
musical instrument performances, but not yet on singing 
voice separation.

3. Method
3.1 Network Architecture
The proposed model takes the input of the magnitude 
spectrogram of an audio mixture (solo vocal + music 
accompaniment) and the mouth region of the video 
frames corresponding to the solo vocal. The output is 
the separated magnitude spectrogram of the solo vocal. 
It builds upon a state-of-the-art audio separation model 
named MMDenseLSTM (Takahashi et al., 2018b) with a video 
front-end model. The MMDenseLSTM model performs 
multi-scale processing on the input mixture spectrogram 
through a sequence of downsample convolutional dense 
blocks followed by a sequence of upsample convolutional 
dense blocks. The downsample blocks encode the input 
into a feature space, while the upsample blocks decode 
it to recover the target source magnitude spectrogram. 
Skip connections are added at each scale, similar to that 
in the U-net (Jansson et al., 2017). This “encoder-decoder” 
structure with skip connections is widely applied in several 
music separation models (Stoller et al., 2018; Zhao et al., 
2019; Liu and Yang, 2018). The video front-end model 
extracts visual features from mouth movements, which 
are fused with the encoded audio feature. The network 
structure is illustrated in Figure 1. We explain each part 
of the model in detail as follows.

3.1.1 Audio Separation Model
The audio separation model described in this section 
is the same as the method proposed by Takahashi et al. 
(2018b), except that we adjust the downsample/upsample 
parameters for audiovisual fusion when visual inputs are 
applied and drop the LSTM structure. This follows the 
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Figure 1: (a) The audio subnetwork. Downsample/upsam-
ple are applied to both time and frequency dimensions 
in the outer layers (marked by *), while they are only 
applied to the frequency dimension in the inner layers. 
(b) The video subnetwork. (c) The audiovisual fusion.
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observation that the addition of the LSTM structure does 
not achieve substantial improvement in SiSEC2018 yet the 
number of parameters would be increased significantly 
for audiovisual fusion. More description of each module 
is below:

•	 Dense	Block.	It	applies	2D	convolutional	blocks5 and 
the output feature maps of all layers are concatenat-
ed with each other along the channel dimension. 
This structure reuses the feature maps from previous 
layers and greatly reduces the model size.

•	 Compression	layer.	It	is	a	convolutional	layer	with	
1 × 1 kernels applied after each dense block. We use 
a compression ratio of 0.2, which means that the 
number of feature maps (channels) is reduced by 
80% after each compression layer. We apply a com-
pression layer right after each dense block, which 
improves the model compactness.

•	 Downsample/Upsample.	These	layers	are	applied	
after compression layers to resize the feature maps 
without changing the number of channels. Down-
sample layers are average pooling with 2 × 2 kernels 
after the first compression layer, and 1 × 2 kernels in 
the following layers. In other words, downsampling 
is performed along both the time and frequency di-
mensions in the first layer, but only to the frequency 
dimension in other layers. Symmetrically, upsample 
layers apply transposed convolutional layers with 
2 × 2 kernels and strides at the last upsample layer 
but 1 × 2 for the other layers. Different from Taka-
hashi et al. (2018), where downsample/upsample 
always addresses both time and frequency dimen-
sions in multiple scales, our proposed strategy down-
samples/upsamples the time dimension only once, 
making the audio stream have the same frame rate 
as the video stream. The encoded audio spectrogram 
feature is denoted as SA ∈ M×T×F, with channel (M), 
downsampled time (T), and frequency (F) dimen-
sions. As with the U-net structure of Takahashi et 
al. (2018b), skip connections are applied as concat-
enations in the corresponding layers with the same 
feature map size.

•	 Multi-Band.	Following	Takahashi	and	Mitsufuji	
(2017), we also equally divide the spectrogram into 
a low-frequency sub-band and a high-frequency 
sub-band and apply the above-mentioned U-net 
encoder-decoder on each sub-band. The dense blocks 
of the low-frequency sub-band have a higher channel 
number. Detailed parameters are given by Takahashi 
and Mitsufuji (2017).

While MMDenseLSTM was the best performing model in 
SiSEC2018, there have been new models proposed since 
then. However, in this paper, we still take MMDenseLSTM 
to build our audio subnetwork, for two reasons. First, since 
SiSEC2018 there has not been public music separation 
contest running blind evaluations of different methods. 
Therefore, MMDenseLSTM remains the most reliable 
audio separation framework for building our audiovisual 
separation model, although it may no longer achieve the 

highest performance. We emphasize reliability over cutting 
edge techniques here as we conduct this first study on 
audiovisual vocal separation. Second, MMDenseLSTM has 
a small model size, which makes it an ideal subnetwork for 
our audiovisual fusion model, considering the relatively 
small size of the audiovisual singing performance datasets. 
In Table 1, we compare model sizes of MMDenseLSTM 
and other music separation models.

