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ABSTRACT
This paper deals with the automatic transcription of four-part, a cappella singing, audio 
performances. In particular, we exploit an existing, deep-learning based, multiple F0 
estimation method and complement it with two neural network architectures for 
voice assignment (VA) in order to create a music transcription system that converts 
an input audio mixture into four pitch contours. To train our VA models, we create a 
novel synthetic dataset by collecting 5381 choral music scores from public-domain 
music archives, which we make publicly available for further research. We compare the 
performance of the proposed VA models on different types of input data, as well as to a 
hidden Markov model-based baseline system. In addition, we assess the generalization 
capabilities of these models on audio recordings with differing pitch distributions and 
vocal music styles. Our experiments show that the two proposed models, a CNN and a 
ConvLSTM, have very similar performance, and both of them outperform the baseline 
HMM-based system. We also observe a high confusion rate between the alto and tenor 
voice parts, which commonly have overlapping pitch ranges, while the bass voice has 
the highest scores in all evaluated scenarios.
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1 INTRODUCTION

Ensemble singing is an essential part of musical cultures 
across the world and an essential activity for social 
entertainment and mental well-being (Clift et al., 2010; 
Kirsh et al., 2013). It can refer to choral ensembles of 
any size, from just a few singers, e.g., a quartet, to tens 
of singers, e.g., a choir. Despite this popularity, Music 
Information Retrieval (MIR) research on polyphonic music 
has been rather constrained to other types of musical 
material such as pop/rock (Ryynänen and Klapuri, 2008; 
Bittner et al., 2017), jazz (Abeßer et al., 2017; Abeßer 
and Müller, 2021), or piano music (Sigtia et al., 2016; 
Nakamura et al., 2018) in the past decades. However, 
several works have recently addressed singers’ intonation 
and interaction in vocal ensembles (Devaney et al., 2012; 
Dai and Dixon, 2019; Cuesta et al., 2018; Weißet al., 
2019), the analysis of vocal unisons (Cuesta et al., 2018, 
2019; Chandna et al., 2020), the estimation of multiple 
fundamental frequency (F0) values from polyphonic 
vocal performances (Su et al., 2016; Schramm and 
Benetos, 2017; McLeod et al., 2017; Cuesta et al., 2020), 
or the separation of singing voices (Gover and Depalle, 
2020; Petermann et al., 2020; Sarkar et al., 2020). Most 
of the tasks mentioned above commonly rely either on 
analyzing separate audio tracks (stems) for each singer 
of the ensemble, or on the ground truth individual F0 
contours. However, in the context of real vocal ensemble 
recordings, obtaining such data is not straightforward. 
On one side, separate audio stems require multitrack 
datasets, which are very challenging to record in the case 
of multiple singers performing simultaneously (Cuesta et 
al., 2018; Rosenzweig et al., 2020). On the other hand, 
obtaining accurate F0 contours for each voice requires 
a great manual annotation effort. Alternatively, one 
could consider source separation algorithms to obtain 
each voice contribution and then employ monophonic 
F0 tracking to compute independent F0 trajectories. 
While a few works address source separation in the 
context of vocal ensembles (Petermann et al., 2020; 
Gover and Depalle, 2020; Sarkar et al., 2020) and show 
promising results, the output isolated voices contain 
artifacts or leakage from other voices that make the 
monophonic F0 extraction more challenging. In light of 
these challenges, advances in automatic transcription 
and multi-pitch estimation (MPE) systems provide an 
excellent opportunity to optimize these tasks since, in 
the ideal case, they strongly reduce the need for manual 
annotations or separated recordings.

There are several approaches for MPE specifically 
designed for and evaluated in vocal music: SST-ConceFT 
(Su et al., 2016), MSINGERS (Schramm and Benetos, 
2017), VOCAL4-MP and VOCAL-VA (McLeod et al., 2017), 
and Late/Deep CNN (Cuesta et al., 2020). However, all 
but one of these approaches produce a multi-pitch 
output, which consists of several F0 values per time 

frame, providing no indication of the singer each pitch 
belongs to. For these outputs to be used as intermediate 
representations for the aforementioned tasks, an 
additional step to assign each predicted pitch to one of 
the voices in the ensemble is still necessary, a process 
known as Voice Assignment (VA), which converts the 
multi-pitch output into four (in the case of quartets) F0 
trajectories. To the authors’ knowledge, VOCAL4-VA is 
the only approach tackling both tasks—MPE and VA—
jointly for four-part vocal ensembles.

