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Learning Audio–Sheet Music Correspondences for  
Cross-Modal Retrieval and Piece Identification
Matthias Dorfer*, Jan Hajič Jr.†, Andreas Arzt*, Harald Frostel* and Gerhard Widmer*,‡

This work addresses the problem of matching musical audio directly to sheet music, without any higher-
level abstract representation. We propose a method that learns joint embedding spaces for short excerpts 
of audio and their respective counterparts in sheet music images, using multimodal convolutional neural 
networks. Given the learned representations, we show how to utilize them for two sheet-music-related 
tasks: (1) piece/score identification from audio queries and (2) retrieving relevant performances given a 
score as a search query. All retrieval models are trained and evaluated on a new, large scale multimodal 
audio–sheet music dataset which is made publicly available along with this article. The dataset comprises 
479 precisely annotated solo piano pieces by 53 composers, for a total of 1,129 pages of music and about 
15 hours of aligned audio, which was synthesized from these scores. Going beyond this synthetic training 
data, we carry out first retrieval experiments using scans of real sheet music of high complexity (e.g., 
nearly the complete solo piano works by Frederic Chopin) and commercial recordings by famous concert 
pianists. Our results suggest that the proposed method, in combination with the large-scale dataset, 
yields retrieval models that successfully generalize to data way beyond the synthetic training data used 
for model building.
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1 Introduction
Many important applications in Music Information 
Retrieval (MIR) – from retrieval scenarios to live score 
following to score-informed transcription – require an 
alignment between different representations of a piece, 
most often between printed score (sheet music) and 
recorded performance (audio). Consequently, there has 
been a lot of work on score-to-performance matching, 
with different approaches. Traditionally, automatic 
methods for linking audio and sheet music have relied 
on some common mid-level representation that allows 
for comparison and matching (e.g., by computation of 
distances or similarities) of time points in the audio 
and positions in the sheet music. Examples of mid-
level representations are symbolic event descriptions, 
which involve the error-prone steps of automatic music 
transcription on the audio side (Böck and Schedl, 2012; 
Kelz et al., 2016; Sigtia et al., 2016; Cheng et al., 2016) 
and Optical Music Recognition (OMR) on the sheet music 
side (Wen et al., 2015; Hajič Jr and Pecina, 2017; Byrd and 

Simonsen, 2015; Rebelo et al., 2012); or spectral features 
like pitch class profiles (chroma features), which avoid 
the explicit audio transcription step but still depend on 
variants of OMR on the sheet music side. For examples 
of the latter approach see, e.g., (Balke et al., 2016, 2015; 
Grachten et al., 2013; Kurth et al., 2007; Fremerey et al., 
2009; Izmirli and Sharma, 2012).

To avoid these complications altogether, Dorfer et al. 
(2016) have proposed the idea of directly matching sheet 
music images and audio, with deep neural networks. 
Given short excerpts of audio and the corresponding sheet 
music, the network learned to predict which location in 
the given sheet image best matches the current audio 
excerpt. The potential of this idea was demonstrated in 
the context of score following.

The approach presented by Dorfer et al. (2017a) and 
further exended in the present article goes beyond that of 
Dorfer et al. (2016) in several respects. Most importantly, 
the original network required both sheet music and audio 
as input at the same time, in order to then decide which 
location in the sheet image best matches the current 
audio excerpt. We now address a more general scenario 
where both input modalities are required only at training 
time, for learning the relation between score and audio. 
This requires a different network architecture that can 
learn two separate projections, one for embedding the 
sheet music and one for embedding the audio, which can 
then be used independently of each other. For example, 
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we can first embed a reference collection of sheet music 
images using the image embedding part of the network, 
then embed a query audio and search for its nearest sheet 
music neighbours in the joint embedding space. This 
general scenario is referred to as cross-modality retrieval 
and supports different applications (two of which will be 
demonstrated in this paper).

Specifically, we use multimodal convolutional neural 
networks to learn correspondences directly between images 
of sheet music and their respective audio counterparts. 
Given short excerpts of audio and corresponding sheet 
music images (such as the ones shown in Figure 1), the 
networks are trained to learn an embedding space in which 
both modalities are represented as fixed-dimensional 
vectors which can then be compared, e.g., via their cosine 
distance. To obtain a latent representation that supports this 
comparison, the networks employ an optimization target 
that encourages joint embedding spaces where semantically 
similar items of both modalities live close to each other.

The central idea of this approach is to circumvent the 
problematic definition of mid-level features by replacing it 
(on both sides) with a learned transformation of audio and 
sheet music data to a common vector space. Dorfer et al. 
(2017a) demonstrated how to utilize this methodology for 
two sheet music-related real-world applications: (1) piece 
identification via cross-modality retrieval from audio queries, 
and (2) audio-to-sheet music alignment using Dynamic Time 
Warping (DTW) in the learned joint embedding space.

In the present work we continue the work of Dorfer 
et al. (2017a) and extend it with the following new 
contributions, which we hope will greatly facilitate and 
accelerate future music alignment and retrieval research 
in the MIR community.