3.1.2 Video Front-End Model
We propose to apply a visual branch to parse the input video 
stream and fuse it with the encoded audio features. The 
video stream is a sequence of mouth region RGB images in 
consecutive video frames. The video front-end model has 
four convolutional layers, followed by a fully connected 
layer, an LSTM layer, and another fully-connected layer, 
with the parameters of Conv2D@16 (channel number is 
16), Conv2D@16, Conv2D@32, Conv2D@32, FC@256, 
LSTM@128, and FC@N, where N is the dimension of 
the encoded feature vector for each video frame. The 
input video stream with T frames results in a feature map 
SV ∈ N×T×1. There is no pooling operation along the time 
dimension thus the temporal information is preserved.

3.1.3 Audiovisual Fusion
The extracted visual feature map SV ∈ N×T×1 from 
the video branch is fused with the encoded audio 
spectrogram feature map SA ∈ M×T×F. The fusion is usually 
a concatenation operation by flattening or broadcasting 
the mismatched dimension. In our work, the visual feature 
map SV ∈ N×T×1 is broadcast along the third dimension 
and then concatenated with the audio feature to obtain 
the audiovisual feature SAV ∈ L×T×F, where L = M + N is the 
concatenated channel dimension. Note that the temporal 
information from both the audio and video branches is 
correlated during this fusion; this is different from some 
work where audiovisual fusion is performed on feature 
maps that aggregate information along time.

3.2 Training
We train the model to predict the magnitude spectrogram 
of the source signal and use the original mixture’s phase 
to recover the time-domain waveform. Many spectral-
domain source separation methods, especially those for 
speech signals, use a spectrogram mask as the training 
target; this mask is then multiplied element-wise with 
the mixture signal’s magnitude spectrogram to recover 
the source magnitude spectrogram. For music separation, 

Table 1: Comparison of model size of different methods.

Method # Parameters (×106) 

UMX  8.5

Spleeter 19.7

Demucs 38

MMDenseLSTM 1.22

AVDCNN 11.3

Proposed 2.05
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some recent works train networks to directly output 
the source magnitude spectrogram (Uhlich et al., 2017; 
Takahashi et al., 2018) using a Mean-Squared-Error 
(MSE) loss. In our work, we also use the MSE loss for the 
magnitude spectrogram, but our network first outputs a 
mask, which is computed through a Sigmoid function to 
have a value range of [0, 1], and is then multiplied with 
the input spectrogram to compute the separated source 
spectrogram. We find that this mask computation step is 
beneficial for our audiovisual separation model. We have 
a comparative experiment in Section 5.4.

Compared to the audio mixture input, the visual input 
provides much less information about the source signals, 
therefore, the training loss may not be propagated back 
sufficiently into the visual branch, making the audiovisual 
network difficult to train. One way to address this is to 
explicitly learn audiovisual matching, either through 
pre-training (Lu et al., 2018) or early audiovisual fusion 
(Lu et al., 2019). Another way might be to add visual 
reconstruction as another training target, leading to a 
chimera-like network structure (Hou et al., 2018).

In this work, we address this problem by adding some 
extra vocal components to the original mixture, which 
are not related to the mouth movements and thus are not 
included in the target vocal spectrogram. This is similar to 
adding an additional speaker in the training data in the 
case of audiovisual speech separation (Ephrat et al., 2018), 
which forces the model to learn audiovisual correlations 
after the fusion and only separate the vocal components 
that are related to the visual input. Note that in the 
training samples all of the vocal and accompaniment 
components are randomly mixed, so neither the extra 
vocal components or the solo vocal components have 
harmonic relations with the accompaniment tracks. In the 
experiments, we show that the strategy of training with 
randomly generated vocal-accompaniment pairs performs 
decently on real songs.

4. Dataset
There are several audiovisual datasets for music 
performances (Li et al., 2019b; Gillet and Richard, 2006; 
Bazzica et al., 2017), but they are all about musical 
instrument performances. Since there is no publicly 
available audiovisual singing voice dataset containing 
isolated vocal tracks, we collect our own data for training 
and evaluating the proposed method.

4.1 Audition-RandMix
This dataset contains random mixtures of solo vocals and 
other vocals and instrumental accompaniment. Each 
component is independently collected and randomly 
mixed. To collect solo vocals with videos, we curated 
491 YouTube videos of solo singing performances by 
querying the YouTube search API with the keyword 
“Academic Acappella Audition”. We only selected video 
excerpts where the singer faces the camera and sings 
without accompaniment. The total length of these 
excerpts is about 8 hours. This set of data is referred to 
as “A Cappella Audition Vocals (AAV)”. We then simply 
randomly chose instrumental accompaniment tracks 

(from the “accompaniments” track in the MUSDB18 
dataset) and mixed them with the solo singing excerpts 
to create singing-accompaniment mixtures. To prepare 
the extra vocal components, we also download 2 
hours of choral recordings from YouTube, which are 
acoustically similar to some background vocals in pop 
songs.