An alternative method to obtain independent F0 
trajectories for each singer is to address the task of 
multi-pitch streaming (MPS). MPS is described by Benetos 
et al. (2019) as grouping estimated pitches or notes into 
streams, where each stream typically corresponds to one 
instrument or musical voice. When we combine an MPE 
system with a VA one, the result is a system that yields 
independent F0 contours for each source in the input 
audio mixture just as in MPS.

In this paper, we propose a data-driven pipeline that 
combines an existing MPE approach with a novel deep 
learning approach for VA. We select this two-stage 
pipeline over an entire MPS system because it enables 
training both steps separately. Consequently, and as we 
describe in the following sections, we can consider an 
independent, synthetic dataset to develop the VA module. 
The proposed system is illustrated in Figure 1: given an 
input audio mixture of a vocal quartet, we first use Late/
Deep CNN to compute a pitch salience representation of 
the input audio mixture. Late/Deep CNN is a convolutional 
neural network (CNN) specifically trained with Soprano, 
Alto, Tenor, Bass (SATB) vocal quartets, which produces a 
pitch salience representation that can be post-processed 
and converted to a multi-pitch output. We select this 
model because it shows the highest performance in terms 
of MPE in the experiments of Cuesta et al. (2020), as well 
as being publicly available. Then, we use the output of the 
CNN as input to the proposed VA approach. In particular, 
we propose two novel deep learning architectures for 
VA of four-part vocal music, which take a polyphonic 
pitch salience representation as input, and produce four 
separate, monophonic pitch salience representations 
(cf. Figure 1d), which are subsequently post-processed 
and converted into four independent F0 trajectories, the 
final output of the proposed pipeline. We target vocal 
ensembles with four distinct and simultaneous voice 
parts, e.g., SATB.

In the presented experiments, we compare the 
performance of the two proposed architectures, as well 
as assessing their generalization capabilities to audio 
material with different pitch ranges and timbre. This work 
also contributes to state-of-the-art research by providing 
an open dataset to be exploited for this particular task.

The remainder of this paper is organized as follows. 
We review the existing literature in Section 2. Then, we 
provide details about the dataset exploited in our work in 
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Section 3, and describe our framework and experiments 
in Section 4 and 5, respectively. Results are presented in 
Section 6, while Section 7 contains a discussion and error 
analysis. We close with the conclusions in Section 8.

2. RELATED WORK

Voice assignment (VA), also referred to as voice 
separation or voice tracking, is commonly defined as 
the process of allocating notes of a given piece of music 
into separate melodic streams (McLeod and Steedman, 
2016). However, there is no standard, common definition 
of the concepts of voice or melody, so different fields of 
study, e.g., traditional musicology, music cognition, or 
computational musicology provide different views on 
these terms.

The work by Cambouropoulos (2008) provides a broad 
discussion on what “voice” means and how we can 
systematically describe the task of VA. In the context 
of this paper, we refer to a voice as the melodic stream 
produced by one singer of the ensemble. At this point, 
it is important to emphasize that most of the work 
around automatic VA for polyphonic music has analyzed 
symbolic music representations (MIDI files), while the 
focus of the proposed VA approach are audio-based pitch 
salience representations.

Huron (2001) investigates the perceptual principles 
that derive the rules of voice leading in Western music. 
He presents six main perceptual principles—toneness, 
temporal continuity, maximum masking, tonal fusion, 
pitch proximity, and pitch co-modulation. Although all of 
them play a crucial role in how humans perceive melodies, 
we find pitch proximity and temporal continuity to be the 
foundations of most literature around VA in music. The 
pitch proximity principle states that successive notes 
should maintain a close pitch proximity to be perceived 
in the same stream. The temporal continuity refers to the 

idea that a melodic stream should be rather continuous 
or recurrent, and not have large silent parts in between. 
A large number of VA approaches follow these two 
principles (Kilian and Hoos, 2002; Madsen and Widmer, 
2006; McLeod and Steedman, 2016; Kirlin and Utgoff, 
2005; Gray and Bunescu, 2016), while other research 
works only consider the pitch proximity principle (Chew 
and Wu, 2004; Jordanous, 2008).