Contribution 1: A New, Large, Open Multimodal 
Dataset. First experiments by Dorfer et al. (2017a) already 
indicated that the general approach seems to scale very 
well with the amount of training data available, and that 
it is important to have as diverse a dataset as possible to 
arrive at a robust model. (To that end they also applied 
various data augmentation strategies.) We will provide 
additional empirical evidence supporting this in Section 4 
of the present paper. Motivated by this, we propose and 
publish MSMD (Multimodal Sheet Music Dataset), a new, 
free, large-scale, multimodal audio–sheet music dataset, 
with complete and detailed alignment ground-truth at 
the level of individual notes. The dataset is built on top 
of the Mutopia Project,1 a collection of more than 2000 

scores, collected under Creative Commons licenses, which 
allows us to share and distribute the whole dataset to the 
research community.

Contribution 2: Experimental Setup, Software  
Tools, New Experimental Baseline. To allow for an 
objective benchmarking of further methodological 
improvements we suggest a specific experimental 
setup on how to perform evaluations with the dataset. 
Additionally, to lower the initial hurdles for working 
with the data, we release a complete set of tools for 
automatically preparing, viewing, and loading the 
data. We present extensive experiments, using the new 
dataset and the suggested experimental setup. The entire 
experimental code including our pre-trained retrieval 
models is available online.2 We hope this will serve as a 
basis for further research in the community.

Contribution 3: First Experiments with Substantial 
Real-world Data. In our previous work (Dorfer et al., 
2017a), all experiments were carried out on synthetic data, 
e.g., rendered sheet music and audio synthesized from MIDI. 
In this paper, we will report on first large-scale retrieval 
experiments using scanned images of real sheet music of 
high complexity (e.g., nearly the complete solo piano works 
by Frederic Chopin, from the Henle Urtext Edition) and 
real audio recordings by professional concert pianists. Our 
results suggest that the proposed method, in combination 
with the large-scale MSMD dataset (and appropriate data 
augmentation methods), yields retrieval models that 
successfully generalize to data way beyond the synthetic 
training data used for model building. This holds for sheet 
images and to quite some degree also for real performances.

The remainder of this article is structured as follows: In 
Section 2 we introduce the new multimodal audio–sheet 
music dataset. (A detailed description of how the data was 
produced is given in Appendix A). Section 3 describes how 
to train the proposed retrieval model on this dataset, along 
with the applied data augmentation strategies. Sections 
4 and 5 present extensive experimental results on two 
different retrieval tasks (sheet/audio snippet retrieval and 
piece/performance identification). Section 6 explores how 
the method generalizes to complex real-world data (e.g. 
scanned sheet music and real performances). In Section 
7, we summarize our results and propose an agenda for 
further research, which is made possible by the availability 
of this new dataset.

2 A Multimodal Sheet Music Dataset
In this section, we introduce the Multimodal Sheet Music 
Dataset (MSMD) used in our experiments. The dataset is 
based on the Mutopia collection of LilyPond-encoded3 
pieces and is created entirely automatically from the 
Mutopia project repository.4 Some examples illustrating 
the variety of music in MSMD are shown in Figure 2.

MSMD contains 479 solo piano pieces of mostly 
classical music by 53 composers, for a total of 1,129 pages 
of music. The pieces are available in two modalities: as 
scores (sheet music), and as MIDI, both exported directly 
from LilyPond. We extract staff and notehead locations 
and pitches from the score, and synthesize audio from 
the MIDI file and compute spectrograms (see Section 2.1 
below). Then, we align three modalities — noteheads in 

Figure 1: Audio-sheet music pairs presented to the net-
work for embedding space learning.
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score; MIDI events; audio/spectrogram timeline — using 
temporal and pitch information that is provided by the 
Lilypond-MIDI connection (see Figure 3).

What makes the dataset valuable, and makes the 
experiments described in this paper possible, is that the 
modalities are automatically aligned at a fine-grained 
level: each individual notehead in the scores is linked to 
its counterpart MIDI event(s) in the audio modality. Our 
models then learn from snippet pairs centered around the 
aligned notehead/note event pairs (see Figure 1). There is 
a total of 344,742 such aligned pairs. (This is of course not 

the only setting for which the fine-grained alignment can 
be used, as discussed in Section 7.)

A full description of the dataset and the toolchain used 
to build it is given in Appendix A.

2.1 Spectrogram Computation
We generate up to 7 performances per piece, using 
various tempo ratios between 0.9 and 1.1 of the original 
MIDI tempo and four open-source piano soundfonts (this 
is relevant for Section 3.2 on data augmentation). One of 
the four soundfonts is reserved for testing (it is never used 
for spectrograms seen in training).

We compute log-frequency spectrograms of the audio 
files, with a sample rate of 22.05 kHz and an FFT window 
size of 2048 samples. For dimensionality reduction we 
apply a normalized logarithmic filterbank with 16 bands 
per octave, allowing only frequencies from 30 Hz to 6 kHz. 
This results in 92 frequency bins. The frame rate of the 
spectrogram is 20 frames per second.

2.2 Recommended Train/Test Splits
We consider three scenarios that motivate how MSMD 
should be split into a training/validation set and a test set. 
First, we consider simply a random mix of all the available 
pieces, denoted in the experimental results as all.

Next, for experiments that are to focus on a stylistically 
homogeneous body of music, we suggest using only the 
works of a single composer. In the case of MSMD, this 
would be Johann Sebastian Bach, since there are enough 
of his works in MSMD to allow training on this set, and 
their style is consistent. Experiments with this train/test 
split are labeled bach-only.

Finally, for specialized experiments targeted at the 
generalization to a previously unseen musical style, we 
propose to leave one composer (again, J. S. Bach) out of 
the training/validation data and use his pieces only for 
testing. Experiments with this train/test split are labeled 
bach-out.