The randomly mixed samples are used for training, 
validation, and evaluation. Before the mixing process, 
vocals in AAV are divided into training, validation, 
and evaluation sets roughly as 8:1:1 (50 tracks for 
evaluation). Instrumental accompaniment tracks from 
MUSDB18 (which contains a wide range of music genres 
and instrument types) are also divided into the three sets 
following the official way (also 50 tracks for evaluation). 
Then mixing is applied on each split independently to 
form the training, validation, and evaluation sets. The 
volume of each track is normalized using the root-mean-
square (RMS) value. For the training and validation 
sets, each track is split into short samples (around 2.5 
seconds) for random mixing, resulting in a large number 
of mixed samples. We do not balance the volume of each 
individual sample so the mixtures may have different 
SNRs. During training, for half of the training and 
validation samples we add extra vocal components that 
are not related to the mouth movements to encourage 
the model to learn audiovisual correlations. Half of 
the extra vocal components are solo vocals from other 
unrelated singers in the AAV dataset, and the other 
half are samples from the choral recordings. We apply 
a random gain between –6dB and 0dB for the extra 
vocal components. This is based on the observation 
that background vocals are typically softer than the 
solo vocal in most songs. For evaluation, mixing is 
performed on a random bijection between the 50 
vocals and 50 instrumental accompaniments. For each 
mixture, we pick a 30-second excerpt (with both vocal 
and accompaniment present) for evaluation, following 
the same strategy as the MUSDB18 dataset. This set 
is referred to as “Audition-RandMix” in the following 
experiments. For the same 50 mixtures, we randomly add 
extra vocals following the same strategy as preparing the 
training set, which is referred to as “Audition-RandMix 
(v+)”, in order to explore the model performance in more 
challenging cases.

Note that all the samples in this condition are artificial 
mixtures that cannot represent real songs, since vocals 
and accompaniments are unrelated. However, training 
on randomly mixed samples has been found still helpful 
for separating real songs (Song et al., 2021), and artificial 
mixtures have also been used as evaluation data for music 
separation tasks (Luo et al., 2017).

4.2 URSing
To evaluate the proposed method in more realistic singing 
performances, we create the University of Rochester 
Multi-Modal Singing Performance Dataset (URSing). In 
this paper, we only use the URSing dataset for evaluation. 
A brief description of the creation process is described 
below.
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4.2.1 Singer Recruiting
Singers are students at the University of Rochester. 
Audition is performed to filter out unqualified singers 
who could not sing in tune. Each participant receives $5 
for recording each song, and is allowed to record up to 5 
songs. Each singer has signed a consent form to authorize 
the release of the dataset for research purposes. In total 
22 singers participated in the recording process, including 
11 male and 11 female singers.

4.2.2 Piece Selection
To ensure high recording efficiency, the singers pick their 
own songs and their favorite accompaniment tracks to 
sing along with. Most songs are commercial songs. We do 
not put constraints on song genres, but filter out songs of 
which the accompaniment tracks are of low sound quality.

4.2.3 Recording
To ensure synchronization, the singers listen to the 
accompaniment track through earphones while recording 
their singing voice. Their voices are recorded using an 
AT2020 condenser microphone hosted by Logic Pro X, and 
their videos are recorded using iPhone 11. The recording 
is conducted in a semi-anechoic sound booth. A sample 
photo and the floor plan of the sound booth are shown 
in Figure 2.

4.2.4 Post-processing
For each solo vocal recording we use the following plug-
ins to simulate the typical audio production procedure 
in commercial recordings: a) static noise reduction 
(Klevgrand Brusfri and Waves X-noise), b) pitch refinement 
(Melodyne), c) sound compression (Fabfilter Pro-C 2), 
and d) reverberation (Fabfilter Pro-R). We also adjust the 
vocal volume to balance it with the accompaniment 
track. Beyond this, we do not perform any other editing 
on the audio recording (e.g., time warping or rhythmic 
refinement) to preserve the synchronization with the 
visual performance. To synchronize the audio recording 
captured by the AT2020 microphone with the video 
recording captured by the smartphone, we use the audio 
recording captured by the built-in microphone of the 
smartphone as the bridge, through cross correlation.

4.2.5 Annotation
Since the mouth movements are mostly relevant to the 
singing performance, we provide the annotations of the 
mouth regions in the dataset. This is performed using 

the Dlib library (King, 2009), an automatic tool for facial 
landmark detection, followed by manual checking. The 
mouth region is represented as a square bounding box 
with the side length equal to 1.2 times the maximum 
horizontal distance for all mouth landmarks.

The URSing dataset contains 65 songs, totaling 4 hours 
of audiovisual recordings of singing performance. For 
each song, we provide:

•	 The	audio	recording	of	the	solo	singing	voice	(in	
WAV, 44.1 KHz, 16 bits, mono).

•	 The	corresponding	accompaniment	audio	track	(in	
WAV, 44.1 KHz, 16 bits, mono or stereo).

•	 The	video	recording	of	the	soloist’s	upper	body	(in	
MP4, 1080P portrait, 29.97 FPS).