A group of heuristic-based methods explicitly use 
musical knowledge to design different local (Kilian and 
Hoos, 2002; Madsen and Widmer, 2006) and global 
(Chew and Wu, 2004) cost functions to solve the VA 
task. A second group of approaches are data-driven, i.e., 
they exploit data examples to build statistical models 
that support the segregation of the voices of an input 
symbolic representation (Jordanous, 2008; Jin and Wang, 
2020; Gray & Bunescu, 2016). Other methods combine 
knowledge- and data-driven techniques (McLeod and 
Steedman, 2016; Kirlin and Utgoff, 2005). In the latter 
category, McLeod and Steedman (2016) propose a 
hidden Markov model (HMM) designed with perceptual 
principles in mind, the model being trained with MIDI 
data using grid search for parameter optimization.

All the above-mentioned approaches operate on MIDI-
like files, and in most of the cases they are developed 
and tested on piano music. However, McLeod et al. 
(2017) propose a probabilistic adaptation of the HMM-
based method from McLeod and Steedman (2016) for 
VA in vocal quartets. Particularly, they follow a procedure 
similar to our proposed framework: the authors first 
run an MPE algorithm optimized for polyphonic vocal 
music, based on spectrogram factorization. Then, the 
HMM-based model is applied to the MPE outputs to 
assign each extracted pitch to its corresponding voice. 
Additionally, they propose to further use the VA output to 
refine the F0 estimates, which results in a performance 
boost in both parts. This two-stage approach outputs 
independent pitch contours, which is equivalent to the 
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Figure 1: Overview of the proposed system for multi-pitch estimation and voice assignment based on pitch salience representations. 
(a) Input audio SATB mixture. (b) Multi-pitch salience estimation using the Late/Deep CNN, which produces the salience 
representation P. (c) Voice assignment step with one of the two proposed architectures. (d) Four output salience representations, one 
for each voice in the mixture, output by the VA models. (e) Post-processing step consisting of finding the maximum salience bin in 

v̂Y  
and thresholding. (f) Output F0 trajectories for each singer.
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outputs of frame-based MPS, as mentioned in Section 1. 
MPS has not been widely addressed in the MIR literature, 
but we find a few existing approaches following different 
underlying principles. Some studies address the task 
by employing MPE as a first step and then additionally 
consider timbral features to separate pitch values into 
streams via constrained clustering (Duan et al., 2013) 
or deep spherical clustering (Tanaka et al., 2020). More 
recently, Lordelo et al. (2021) proposed a data-driven 
modular pitch-informed classification system that 
assigns every note to its source via a CNN considering 
pitch information from an MPE system. Arora and Behera 
(2015) combine PLCA with hidden Markov random fields 
(HMRF) to decompose the audio signal and group pitches 
into separate streams, respectively. Benetos and Dixon 
(2013) consider the temporal evolution of notes and 
build spectral templates that model pitch and note 
states. Then, shift-invariant PLCA is used to stream 
pitches. Finally, to our knowledge, the work by McLeod 
et al. (2017) described above is the only existing method 
for MPS (MPE and VA) in the context of vocal ensembles. 
The modular systems for MPS we just described are one 
source of inspiration for the proposed pipeline for MPE 
and VA.

3 DATA COLLECTION

As mentioned in Section 2, most research on voice 
assignment has focused on the processing of symbolic 
music representations, mostly following rule-based 
approaches, and has mainly addressed piano music. 
Hence, there are no large-scale open datasets to be 
exploited for the development of data-driven methods 
for this task, and in particular for the case of vocal 
ensembles. The creation of such a dataset, described in 
this section, is one of the contributions of this work.

3.1 SYNTH-SALIENCE CHORAL SET
Training a data-driven model for VA requires a large-scale, 
representative dataset, which should be heterogeneous 
so that the trained model can generalize to different 
songs and diverse styles of choral music, potentially with 
varying harmonic relations between voices. Therefore, 
the training dataset needs to cover a large number of 
different song styles. Due to the lack of an appropriate 
dataset for this task, we present here a synthetic dataset 
built from a large set of choral music scores from public-
domain archives, which we convert to our target input 
and output features: the Synth-salience Choral Set (SSCS). 
The dataset building methodology is detailed as follows.