The exact piece lists defining the splits, including the 
split of the training data into train and validation sets, are 
included with the dataset. The statistics for the splits are 
given in Table 1.

Figure 2: Example scores illustrating the range of music 
in MSMD, from simple to complex.

Table 1: MSMD statistics for the recommended train/test splits. Note that the numbers of noteheads, events, and 
aligned pairs do not match. This is because (a) not every notehead is supposed to be played, esp. tied notes; (b) some 
onsets do not get a notehead of their own, e.g. ornaments; (c) sometimes the alignment algorithm makes mistakes.

Split Name # Pieces/Aln. Pairs Part # Pieces # Pages # Noteheads # Events # Aln. Pairs

all 479 / 344,742 train 360 970 316,038 310,377 308,761

valid 19 28 6,907 6,583 6,660

test 100 131 29,851 29,811 29,321

bach-only 173 / 108,316 train 100 251 77,834 75,283 74,769

valid 23 40 10,805 10,379 10,428

test 50 88 23,733 23,296 23,119

bach-out 479 / 344,742 train 281 725 235,590 233,041 231,617

valid 25 25 4,834 4,772 4,809

test 173 379 112,372 108,958 108,316
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Besides the synthetic MSMD dataset, we will also use 
(in Section 6) a collection of scanned scores and recorded 
performances, to evaluate how our models generalize to 
real-world scenarios.

3 Learning Audio–Sheet Music Correspondences
Our approach is built around a neural network designed 
for learning the relationship between two different data 
modalities. The network learns its behavior solely from the 
examples presented at training time. We start this section 
by explaining how to prepare and post-process the MSMD 
dataset proposed in Section 2 in order to generate exactly 
these training examples. The final part of this section 
describes the underlying learning methodology in detail.

3.1 Data Preparation
The MSMD dataset already contains segmentations 
of the staff systems in all of its sheet music images (cf. 
Figure 3). In particular, we are given annotated bounding 
boxes around the individual systems along with the 
positions of the note heads associated with these systems. 
In addition to the scores we are also provided with audio 
renditions synthesized from MIDI files, or spectrograms 
computed from these. And most importantly, we get for 
each annotated note head in the image a pointer referring 
to its corresponding onset time in the audio. This means 
that we know for each notehead its location (in pixel 
coordinates) in the image, and its onset time in the audio. 
Based on this relationship and annotations, we cut out 
corresponding snippets of sheet music images (in our case 
160 × 200 pixels) and short excerpts of audio represented 
by log-frequency spectrograms (92 bins × 42 frames, 
≈ 2sec of music). Figure 1 shows three examples of such 
audio – sheet music correspondences; these are the pairs 
presented to our multimodal networks for training.

3.2 Data Augmentation
To improve the generalization ability of the resulting 
networks, we propose several data augmentation strategies 
specialized to score images and audio. In machine learning, 
data augmentation refers to the application of (realistic) 

data transformations in order to synthetically increase 
the effective size of the training set (Ronneberger et al., 
2015; McFee et al., 2015). We already emphasize at this 
point that data augmentation is a crucial component for 
learning cross-modality representations that generalize to 
unseen music.

For sheet image augmentation we apply three different 
transformations, summarized in Figure 4. The first is image 
scaling where we resize the image between 95 and 105% 
of its original size. This should make the model robust to 
changes in the overall dimension of the scores. Secondly, 
in Δy system translation we slightly shift the system in the 
vertical direction by Δy ∈ [–5, 5] pixels. We do this as the 
system detector will not detect each system in exactly the 
same way and we want our model to be invariant to such 
translations. In particular, it should not be the absolute 
location of a note head in the image that determines its 
meaning (pitch) but its relative position with respect to the 
staff. Finally, we apply Δx note translation, meaning that 
we slightly shift the corresponding sheet image window 
by Δx ∈ [–5, 5] pixels in the horizontal direction. In our 
experiments, all sheet augmentation strategies are applied 
simultaneously as the individual effects were already 
investigated in (Dorfer et al., 2017a).

In terms of audio augmentation, we render the 
training pieces with three different sound fonts and 
additionally vary the tempo between 95 and 110 % of 

Figure 3: Core dataset workflow. For producing the alignment, it is necessary to “unroll” the score using individual 
staff systems, so that the ordering of noteheads in the score corresponds to the ordering of the notes in the MIDI file.

Figure 4: Overview of image augmentation strategies. The 
size of the sliding image window remains constant (160 
× 200 pixels) but its content changes depending on the 
augmentations applied. The spectrogram remains the 
same for the augmented image versions.
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its original tempo when preparing the MSMD dataset 
performances (see Section 2). For the test set, we only use 
performances rendered at the original preset tempo but 
using an additional unseen soundfont (no performances 
using this soundfont are used for training). The test set 
is kept fixed to reveal the impact of the different data 
augmentation strategies.