•	 The	annotations	of	mouth	regions	for	each	video	
frame.

Note that when we prepare the accompaniment tracks, we 
do not avoid the tracks containing backing vocals, as they 
are the challenging and useful cases to study in this paper. 
Example video frames and cropped mouth region pictures 
from the annotations are provided in Figure 3.

We also choose a set of 30-sec excerpts where both solo 
vocal and accompaniment tracks are prominent to form 
a benchmark evaluation set. Specifically, for each of the 
65 songs, we choose one 30-sec excerpt without backing 
vocals and one with backing vocals, if such excerpts are 
available. We provide this information in the metadata. 
This results in 54 excerpts with accompaniment tracks 
that only contain instrumental components (referred as 
“URSing” in the following experiments) and 26 excerpts 
with accompaniment tracks that also contain backing 
vocals (referred as “URSing (v+)”. The latter, presumably, 
are more challenging for solo vocal separation and more 
useful for showing advantages of audiovisual methods. In 
this paper, since we do not use any songs from URSing for 
training, we only use these 30-sec excerpts for evaluation.

5. Experiments
5.1 Implementation Details
For audiovisual singing videos, audio is downsampled to 
32 KHz. We use a frame length of 1024 and a hop size 
of 640 (20 ms) for spectrogram calculation. Magnitude 
spectrograms are converted to logarithmic scale followed 
by normalization along each frequency bin; this increases 
the weights of the contribution from high frequencies. 
Video data is converted to 25 FPS (equivalent to 40 ms 

����

�����

�������

����

����

������
������

���������

Figure 2: A sample photo and floor plan of the sound 
booth for the recording process of the URSing dataset.

Figure 3: Examples of video frames of the URSing dataset 
and cropped mouth region pictures as the input to the 
video branch of the proposed method.
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frame hop size). For the original singing performance 
videos, the mouth regions are cropped as square bounding 
boxes using the Dlib library (King, 2009) and then 
interpolated into the size of 64 × 64. RGB video frames are 
converted to grayscale, then normalized into zero mean 
and unit variance. The feature dimension N for each video 
frame is set to 128. Each training sample is 2.56 seconds 
long, containing 128 audio frames and 64 video frames. 
The input/output audio spectrogram has the shape of 
2 × 128 × 513 (channels × frames × frequency bins), and 
each input video stream has the shape of 64 × 64 × 64 
(frames × width × height). We use RMSProp optimization 
with a learning rate of 0.01. The learning rate decays every 
5 epochs by multiplying with 0.8. We use a batch size 
of 8 for training on a TITAN × GPU with 11.9 GB graphic 
memory. It takes about 40 hours to train for 50 epochs. 
We adopt early stopping when the validation loss does not 
decrease for 10 consecutive epochs.

For evaluations, we calculate the signal-to-distortion 
ratio (SDR) between the separated vocal waveforms and 
the ground-truth ones using the BSS Eval Toolbox V4, the 
same as the evaluation measure applied in SiSEC2018. 
Specifically, for each 30-sec evaluation excerpt, we 
calculate the median SDR over all 1-sec audio segments.

5.2 Baselines
We first use the original mixture recording (referred 
as “MIX” in the experiments) as the separated vocal for 
evaluation on our dataset. This sets lower bounds of 
separation results without any separation techniques. 
Then we apply two oracle filtering techniques that utilize 
ground-truth source signals. The ideal binary mask (IBM) 
assigns each time-frequency bin to the predominant 
source. The ideal ratio mask (IRM) distributes the power of 
each time-frequency bin into different sources according 
to the power ratio of the ground-truth sources. The IBM 
and IRM set upper bounds for time-frequency masking-
based source separation methods.

We then compare our proposed method with several 
audio-based music separation methods as baselines.

•	 UMX	(Stöter	et	al.	2019).	An	open-sourced	separation	
method known as “Open-unmix”. The model employs 
the BLSTM structure and is trained on the MUSDB18 
dataset.

•	 Spleeter	(Hennequin	et	al.,	2019).	An	open-sourced	
music separation method with a CNN+Unet model 
trained on their in-house dataset of 24,097 songs.

•	 Demucs.	An	open-sourced	music	separation	method	
with U-net and LSTM structure to process the signal 
in the waveform domain. It achieved the best separa-
tion performance among all open-sourced methods 
up to date.

•	 Spleeter-train.	The	same	model	as	“Spleeter”	but	
trained on our Audition-RandMix dataset using the 
same conditions as those for our proposed audio-
visual method as a direct comparison.

•	 Demucs-train.	The	same	model	as	“Demucs”	but	
trained on our Audition-RandMix dataset.

•	 MMDenseLSTM	(Takahashi	et	al.,	2018b).	The	method	

that achieved the best results in SiSEC2018, even 
without training on extra data. We implemented this 
method from scratch. Our implementation has been 
validated by achieving similar vocal separation per-
formance on the MUSDB18 test set. We then trained 
this model on our Audition-RandMix dataset as a 
direct comparison.