3.1.1 Public-domain music archive
We collect scores of four-part (SATB) a cappella choral 
music from the Choral Public Domain Library (CPDL)1 
using their API. We assemble a collection of 5381 scores 

in MusicXML format, which we subsequently convert into 
MIDI files using the Music21 Python library (Cuthbert and 
Ariza, 2010). For training and evaluating our models, we 
use 75% of the scores for training (4036), 15% for testing 
(807), and 10% for validation (538).

3.1.2 Pitch salience representation
The proposed VA system relies on a pre-computed time-
frequency representation of a music piece. Following 
the nomenclature of Bittner et al. (2017, 2018), we 
denote this representation as a pitch salience function. 
By definition, an “ideal” pitch salience function of a 
music recording is zero everywhere where there is no 
perceptible pitch, and has a positive value that reflects 
the pitches’ perceived energy at the frequency bins of 
the corresponding F0 values. In practice, for a normalized 
synthetic pitch salience function we assume a value equal 
to the maximum energy (salience), i.e., 1, in the time-
frequency bins that correspond to the notes present in a 
song, and 0 elsewhere. We can obtain such a synthetic 
pitch salience representation directly by processing the 
digital (MusicXML, MIDI) score of a music piece, using 
the desired time and frequency quantization, i.e., a time-
frequency grid. The process is detailed in the following 
section.

3.1.3 Score to pitch salience
We first convert each MIDI track to an F0 trajectory: 
a time series with a tuple (timestamp, F0) at every 
time step, with the desired hop size (11 ms) and its 
corresponding MIDI pitch converted to Hertz. Note that 
for all time frames that belong to the same single MIDI 
note, their associated F0 will be the same, i.e., each note 
is represented by several frames with the same pitch 
value.

In order to create more realistic synthetic data, 
with pitch instabilities and noise, we apply some 
degradation to the F0 trajectories. First, we add 
some noise frame-wise by drawing random samples 
from a normal (Gaussian) distribution with standard 
deviation of five bins (one semitone). This noise adds 
some variability to the F0 trajectories and reduces the 
flatness of the MIDI notes, making them look more 
realistic. However, the transitions between notes are 
still very abrupt when compared to a real singing 
voice signal. To overcome this limitation, we apply 
a median filter with a window size of seven frames 
(ca.77 ms) that creates more realistic note transitions, 
i.e., smoother, while keeping the roughness within 
the notes. This process is not optimal because pitch 
variations and note transitions in real singing voice 
follow some patterns, e.g., vibrato or slides. However, 
we conduct some experiments (see Section 5.3) and 
find this simple method to be effective enough to 
account for such variations in real recordings. Then, we 
map each pair (timestamp, F0) to their corresponding 
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time-frequency bin in the grid and assign them a 
magnitude of one, while setting to zero all other 
bins. Finally, to account for possible imprecision in 
the predictions and following Bittner et al. (2017), we 
apply Gaussian blur with a standard deviation of 1 bin 
in the direction of the frequency axis. We store each 
of these pitch salience representations as CSV files. 
Figure 2 shows an example from our synthetic dataset, 
displaying the input salience function (bottom pane) 
and the four voice-specific outputs (top panes).

Following reproducible research practices, SSCS is 
publicly available.2 See the supplementary file for more 
information about the structure of SSCS. Note that this 
dataset contains the input/output features we use in 
our study, i.e., salience functions, and not audio files nor 
scores.

3.2 AUDIO RECORDINGS
In our experiments, we use an additional set of audio 
files to evaluate the proposed framework on real vocal 
quartet recordings. In particular, we use the Barbershop 
Quartets Dataset (BSQ), which is a multi-track collection 
of 26 songs (ca.42 min of audio) performed by an all-
male barbershop quartet and recorded with individual 
microphones. Additionally, the dataset contains 
automatically extracted pitch trajectories for each voice 
of the quartet. This dataset was used by McLeod et al. 
(2017) in their experiments for MPE and VA. Furthermore, 
we employ the Cantoría dataset, which comprises multi-
track recordings of a professional SATB vocal quartet 

performing 11 songs (ca. 36 min of audio), and was 
introduced by Cuesta (2022). This collection also contains 
automatically extracted pitch trajectories for each singer 
and it is publicly available.3

4. METHODOLOGY

In this work, we propose two deep learning architectures 
to solve the VA task: VoasCNN and VoasCLSTM, illustrated 
in Figure 3. Both architectures build upon the multiple F0 
estimation CNN models described by Cuesta et al. (2020), 
i.e., they take as input the output of the CNN. In this 
section we first describe the input and output features, 
and then present the two network architectures. 
Afterwards, we detail the post-processing steps applied 
to the output of the networks.