3.3 Embedding Space Learning
This subsection describes the underlying learning 
methodology. As mentioned above, the core of our retrieval 
approach is a neural network capable of learning cross-
modal correspondences between short snippets of audio 
and sheet music images. In particular, we aim to learn a joint 
embedding space of the two modalities in which to perform 
nearest-neighbour search. One method for learning such 
a space, which has already proven to be effective in other 
domains such as text-to-image retrieval, is based on the 
optimization of a pairwise ranking loss (Kiros et al., 2014; 
Socher et al., 2014). Before explaining this optimization 
target, we first introduce the general architecture of our 
correspondence learning network. As shown in Figure 5 the 
network consists of two separate pathways f and g taking two 
inputs at the same time. Input one is a sheet image snippet I 
and input two is an audio excerpt A. This means in particular 
that network f is responsible for processing the image part 
of an input pair and network g is responsible for processing 
the audio. The output of both networks (represented by the 
Embedding Layer in Figure  5) is a k-dimensional vector 
representation encoding the respective inputs. In our case 
the dimensionality of this representation is k = 32. We 
denote these hidden representations by x = f (I, Θf) for the 
sheet image and  y =  g (A, Θg) for the audio spectrogram, 
respectively, where Θf and Θg are the parameters of the two 
networks.

Given this network design, we now explain the pairwise 
ranking objective. Following Kiros et al. (2014) we first 
introduce a scoring function s(x, y) as the cosine similarity 
x · y between the two hidden representations (x and y are 
scaled to have unit norm). Based on this scoring function 
we optimize the following pairwise ranking objective 
(‘hinge loss’ (Rosasco et al., 2004)):

        max{0, ( , ) ( , )}rank k
k

s s
x

x y x ya= - +åå � (1)

In our application x is an embedded sample of a sheet 
image snippet, y is the embedding of the matching audio 
excerpt and yk are the embeddings of the contrastive 
(mismatching) audio excerpts (in practice all remaining 
samples of the current training batch). When training 
our models we fix the mini-batch size to 100 samples. 
This means in particular, that for each x we are given one 
positive matching sample y and 99 contrastive samples yk. 
Mini-batches are drawn randomly from the entire training 
set without any sophisticated sampling strategy such as 
hard negative mining (Henriques et al., 2013). The hyper-
parameter α defines the margin of the loss function and is 
set to 0.7 for all our experiments. The intuition behind this 
loss function is to encourage an embedding space where 
the distance between matching samples is lower than the 
distance between mismatching samples. If this condition is 
roughly satisfied, we can then perform cross-modal retrieval 
by simple nearest neighbour search in the embedding 
space. This will be explained in detail in Section 4.

The network itself is implemented as a VGG-style 
convolution network (Simonyan and Zisserman, 2015) 
consisting of 3 × 3 convolutions followed by 2 × 2 
max-pooling as outlined in detail in Table 2. The final 
convolution layer computes 32 feature maps and is 
subsequently processed with a global average pooling 

Figure 5: Architecture of correspondence learning net-
work. The network is trained to optimize the similarity 
(in embedding space) between corresponding audio 
and sheet image snippets by minimizing a pair-wise 
ranking loss.

Table 2: Audio – sheet music model. BN: Batch Normali-
zation (Ioffe and Szegedy, 2015), ELU: Exponential Lin-
ear Unit (Clevert et al., 2015), MP: Max Pooling, Conv 
(3, pad-1)–16: 3 × 3 convolution, 16 feature maps and 
padding 1.

Sheet-Image 80 × 100 Audio (Spectrogram) 92 × 42

2 × Conv(3, pad-1)-24 2 × Conv(3, pad-1)-24

BN-ELU + MP(2) BN-ELU + MP(2)

2 × Conv(3, pad-1)-48 2 × Conv(3, pad-1)-48

BN-ELU + MP(2) BN-ELU + MP(2)

2 × Conv(3, pad-1)-96 2 × Conv(3, pad-1)-96

BN-ELU + MP(2) BN-ELU + MP(2)

2 × Conv(3, pad-1)-96 2 × Conv(3, pad-1)-96

BN-ELU + MP(2) BN-ELU + MP(2)

Conv(1, pad-0)-32-BN-
LINEAR

Conv(1, pad-0)-32-BN-LINEAR

GlobalAveragePooling GlobalAveragePooling

Embedding Layer + Ranking Loss
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layer (Lin et al., 2014) that produces a 32-dimensional 
vector for each input image and spectrogram, respectively. 
This is exactly the dimension of our retrieval embedding 
space. At the top of the network we put a canonically 
correlated embedding layer (Dorfer et al., 2018) combined 
with the ranking loss described above. The structure of 
the model is analogous to the one presented in (Dorfer et 
al., 2017a) with the single difference that the sheet-image 
snippet is downsized by factor two (160 × 200 → 80 × 100) 
before being presented to the network. This downsized 
image still contains all musically relevant content but 
reduces the number of computations required in the 
sheet image stack of the network. The saved computation 
time is then invested in doubling the number of feature 
maps to increase the capacity of our models. In terms of 
optimization we use the Adam update rule (Kingma and 
Ba, 2015) with an initial learning rate of 0.002. We watch 
the performance of the network on the validation set and 
halve the learning rate if there is no improvement for 30 
epochs. This procedure is repeated five times to finetune 
the model.

4 Evaluation 1: Two-Way Snippet Retrieval
In this section, we evaluate the ability of our model to 
retrieve the correct counterpart when given an instance 
of the other modality as a search query. This first set 
of experiments is carried out on the lowest possible 
granularity, namely, on sheet image snippets and 
spectrogram excerpts such as shown in Figure 1.