We also implement an audiovisual speech enhancement 
method named AVDCNN proposed by Hou et al. (2018). 
This method applies 2D CNNs to take the noisy speech 
and the mouth region from a visual recording as inputs, 
and fuses encoded audio and visual features to output 
the enhanced speech signal as well as reconstructed video 
frames of mouth movements. After the fusion layers, we 
used LSTM instead of fully-connected layers as used by 
Hou et al. (2018), which shows higher performance in our 
experimental scenarios.

We choose audiovisual speech enhancement instead of 
audiovisual speech separation as the baseline, because 
we believe that speech enhancement is more relevant 
to singing voice separation from background music in 
terms of foreground-background relations of sources, as 
explained in Section 2.2. In addition, audiovisual speech 
separation usually assumes the availability of the video 
recordings of all talkers, while in our setting, only the 
video of the solo singing voice is used.

We present the model sizes of all the models in Table 1.

5.3 Objective Evaluation of Separation Results
We evaluate the comparison methods on the four test 
sets described in Section 4: Audition-RandMix, Audition-
RandMix (v+), URSing, and URSing (v+). Again, “v+” means 
that the accompaniments contain vocal components. 
Boxplots of SDR results are shown in Figure 4, where 
each data point in the boxplots is the median SDR of the 
separated vocal of all 1-sec segments of a 30-sec excerpt. 
The horizontal line inside each box indicates the median 
value across all excerpts. Several interesting observations 
can be made from the results.

5.3.1 Benefits of Visual Information
The proposed method outperforms audio-based 
separation baselines in most of the evaluation sets. This 
shows the advantage of incorporating visual information 
about the singer’s mouth movement for solo singing 
voice separation. However, Spleeter and Demucs slightly 
outperform our proposed system on the URSing set. We 
believe that this is because they are trained on a much 
larger in-house dataset (e.g., 24,097 songs totalling 
79 hours for Spleeter). This is verified by the fact that 
Spleeter-train and Demucs-train, the same baseline 
models but trained on our dataset as a fair comparison, 
do not outperform our proposed method. We suggest that 
this is because our proposed model (and MMDenseLSTM) 
has a much smaller model size than other audio baseline 
methods, making it less prone to overfitting given a small 
training set.

Comparing songs with backing vocals (Audition-
RandMix (v+) and URSing (v+)) to songs without backing 
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vocals (Audition-RandMix and URSing), we can see that 
the outperformance of the proposed method is better 
pronounced on songs with backing vocals. Wilcoxon 
signed-rank tests show that the improvement of the 
proposed method over MMDenseLSTM on Audition-
RandMix (v+) and URSing (v+) are both significant, 
with p values of 5.1 × 10–3 and 2.3 × 10–2, respectively. 
We argue that this is because audio-only methods, 
although trained to only separate the target vocal (the 
strongest vocal) in the experiments, often confuse the 
target vocal with other vocals. The proposed audiovisual 
method, in contrast, learns to only separate the vocal 
signals that are correlated to the solo singer’s mouth 
movements.

The reason that the improvement is more pronounced 
on Audition-RandMix (v+) than on URSing (v+), we 
argue, are twofold: 1) backing vocals in URSing (v+) are 
not as strong as the intentionally added backing vocals 
in Audition-RandMix (v+), and 2) backing vocals in 
URSing (v+) often overlap with solo vocals and share the 
same lyrics, showing high correlations with the mouth 
movements of the solo singer, while the added backing 
vocals in Audition-RandMix (v+) are unrelated to the solo 
vocal.

Figure 5 shows one 10-sec sample as an extreme 
case to compare the spectrograms of the audio-based 
MMDenseLSTM method and the proposed audiovisual 
method when backing vocal components are strong (e.g., 
the middle part of the sample). We also show the mouth 
movement in several frames throughout this excerpt. It 
can be seen that MMDenseLSTM recognizes the backing 
vocal components in the middle frames as the solo 
vocal, while the audiovisual method suppresses those 
components significantly.

On songs without backing vocals, the outperformance 
of the proposed method can still be observed. Subjective 
listening by the authors suggests that the visual 
information helps to reduce high-frequency percussive 
sounds from the solo vocal, as the former do not correlate 
with mouth movements well.

5.3.2 Superiority of Proposed Audiovisual Architecture
The proposed method outperforms the audiovisual speech 
enhancement baseline significantly in all evaluation 
sets. Note that the baseline is trained and evaluated on 
the same dataset as the proposed method. This shows 
the superiority of the proposed network architecture 
on the solo singing voice separation task. In particular, 
we argue two main reasons for this. First, the proposed 
model utilizes the commonly used U-net structure with 
skip connections, which generally achieves good results in 
music separation (Jansson et al., 2017; Stoller et al., 2018; 
Takahashi and Mitsufuji, 2017). Second, in our audiovisual 
fusion scheme we preserve the temporal correspondence, 
which prevents a substantial increase of the number of 
trainable parameters in the fusion layer. This is important 
when the DenseNet-based audio sub-network has a small 
model size. The variations of different video sub-networks, 
however, does not make much difference to the separation 
performance, as we analyze in Section 5.4.