4.1 INPUT AND OUTPUT FEATURES
The input to our VA architectures is a pitch salience 
representation of a polyphonic audio recording, P ∈ [0,1]
F×T, a 2-D array where F is the number of frequency bins 
in the time-frequency grid, and T corresponds to the 
number of time frames. We use a fixed time-frequency 
grid with a hop size of 11 ms and 360 frequency bins. 
The frequency axis covers 6 octaves with a minimum 
frequency fmin = 32.7 Hz, and a resolution of 20 cents 
per bin, matching the feature dimensions of the MPE 
model we use as a first step. We denote the output 
representations, i.e., the salience functions for each 
voice part, as Yv ∈ [0,1]F×T, where v ∈ {S, A, T, B}, and each 
Yv has the same size as P.

To generate the input and output data, we consider 
the choral scores from SCSS (Section 3.1). These scores, in 
MIDI format, contain multiple tracks, each corresponding 
to one specific voice. Hence, we first process each track 
of the score separately to compute the four output 
representations (targets), Yv, each of which contains 
only one voice part. Then, we calculate one input 
representation that contains all four voices:

	 S A T BP Y Y Y Y= + + + � (1)

Note that when two voices sing the same note 
simultaneously, the corresponding time-frequency 
bins in P may be larger than 1. To maintain the range 
[0,1], we set these values to 1. This process discards 
information from unisons in the input representation, but 
it is preserved in the output targets, where both voices 
will have high salience in the corresponding bins. With 
the synthetic data we calculate P explicitly, mapping 
the score to the time-frequency grid; however, in the 
actual system pipeline with an audio mixture as input, 
P corresponds to the pitch salience function obtained at 
the output of the last layer of Late/Deep CNN (Cuesta et 
al., 2020).

Figure 2: Example input/output data from SSCS dataset. The 
first four panes show an excerpt of each synthetic Yv, and the 
bottom pane displays the input mixture, P.
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4.2 VoasCNN
VoasCNN is designed as a fully convolutional architecture 
with the goal to consider the pitch proximity principle, 
so that time-frequency bins close in pitch are assigned 
to the same voice. At the same time, we expect the 
network to learn specific patterns for unisons and voice 
crossings, which especially happen between contiguous 
voices with overlapping pitch ranges. The input to 
VoasCNN (and, consequently, the output) are patches 
of the pitch salience function of size (360×128), which 
cover the full frequency axis (see Section 4.1), and 
ca. 1.5 seconds of the input audio signal, sampled at 
22050 Hz.

VoasCNN has two stages: the first one is composed 
of four convolutional layers with 32 (3×3)4, 32 (3×3), 
16 (70×3), and 16 (70×3) filters, respectively. Note that 
the last two layers of this first stage employ vertical 
filters in the frequency dimension which cover slightly 
more than one octave, aiming to capture harmonic 
relationships between the voices in this range. Batch 
normalization precedes all layers, and all of them use 
rectified linear units (ReLU) as activation. In the second 
stage, the network creates four separate branches that 
operate independently, i.e., one for each voice. Each of 
these branches has two convolutional layers with 16 
(3×3) filters, and a final layer with a sigmoid function as 

activation to map the output of each time-frequency bin 
to the range [0,1], obtaining 

v̂Y .

4.3 VoasCLSTM
The second proposed architecture is VoasCLSTM, a 
convolutional long short-term memory (ConvLSTM) 
network. Long short-term memory (LSTM) networks are 
a type of recurrent neural network (RNN) that use a set 
of gate units to control which information from a past 
state should be kept for the current state (Hochreiter and 
Schmidhuber, 1997). In the context of an LSTM, the input 
stream encoding information from the past, i(t), can be 
formulated in a compact form as follows for one specific 
layer:

	
( ) ( ) ( )( )1t t t

recσ −= + +i Wx W h b � (2)

where x(t) denotes the input at time t, Wrec refers to the 
recurrent weights encoding temporal dependencies, 
and h(t–1) denotes the output of the layer at time instant 
t-1. We can think of Wrec as the weights that decide the 
amount of information from the past that is considered 
for the current prediction.