For easier explanation we describe the retrieval 
procedure from an audio query point of view but stress that 
the opposite direction works in exactly the same fashion. 
Given a spectrogram excerpt A as a search query we want 
to retrieve the corresponding sheet image snippet I. For 
retrieval preparation we first embed all candidate image 
snippets Ij by computing xj = f (Ij) as the output of the 
image network. The candidate snippets originate from 
all unseen pieces from the respective test set. In a second 
step we embed the given query audio as y = g (A) using 
the audio pathway g of the network. Finally, we select the 
audio’s nearest neighbour x* from the set of embedded 
image snippets as

	         
·

* argmin 1.
 

0
i

i

ix

x y
x

x y

æ ö÷ç ÷ç= - ÷ç ÷ç ÷è ø
� (2)

based on their pairwise cosine distance. Figure 6 shows a 
sketch of this retrieval procedure.

4.1 Experimental Setup
We run retrieval experiments on all three training splits 
(compare Subsection 2.2) for the different combinations 
of data augmentation strategies described in Section 3.2. 
Results are presented for both retrieval direction, audio-to-
sheet and sheet-to-audio retrieval. The unseen synthesizer 
and the tempo for the test set remain fixed for all settings. 
This allows us to directly investigate the influence of the 
different augmentation strategies. We further limit the 
number of retrieval test candidates to 2000 sheet snippets 

and audio excerpts respectively for all three splits. The 
2000 candidates are randomly sampled across all of the 
test pieces. Having a fixed number of retrieval candidates 
makes performance of the learned models comparable 
across the different training splits.

As evaluation measures we compute the Recall@k (R@k), 
the Mean Reciprocal Rank (MRR), as well as the Median Rank 
(MR). The R@k rate (high is better) is the percentage of 
queries which have the correct corresponding counterpart 
in the first k retrieval results. The MR (low is better) is 
the median position of the target in a cosine-similarity-
ordered list of available candidates. Finally, we define the 
MRR (higher is better) as the mean value of 1/rank over all 
queries where rank is again the position of the target in 
the similarity ordered list of available candidates.

4.2 Experimental Results
Table 3 summarizes the results on all three training splits 
for the different data augmentation strategies. Additionally, 
to get a better intuition of the results we provide the 
random-retrieval baseline for the 2000 candidates.

The common observation consistent across all datasets, 
performance measures and retrieval directions is that 
data augmentation helps to significantly improve the 
performance of all models. When isolating the effects of the 
two individual augmentation strategies, we see that audio 
augmentation yields the largest gain in performance on 
the test set. Surprisingly, sheet augmentation only helps 
to improve the performance on the bach-set and even 
degrades the model on the bach-out set. We do not report 
results on the validation set, but note that this behavior 
is reversed on the validation set. The reason for this is 
that the validation split is synthesized with a soundfont 
also covered by the training set. This means that in order 
to get a high performance on the validation set it is not 
required to generalize to unseen audio (spectrogram) 
characteristics. This is different for the test set, as it is 
synthesized with a hold out soundfont, explaining the 
large performance gain in Table 3 when applying audio 
augmentation. Finally, when combining both audio 
and sheet augmentation we get the best results for all 
of the models generalizing to unseen scores as well as 
unseen audio. When recalling that our query length is 
only 42 spectrogram frames (≈2 seconds of audio) per 

Figure 6: Sketch of sheet music-from-audio retrieval. 
The blue dots represent the embedded candidate sheet 
music snippets. The red dot is the embedding of an 
audio query. The larger blue dot highlights the clos-
est sheet music snippet candidate selected as retrieval 
result.
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excerpt and that we select from a set of 2000 available 
candidate snippets, achieving a MR of not more than 2 is 
an impressive result. In particular, given a short excerpt 
of audio, the median position of the exactly matching 
counterpart is either 1 or 2 depending on the data split. 
This is even more impressive when keeping in mind that 
music is highly repetitive and that we consider only the 
exactly matching counterpart as a correct retrieval result. 
When comparing the two retrieval directions we see that 
sheet-to-audio retrieval works slightly but consistently 
better than the opposite direction again across all of the 
datasets.

In the following sections, we will see that this retrieval 
performance is sufficient for performing higher level 
tasks such as piece identification from audio queries. 
Furthermore, we will show in additional experiments in 
Section 6 that the resulting full augmentation models reach 
a level of generalization that makes them useful in practical 
real-world applications operating on scanned sheet images 
completely out of the synthetic training data domain.

4.3 Influence of Dataset Size
In this additional experiment we investigate the influence 
of training set size on the final retrieval performance. For 
this purpose we retrain the same network architecture 
once with 10, 25, 50 and 75% of the original training 
examples in the no-augmentation setting of the bach-
only split. We chose the no-augmentation setting for this 
experiment because we want to reveal the impact of the 
number of available training examples without cluttering 
the results with the effects of data augmentation.

Figure 7 compares the MRR on the test set for the 
respective proportions of training observations. The first, 

however not surprising observation, is that the training set 
size has a severe impact on the final retrieval capabilities of 
the model. The MRR increases by almost 30 points when 
using only 10% of the data compared with the full dataset 
size. The second, more interesting observation, is that the 
relative improvement in performance is largest around 
50% of the training set size (from 25% to 50% and from 
50% to 75%). This indicates that there is a critical number 
of samples required to start generalizing to unseen sheet 
images. Finally, we observe that the gap between 75% and 
100% of the data is fairly small compared to the remaining 
performance jumps. We interpret this as a positive 
outcome, suggesting that the full data set is sufficiently 
large to reach the full performance capabilities of the 
retrieval model.