5.3.3 Limitations and Room for Improvement
Compared with reported SDR values in SiSEC2018, the 
SDR values in Figure 4 are much higher. For example, 
MMDenseLSTM reaches around 10dB on URSing but only 
around 7dB in SiSEC2018 (method “TAK1” in (Stöter et al., 
2018)). We argue that the songs used in SiSEC2018 (i.e., the 
MUSDB18 dataset) are professionally recorded, mastered 
and mixed vocals. They often contain complex components 
such as polyphonic vocals, background humming, and 
strong reverberation. They are mastered and mixed by 
professional music producers to intentionally make them 
better fused into the background music. In contrast, 
the ground-truth vocals in our datasets are solo vocals 
recorded in controlled environments with limited vocal 
effects added. It is reasonable to believe that the benefits 
of visual information can be further demonstrated on 
more professionally produced songs. In addition, the 
performance difference between the Audition-RandMix 
test sets and the URSing test sets seems to be small for 
all methods, including the oracle results. This shows that 

Figure 4: The SDR (dB) comparison on separated solo vocals with different methods on different evaluation sets. (“v+” 
denotes songs where accompaniments contain vocal components.)
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randomly mixed songs, although lacking harmonic and 
rhythmic coherence, are not easier to separate than the 
more realistically mixed songs, suggesting that it may be 
reasonable to use randomly mixed songs for training (Song 
et al., 2021) and evaluation (Luo et al., 2017). However, 
whether this is still true for professionally produced songs 
is still a question.

On the other hand, there is still some gap between the 
proposed method and the oracle results on the SDR metric 
in our evaluation sets. It is likely that this gap will be even 
bigger on professionally produced songs. This suggests 
that much work can be done to improve the separation 
performance. We have more discussion in Section 6.

5.4 Comparison of Different Video Front-End Models
To investigate the key factors of the audiovisual separation 
framework and the robustness, we replace the proposed 
Conv2D+LSTM video front-end with several other widely-
used visual feature extraction frameworks:

•	 No-mask.	This	experiment	has	the	same	video	
branch, but without a mask layer after the audio-
visual fusion.

•	 Conv3D.	The	Conv3D	model	was	firstly	proposed	by	
Tran et al. (2015) and achieved the best video action 
recognition results at the publication time. It takes 

all the video frames from each sample as a feature 
map and a 4th dimension is added as the channel 
dimension of size 64. We then apply 2 Conv2D layers 
(with the channel dimension 128 and 256) on each 
frame to share the channel dimension with Conv3D. 
Followed by a pooling operation and fully-connected 
layers, we obtain the video feature with the same 
dimensionality as S Conv3D ∈ N×T×1. Note that in this 
structure, the temporal information is only parsed at 
the very first Conv3D structure, since no recurrent 
network is applied.

• Dense+LSTM. Differently from the proposed model, 
we replace the Conv2D layers with a dense block 
from the DenseNet structure. The dense block 
was firstly proposed by Huang et al. (2017), and it 
achieved significant improvements on image object 
recognition benchmarks with a smaller model size 
and less computation cost. Here each dense block 
has 2 layers with growth rate of 12. Then a Conv2D 
layer with 1 × 1 kernels is applied to compress the 
channel count to 32, resulting in the same feature 
dimensionality as the proposed CNN+LSTM model 
before feeding into the FC@256.

•	 Lip-reading.	This	variation	uses	a	pre-trained	model	
proposed by Petridis et al. (2018) for the lip read-
ing task on the LRW dataset (Chung and Zisser-
man, 2016). The original model structure consists 
of Conv3D, ResNet-34, and GRU. We only use the 
pre-trained model to extract the visual feature to 
integrate into our proposed audiovisual source sepa-
ration model.

A comparison of different video front-end models is 
shown in Figure 6. It can be seen that the proposed 
(Conv2D+LSTM) model achieves the highest SDR values 
for most cases, but some video front-end models have 
similar performance. Applying a mask layer is critical, 
as otherwise the audiovisual method even degrades 
from the audio-based method. Note that for the audio-
based baseline method (MMDenseLSTM), we have also 
experimented with models with or without a mask layer, 
but it did not make any difference to the separation 
results. The Conv3D framework slightly degrades the 
performance, but still outperforms the audio-based 