The ConvLSTM architecture is a special type of LSTM first 
introduced by Shi et al. (2015) for the task of precipitation 
nowcasting, a spatiotemporal sequence problem that 
consists of forecasting future radar maps using previously 
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Figure 3: Proposed network architectures. (a) VoasCNN is a fully convolutional network with a shared first stage, and four separate 
branches in the second stage (convolutional branches). (b) VoasCLSTM is a network with a first stage of convolutional layers, 
followed by four separate branches in the second stage with convolutional LSTM layers (ConvLSTM branches). All convolutional layers 
are preceded by batch normalization.
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observed radar echo sequences. Intuitively, we can think 
of ConvLSTM layers as a combination of the properties of 
convolutional layers, i.e., modeling “spatial” information 
(frequency-related information in this context), and 
those of LSTMs, i.e., modeling “temporal” information. 
Consequently, ConvLSTMs are suitable for tasks where 
data have both dimensions: spatial and temporal. 
For example, in the original example of precipitation 
nowcasting, input data are radar echo maps (2D images, 
spatial data), and they are captured at every time step, 
creating the temporal dimension. In a ConvLSTM, the 
input-to-state and the state-to-state transitions have 
convolutional structures to handle spatial data in a more 
efficient way. Following Equation (2), in the context of a 
ConvLSTM, i(t) can be formulated as:

	 ( ) ( ) ( )( )1* *t t t
recσ −= + +i W x W h b � (3)

where * denotes a convolutional operation, which 
replaces the point-wise multiplications from Equation (2).

In the context of the VA task, we believe that adding 
recurrence should effectively support the separation 
of melodic streams into their underlying voices, using 
the information from past frames as an indicator for 
the time continuity principle. The input to VoasCLSTM 
(and, consequently, the output) are patches of the pitch 
salience function of size (360, 128), which cover the full 
frequency axis (see Section 4.1) and ca. 1.5 seconds of 
the input audio signal. The proposed VoasCLSTM consists 
of an initial branch with four convolutional layers, just as 
in VoasCNN, with 32 (3×3), 32 (3×3), 16 (70×3), and 16 
(70×3) filters, respectively. All convolutional layers use 
ReLU activation and are preceded by batch normalization. 
Then, the network is divided into four separate branches. 
Each of these branches is made of two ConvLSTM layers 
with 32 (3×7) filters each, tanh activation function, and 
hard sigmoid as the recurrent activation. We choose 
these activations based on the analysis of Elsayed et al. 
(2019), who compared multiple activation functions for a 
video prediction task and found the combination of hard 
sigmoid as a recurrent activation and tanh as standard 
activation to obtain the best performances. The last 
layer of each branch is a convolutional layer that uses a 
sigmoid activation function, obtaining 

v̂Y .

4.4 TRAINING
Both networks are trained to minimize the cross-
entropy loss, ˆ( , )L Y Y , calculated as the sum of the cross-
entropy between the target representations, Yv, and the 
predictions, 

v̂Y , for each voice:

	 ( ) ( ) ( ) ( )ˆ, log 1 logˆ ˆ1v v v vv
L Y Y Y Y Y Y= − − − −∑ � (4)

We use the Adam optimizer (Kingma and Ba, 2014) with 
an initial learning rate of 0.005, and we train for 100 
epochs, using the validation set for early-stopping with a 
patience of 20 epochs.

4.5 POST-PROCESSING
The last step of our VA pipeline consists of a two-stage 
process including locating maximum salience bins and 
thresholding. In particular, for each time frame n, we 
first locate the frequency bin of [ ]v̂Y n  with the highest 
salience. Second, the selected bin is converted into its 
corresponding F0 value if the salience is above a threshold. 
The thresholding step filters out spurious, low-salience 
bins, which is particularly helpful for the unvoiced frames 
where the salience representations may show some very 
low salience. The threshold is optimized on the validation 
set after training. We calculate one optimal threshold 
for each of the voices as the average of the ones that 
maximize the Overall Accuracy (OA) of each individual 
F0 trajectory and voice for all validation examples. The 
OA measures the percentage of predictions made by 
the algorithm that are correct both in terms of F0 and 
voicing.