Table 3: Snippet retrieval results. The table compares the influence of train/test splits and data augmentation on 
retrieval performance in both directions. For the audio augmentation experiments no sheet augmentation is applied 
and vice versa. none represents 1 sound font, with original tempo, and without sheet augmentation. We limit the 
number of retrieval candidates to 2000 for each of the splits to make the comparison across the different test sets fair.

Audio-to-Sheet Retrieval

bach-only bach-out all

Aug. R@1 R@25 MRR MR R@1 R@25 MRR MR R@1 R@25 MRR MR

none 0.25 0.73 0.37 6 0.31 0.83 0.44 3 0.33 0.76 0.44 4

sheet 0.38 0.81 0.49 3 0.25 0.78 0.37 5 0.33 0.75 0.44 4

audio 0.48 0.87 0.59 2 0.38 0.83 0.50 2 0.46 0.82 0.57 2

full 0.52 0.87 0.62 1 0.46 0.86 0.57 2 0.50 0.83 0.60 2

rand-bl 0.00 0.01 0.0 1000 0.00 0.01 0.00 1000 0.00 0.01 0.00 1000

Sheet-to-Audio Retrieval

bach-only bach-out all

Aug. R@1 R@25 MRR MR R@1 R@25 MRR MR R@1 R@25 MRR MR

none 0.34 0.81 0.46 3 0.35 0.83 0.48 3 0.39 0.80 0.51 2

sheet 0.45 0.85 0.57 2 0.28 0.80 0.42 4 0.40 0.79 0.52 2

audio 0.51 0.87 0.62 1 0.39 0.85 0.52 2 0.49 0.84 0.59 2

full 0.56 0.89 0.66 1 0.46 0.87 0.57 2 0.51 0.85 0.61 1

rand-bl 0.00 0.01 0.00 1000 0.00 0.01 0.00 1000 0.00 0.01 0.00 1000

Figure 7: Influence of training set size on test set retrieval 
performance (MRR) evaluated on the bach-split in the 
no-augmentation setting.
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5 Evaluation 2: Piece Identification and 
Performance Retrieval
Given the above model learning to express similarities 
between sheet music snippets and audio excerpts, we 
now describe how to use it for solving our targeted tasks: 
(1) identifying the respective piece of sheet music when 
given an entire audio recording as a query, and (2) given 
a score (sheet-image), retrieve a set of corresponding 
performances. The entire identification pipeline consists 
of two main stages summarized in Figure 8.

Score database preparation. Again, we describe the 
procedure from an audio query point of view and stress 
that the opposite direction works analogously. The first 
step is to prepare a sheet music retrieval database as 
follows: Given a set of sheet music images along with 
their annotated systems, we cut each piece of sheet 
music j into a set of image snippets {Iji} analogously to the 
snippets presented to our network for training. For each 
snippet, we store its originating piece j. We then embed 
all candidate image snippets into the retrieval embedding 
space by passing them through the image part f of the 
multimodal network. This yields, for each image snippet, 
a 32-dimensional embedding coordinate vector xji = f (Iji). 
The left part of Figure 8 summarizes database preparation.

Retrieving sheet music at runtime. Once the database 
is prepared we perform piece retrieval as summarized in 
the right part of Figure 8. Given a whole audio recording 
as a search query, we aim to identify the corresponding 
piece of sheet music in our database.

First, we retrieve sheet snippets. As with the sheet 
image, we start by cutting the audio (spectrogram) into 
a set of excerpts {A1, …, AK}, again exhibiting the same 
dimensions as the spectrograms used for training, and 
embed all query spectrogram excerpts Ak with the audio 
network g. Then we proceed as described in Section 4 and 
select for each audio its nearest neighbours from the set 
of all embedded image snippets. In our experiments we 
consider for each query excerpt its top 25 retrieval results 
for piece selection.

Second, we combine the retrieved snippets to select the 
pieces. Since we know for each of the image snippets its 
originating piece j, we can now have the retrieved image 
snippets xji vote for the piece. The piece achieving the 
highest count of votes is our final retrieval result. A similar 
procedure was used for example by Casey et al. (2008) for 
cover song identification.

5.1 Experimental Setup
We again carry out experiments on the three predefined 
data splits and compare the impact of data augmentation 
on the resulting retrieval (identification) performance. In 
addition to the results presented in Dorfer et al. (2017a) 
we also present results for the opposite retrieval direction, 
i.e., retrieving relevant performances given a score image 
as a search query. It is also important to note that here 
we are still evaluating on our synthesized data. This will 
change in Section 6 where we work with scanned sheet 
music and recordings of real performances. As a retrieval 
measure, we compute the ranks@k (Rk@k) as the number 
of pieces retrieved within the first k retrieval results. Rk@1 
means that a piece is ranked at position one and therefore 
identified correctly. To be consistent and comparable with 
Table 3 we also report the respective relative numbers 
(R@k) in brackets. Along with the data-splits we also report 
the number of candidate pieces (#) contained in the test set.

5.2 Experimental Results
Table 4 summarizes all piece identification results. 
The first observation is that the results regarding data 
augmentation are in line with the ones presented in 
Section 4. Looking at the different splits we see that a 
large fraction of the respective pieces is retrieved as the 
top retrieval result. When relaxing the retrieval measure 
and considering the Rk@5 we see that almost all of the 
pieces are contained in the set of top five results, especially 
in the direction of retrieving audio with a sheet image 
query. Although this is not the most sophisticated way of 
employing our network for piece retrieval, it clearly shows 

Figure 8: Piece retrieval concept from audio query. The entire pipeline consists of two stages: retrieval preparation and 
retrieval at runtime (best viewed in color, for details see Section 5).
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the usefulness of our model and its learned audio and 
sheet music representations for such tasks. The next steps 
towards making the identification process more robust will 
be to exploit the spatial and temporal structure (relation) 
of subsequent queries, as proposed by Balke et al. (2016).