Figure 5: One 10-sec example comparing vocal separa-
tion results from different methods on a song excerpt 
with strong backing vocals from the Audition-RandMix 
dataset. The four spectrograms from top to bottom are 
the original mixture, ground-truth vocal, audio-based 
vocal separation result from Takahashi et al. (2018b), 
and audiovisual vocal separation result from the pro-
posed method. One mouth frame is shown for each 
second.
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Figure 6: The SDR (dB) comparison on the separated 
solo vocal from the audiovisual method using different 
video front-end models.
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baseline method (MMDenseLSTM). One reason for this 
performance drop may be that in this framework, there 
is no recurrent structure, and the temporal evolution 
of visual information is only processed by the Conv3D 
structure. As the Conv3D structure takes the raw input 
of mouth frames, it may be sensitive to mouth position 
changes due to landmark detection errors. The model 
pre-trained on lip reading ranks the worst among the 
audiovisual models. This is because the lip reading model 
was trained on the LRW dataset where for each sample 
containing several words, only one word around the 
center frames is annotated as the training target. This 
makes the model only attend to the middle frames of a 
video excerpt, leading to limited guidance for the singing 
voice separation and even degradation from audio-based 
methods. We have also conducted experiments using 
the pre-trained lip reading model with finetuning on 
our separation task, but it does not boost the separation 
performance from our proposed video frontend model. It 
is possibly because lip movements in speech and singing 
are different.

5.5 Subjective Evaluation on Professional A Cappella 
Songs
In this section, we further evaluate the benefits of visual 
information incorporated in our proposed method on 
real a cappella songs in the wild. We collect 35 audiovisual 
a cappella recordings from YouTube. This collection 
represents the extreme cases where all the accompaniment 
components are vocals (except for several cases where 
additional percussive instruments are also present), to 
study how much the proposed audiovisual method is 
advantageous while the audio-based method is very likely 
to fail. Here we use the MMDenseLSTM baseline as the 
audio-based method for comparison. Most of these songs 
are chorus performance with a solo singer accompanied 
by harmonic vocals and/or vocal beatbox, while some are 
performances with multiple solo singers. We only keep 
the videos where the solo singer’s mouth is visible and 
clear, without video shot transition for at least 10 seconds. 
A sample frame of one song is shown in Figure 7 with the 
mouth region of the targeted solo singer highlighted.

As we do not have access to the source tracks, we cannot 
evaluate the separation performance using common 
objective evaluation metrics. Instead, we conduct a 
subjective evaluation on the source separation quality 

(Cartwright et al., 2016, 2018) over 51 people. Some 
subjects are students or faculty from the University of 
Rochester, others are subscribers from the International 
Society for Music Information Retrieval (ISMIR) 
community. Statistics of the subjects’ music background 
is shown in Figure 8. Each survey asks a subject to rate 
7 of the 35 songs, and each subject may take more than 
one survey. For ratings from the same subject, we take 
the average to avoid bias. The evaluations are conducted 
remotely on a web interface, and subjects are required 
to have a quiet listening environment. For each song, 
the subjects first watch a 10-sec excerpt of the original 
performance and then watch the same video twice 
with the solo singing voice separated by two different 
singing voice separation methods in a random order to 
rate the separation quality. Due to the variations across 
these songs, the original recording serves as a reference 
for a consistent scoring scheme. For each video we also 
highlight the mouth region of the target solo singer (see 
Figure 7) to help subjects focus on the corresponding 
solo voice. The specific evaluation questions are:

•	 Question	1:	What do you think about the overall sepa-
ration quality for the targeted singer?

•	 Question	2:	What do you think about the separation 
quality in terms of removing backing vocal accompani-
ments in the separated solo voice?

•	 Question	3:	What do you think about the separation 
quality in terms of not introducing artifacts into the 
separated solo voice?

The subjects need to answer each question using a scale 
from 1 to 5, where “1” represents Very bad and “5” 
represents Very good. The three questions are related to 
the common definitions of the three objective source 
separation evaluation metrics, SDR, SIR, and SAR, 
respectively.

The results of the subjective evaluations are presented 
in Figure 9. According to the collected responses for 
Question	 1,	 the	 proposed	 audiovisual	 method	 is	 rated	
significantly higher than the baseline audio-based method 
(Wilcoxon signed-rank test shows a p value of 3.5 × 10–31); 
the	average	rating	is	raised	from	3.1	to	3.9.	For	Question	
2, the difference is even more significant, as the average 
rating is increased from 2.6 to 3.8 (with a p value of 3.1 
× 10–45), showing that the proposed method is especially 
beneficial for removing backing vocals from the mixture. 
Regarding the artifacts introduced into the separated 

Figure 7: One sample frame of an a cappella song for sub-
jective evaluation.

Figure 8: Statistics of the 26 subjects’ musical back-
ground related to the subjective evaluation.
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solo	vocals	in	Question	3,	both	methods	achieve	a	rating	
between “neutral” and “good”, and the difference is not 
statistically significant (with a p value of 0.46).

5.6 Ablation Studies on Non-Informative Visual Input
To further investigate how the incorporation of visual 
information affects the separation performance, in this 
section, we substitute the visual input (i.e., mouth region 
of the solo singer) with some non-informative content.

•	 Constant.	We	feed	the	visual	branch	with	constant	
zero values all the time.

•	 White-noise.	We	feed	the	visual	branch	with	white	
noise.