6 Real-world Data: Retrieving Scanned Sheet 
Music and Real Performances
So far, both training the models and all of our experiments 
were carried out on synthetic data (rendered sheet music 
and synthesized MIDI performances). In this section, 
we present results on a set of additional experiments to 
answer the most prominent question: How well do the 
models generalize to real data?

6.1 Experimental Setup
Firstly, we clarify what we consider as real or realistic 
data in this context. Regarding sheet music, we use 
scanned images of scores from widely used commercial 
publishers such as Henle or Universal Edition. Figure 9 
shows an example staff system from a piece by Frederic 
Chopin (Nocturne Op. 9 No. 3 in B major) to give an 
impression of this kind of data. For the performances, 
we use commercial audio recordings by various famous 
pianists (e.g., Ashkenazy, Pollini, Arrau, Horowitz) that we 
happened to have in our music collection. We do not need 
any performance-to-score alignments if they are only used 
as test cases for piece retrieval. For further variability we 
have included music by different composers: Mozart (14 
pieces; 88 score pages), Beethoven (29 pieces; 181 score 
pages), and Chopin (150 pieces; 871 score pages).

Retrieval preparation and retrieval itself follows 
exactly the descriptions outlined in Section 5 above. The 
sole difference in terms of data preparation is that for 
the scanned sheet music, we of course do not have the 
annotated system bounding boxes available. As the overall 
goal is to have the means to fully automatically index 
a large collection of scores, we developed an automatic 
system detection algorithm inspired by (Gallego and Calvo-
Zaragoza, 2017; Dorfer et al., 2017b). Given the automatic 
system detection, we have all the tools to automatically 
create the database (cf. Figure 8). Note that we do not 
need to detect noteheads – they were only relevant in 
aligning the modalities for training. For retrieval, we use 
the embedding networks trained on the all split using full 
data augmentation, as this data is most diverse in terms of 
sheet music and audio.

6.2 Experimental Results
Table 5 summarizes our results in the real data setting. 
To isolate the effects of real sheet images and real 
performance audio we repeat the experiment in two 
configurations: first with real scores and synthesized 
audio and second with real scores and real performances. 
Looking at the first group of experiments (top part of 
Table 5) with scanned sheet music and synthesized 
audio, we retrieve in the case of Mozart 13 of 14 as the 
top candidate. The opposite retrieval direction works 
equally well. For Chopin we retrieve 127 out of 150 
scanned scores at position one and 140 if we take the 
top five results into account. For the remaining sets 
and measures, we make similar observations. Given that 

Table 4: Piece and performance identification results on synthetic data for all three splits.

Train Split # Aug.

Synthesized-to-Score Score-to-Synthesized

Rk@1 Rk@5 Rk@10 >Rk10 Rk@1 Rk@5 Rk@10 >Rk10

bach-only 50 none 33 (0.66) 46 (0.92) 48 (0.96) 2 (0.04) 39 (0.78) 48 (0.96) 49 (0.98) 1 (0.02)

full 41 (0.82) 49 (0.98) 50 (1.00) 0 (0.00) 47 (0.94) 50 (1.00) 50 (1.00) 0 (0.00)

bach-out 173 none 125 (0.72) 158 (0.91) 163 (0.94) 10 (0.06) 145 (0.84) 164 (0.95) 166 (0.96) 7 (0.04)

 full 143 (0.83) 163 (0.94) 167 (0.97) 6 (0.03) 149 (0.86) 169 (0.98) 172 (0.99) 1 (0.01)

all 100 none 67 (0.67) 96 (0.96) 98 (0.98) 2 (0.02) 94 (0.94) 98 (0.98) 99 (0.99) 1 (0.01)

full 82 (0.82) 97 (0.97) 99 (0.99) 1 (0.01) 92 (0.92) 99 (0.99) 100 (1.00) 0 (0.00)

Figure 9: Exemplar staff line automatically extracted from a scanned score version of Chopin’s Nocturne Op. 9 No. 3 in 
B major (Henle Urtext Edition; reproduced with permission). The blue box indicates an example sheet snippet fed to 
the image part of the retrieval embedding network.
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the model was trained on purely rendered sheet music, 
with different and very consistent typesetting properties 
and containing no image noise at all, we consider this 
a remarkable result. We conclude that our model, in 
combination with the proposed dataset, is able to learn 
representations that generalize to completely unseen 
sheet music of a different typesetting style, beyond the 
synthetic training data.

In a final step, we further increase the level of difficulty of 
the retrieval setting. Instead of audio synthesized from MIDI, 
we use commercial recordings of performances by famous 
concert pianists. The bottom part of Table 5 lists our results 
in this configuration. Pieces and sheet music are identical 
to the experiments above to allow a direct comparison and 
to reveal the effects of the individual sources of potential 
problems. The general trend is that all performance measures 
drop compared to the synthetic audio settings. In terms of 
Rk@5 of Performance-to-Score retrieval, we are now able 
to retrieve 72 instead of 140 Chopin pieces, and 91 when 
considering Rk@10. Although this is a significant drop, it is 
in our opinion still a good result given the synthetic training 
data and the difficulty of the task. For the Mozart set, we 
are able to retrieve 12 out of 14 performances at position 
one given a scanned score as a query. Interestingly, the 
score-to-performance retrieval direction works better in this 
configuration for all three composers. We do not yet have a 
convincing explanation for this effect.

Based on these results we conclude that focusing on 
learning more robust audio representations is one of 
the main research challenges for future work (Section 7 
contains a deeper discussion).

7 Discussion and Future Work
In this section, we summarize and discuss our main 
findings and outline a list of potential applications and 
research problems that can now be addressed with the 
proposed MSMD data set.

Our experiments on piece and performance identification 
on both synthetic and real data (see Sections 5 and 6) lead 
to the following observations: given the MSMD data set and 
the proposed methodology, we can learn retrieval models 
that clearly generalize beyond the synthetic training data 
domain. This holds especially for scanned images of unseen 

sheet music. When dealing with real performances, we still 
achieve good retrieval results, but encounter a significant 
drop in all performance measures. We have to remember 
that our model (a multimodal convolutional neural 
network) has a fixed and limited field of view on both the 
audio (excerpt) and the sheet music (snippet). While this 
is not a problem on the sheet music side, it definitely is 
for performance audio, which may exhibit rather extreme 
tempo changes and differences (in addition to challenges 
such as asynchronous onsets, pedal, room acoustics, or 
dynamics). Given these facts about performance and our 
experimental findings, we believe that learning robust 
audio representations is one of the main open research 
problems to be addressed.

Regarding the retrieval (piece/performance 
identification) methodology, note that so far we 
completely ignore the strong temporal dependencies 
between subsequent queries, which are inherent in music. 
An obvious next step will be to extend the identification 
procedure in a way that exploits these spatio-temporal 
relationships (e.g., as in (Balke et al., 2016)).

Finally, we see a large number of potential applications 
of the MSMD dataset introduced in this work. Recall 
that the dataset comes with a rich set of annotations 
and alignments. In particular, we know for each note 
head in each sheet image its pixel position as well as its 
corresponding MIDI note-event and therefore also its 
onset time, pitch and duration in the synthesized audios. 
Consequently, we expect that MSMD will become a 
valuable resource for future work on topics such as:

•	 Optical Music Recognition (OMR)
•	 Off-line Alignment of Sheet Images to Audio
•	 (Real-time) Score-Following in Sheet Images
•	 Sheet-Informed Transcription (i.e., to detect errors in 

a performance while practicing)
•	 Piece and Performance Retrieval as a Service for 

Musicians.

We hope that the research community will make use of 
this dataset, which we believe brings many sheet music 
related MIR tasks in reach of state-of-the-art machine 
learning methods.

Table 5: Evaluation on real data: Piece retrieval results on scanned sheet music and recordings of real performances. 
The model used for retrieval is trained on the all-split with full data augmentation.

Composer #

Synthesized-to-Real-Score Real-Score-to-Synthesized

Rk@1 Rk@5 Rk@10 >Rk10 Rk@1 Rk@5 Rk@10 >Rk10

Mozart 14 13 (0.93) 14 (1.00) 14 (1.00) 0 (0.00) 13 (0.93) 14 (1.00) 14 (1.00) 0 (0.00)

Beethoven 29 24 (0.83) 27 (0.93) 27 (0.93) 2 (0.07) 25 (0.86) 27 (0.93) 29 (1.00) 0 (0.00)

Chopin 150 127 (0.85) 140 (0.93) 145 (0.97) 5 (0.03) 112 (0.75) 136 (0.91) 142 (0.95) 8 (0.05)

Composer #

Performance-to-Real-Score Real-Score-to-Performance

Rk@1 Rk@5 Rk@10 >Rk10 Rk@1 Rk@5 Rk@10 >Rk10

Mozart 14 5 (0.36) 14 (1.00) 14 (1.00) 0 (0.00) 12 (0.86) 13 (0.93) 13 (0.93) 1 (0.07)

Beethoven 29 16 (0.55) 25 (0.86) 27 (0.93) 2 (0.07) 20 (0.69) 28 (0.97) 28 (0.97) 1 (0.03)

Chopin 150 36 (0.24) 72 (0.48) 91 (0.61) 59 (0.39) 58 (0.39) 94 (0.63) 111 (0.74) 39 (0.26)
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8 Conclusion
We have presented a methodology for learning 
correspondences between short snippets of sheet music 
and their counterparts in the music audio. The learned 
shared latent representation of the two modalities can 
be utilized for cross-modality retrieval, i.e., for identifying 
scores from full audio queries and vice versa. To improve 
the performance of our method and, more generally, to 
boost this promising research direction, we additionally 
introduced MSMD, a large-scale richly annotated 
multimodal audio–sheet music dataset. We make both the 
dataset and our experimental code (including pre-trained 
embedding models) freely available, hoping to reduce the 
initial hurdles for working with this kind of data. Finally, we 
showed that the proposed methodology in combination 
with the MSMD dataset leads to models that are beginning 
to generalize to real-world retrieval scenarios with scanned 
sheet music and real performance audios.

Reproducibility
To reproduce this paper:

•	 The code and walkthrough for reproducing the 
MSMD dataset can be found here: 
https://github.com/CPJKU/msmd.

•	 The code for training and evaluating our models is 
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