•	 Mismatch.	The	input	of	the	visual	branch	is	the	
mouth region video of an unrelated singer to provide 
misleading information about the singing activity.

•	 Random-scenes.	In	this	case,	we	collect	a	singing	
performance video from the “Who Sang It Better” 
program6 on YouTube and randomly crop the video 
frames as input of the visual branch. The video con-
sists of selfie recordings from several singers, and the 
cropped regions contain random scenes including 
microphones, other parts of the singers, or back-
ground scenes.

Figure 10 shows the separation results for different 
experimental settings. The model performance always 
degrades from the audio-based baseline MMDenseLSTM 
when feeding with irrelevant or misleading information, 
suggesting that a non-informative visual input is harmful 
for separation. This is because our training data was not 
augmented with noise. This also proves that the video 
branch is an essential part of our model. The performance 
degradation by feeding white noise or a mismatched 
singer is more noticeable than a constant input or random 
scenes. This may be because the model is more likely to 
overfit irrelevant visual fluctuations in the training data, 
while for a constant visual input the model is more 
likely to ignore it. In all these cases, the input of random 
scenes is most likely to happen in real scenarios, when 
the singer’s mouth region is not shown or is occluded in 
the video. Without a preprocessing method to filter out 
these irrelevant scenes, these would be considered failing 
cases for the proposed model. Nonetheless, in all of these 
circumstances, the separation performance still achieves 
a median SDR over 5dB for most cases. This suggests that 
the audio branch is dominant in the model inference. 

Comparing with the “No-mask” results in Figure 6, this 
also confirms our claim in Section 5.4 that the mask layer 
helps to improve the model robustness, even when the 
visual input is less informative.

6. Discussion
Our proposed method is the first work to address 
audiovisual separation for singing performance, and 
there are still many aspects to improve and many areas 
to explore. First, we are not building our model upon the 
most state-of-the-art audio separation methods due to 
the reasons described in Section 3.1.1. Other techniques 
like time-domain-based (Luo and Mesgarani, 2018) and 
transformer-based (Zadeh et al., 2019) models or different 
audiovisual fusion methods may further improve the 
performance. Second, in this paper we collected the 
Audition-RandMix data from the Internet for training, 
and we recorded the URSing dataset for evaluation. 
While it is a challenging process to record audiovisual 
singing performance with ground-truth tracks, collecting 
randomly mixed data for training is an easier process, since 
there are many solo singing performance videos on the 
Internet. It has been proved that using randomly mixed 
data is beneficial for training music separation (Song et al., 
2021), so one could potentially improve the audiovisual 
vocal separation results by collecting more random mixing 
data for training. Third, another promising direction is to 
apply a pre-trained audio separation model to build the 
audiovisual structure, where the audio subnetwork can 
be pre-trained on tens of thousands of songs with audio 
recordings only. Fourth, as we discussed in Section 5.6, 
there could be some failure cases when the mouth regions 
are blocked or wrongly detected. As attention models have 
been known to work well on multi-modal fusion problems 
(Tzinis et al., 2021b), the preprocessing step of cropping 
mouth regions can be addressed by using an attention-
based mechanism to learn to focus on the mouth region. 
Last but not least, it is worth investigating how other 
kinds of visual information could help with the analysis 
of singing voice, such as facial expressions, body gestures 
and movements.

7. Conclusion
In this paper, we proposed an audiovisual approach to 
address the solo singing voice separation problem by 
analyzing both the auditory signal and mouth movement 

Figure 9: The subjective ratings of the separation quality 
in response to the three questions. Each error bar shows 
mean ± standard deviation. Figure 10: The SDR (dB) comparison on the separated 

solo vocal of the proposed audiovisual method with 
non-informative visual inputs.
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of the solo singer in the visual signal. To evaluate our 
proposed method, we created the URSing dataset, the 
first publicly available dataset of audiovisual singing 
performances recorded in isolation for singing voice 
separation research. We also collected solo singing 
recordings from YouTube for training. Both objective 
evaluations on our prepared singing recordings and 
subjective evaluation on professionally produced a 
cappella songs in the wild showed that the proposed 
method outperforms state-of-the-art audio-based 
methods. The advantages of the proposed method is 
especially pronounced when the accompaniment track 
contains backing vocals, which have been difficult to 
separate from solo vocals by audio-based methods.

Notes
 1 Music Information Retrieval Evaluation eXchange. 

https://www.music-ir.org/mirex/wiki/MIREX_HOME.
 2 A community-based signal separation evaluation 

campaign. https://sisec18.unmix.app/#/.
 3 AICrowd Music Demixing Challenge. https://www.

aicrowd.com/challenges/music-demixing-challenge-
ismir-2021.

 4 http://www.ece.rochester.edu/projects/air/projects/
URSing.html.

 5 A convolutional block includes a Batch Normalization 
layer followed by a ReLU activation and a 2D 
convolutional layer throughout the paper.

 6 https://www.youtube.com/watch?v=wt-RwXBR3uY.
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