5. EXPERIMENTAL SETUP
5.1 EVALUATION METRICS
We evaluate the proposed models for VA using the 
F-Score (F), a frame-based standard evaluation metric 
widely used for (multi)-pitch estimation. We use the 
implementation from the multi-pitch class in the mir_
eval library (Raffel et al., 2014). We consider this metric 
both for per-voice evaluation, i.e., assessing the output 
of each voice individually as monophonic streams, and 
for multi-pitch evaluation, i.e., assessing the combination 
of the outputs of each voice as a multi-pitch stream. 
The main difference is that for per-voice evaluations, 
the reference contains at most one F0 value per frame, 
while multiple F0 values can be present in the multi-pitch 
reference.

For all metrics, a predicted pitch is considered 
correct if it is within a half semitone of the correct 
pitch in the reference. For the per-voice evaluations 
we compare our separated F0 trajectories to the F0 
trajectories of each individual voice as ground truth 
(GT). For the multi-pitch evaluations, we combine 
the F0 trajectories of the four voices into a single 
multi-pitch stream, for both the predictions and the 
GT. In the case of the synthetic dataset, the GT F0 
trajectories come directly from the score pitches. For 
real recordings, the dataset includes F0 trajectories for 
each singer in the ensemble. In terms of notation, in 
per-voice evaluations we use Fv, where the subindex v 
indicates the voice part; in multi-pitch evaluations we 
use FMPE.

We want to point out that a common evaluation 
metric in the related research mentioned in Section 2 
is the Average Voice Consistency (AVC). We decided to 
exclude this metric from the evaluation because it is 
based on notes, while our results are frame-based.
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5.2 EXPERIMENT 1: ARCHITECTURE 
COMPARISON
In this first experiment we analyze the suitability of 
the designed architectures to tackle the VA task. We 
consider the full synthetic dataset, split into training-
validation-test subsets, to train and evaluate VoasCNN 
and VoasCLSTM, thus assessing the effect of using a 
fully convolutional network (VoasCNN) as compared to 
adding recurrence (VoasCLSTM). We use the validation 
set to optimize the threshold for the post-processing 
step: we calculate four optimal thresholds, i.e., one 
per voice, each of which maximizes the average OA 
on the validation set for their corresponding voice. We 
obtain very similar optimal thresholds for both models; 
specifically, for VoasCNN: 0.23, 0.17, 0.15, 0.17, while 
VoasCLSTM obtains: 0.29, 0.20, 0.17, 0.23, for soprano, 
alto, tenor, and bass voices, respectively.

As a baseline for this experiment we use the VA HMM-
based system by McLeod and Steedman (2016), who 
provided us with an adaptation of their model that runs 
on similar input data as our models, i.e., pitch salience-
like representations. While our proposed VA models take 
between 20 and 30 seconds to run for one example on a 
CPU machine (roughly between one and five seconds on 
a GPU), our baseline is computationally more demanding, 
and can take over 20 minutes to calculate the output of 
one full example on the same machine.

5.3 EXPERIMENT 2: DATA DEGRADATION
The goal of this experiment is to assess the effect of 
the data degradation process, specifically for our use 
case where the input signals are polyphonic singing 
audio recordings, and not MIDI files, which contain more 
noise and pitch instabilities. Our main hypothesis is that 
we will observe a drop in the performance when the 
model operates on an audio recording, as compared to 
a synthetic input. In particular, this experiment considers 
SATB mixtures from the Cantoría dataset, presented in 
Section 3.2. We evaluate the music transcription system 
outlined in Figure 1 consisting of an MPE algorithm (pre-
trained Late/Deep CNN, publicly available) followed 
by a VA module. Based on experiment 1, we only run 
this second experiment on one of the two proposed 
architectures; in particular, since they yield very similar 
performances as shown in Section 6.1, we select the 
VoasCNN because it is faster at inference time.

We train VoasCNN with two different variants of the 
synthetic dataset: we first consider the synthetic dataset 
directly created from the choral scores, i.e. “clean” 
dataset, C-VoasCNN; second, we consider a “degraded” 
dataset with noise and median filtering (see Section 4.1), 
D-VoasCNN. We then combine these two model variants 
with the MPE algorithm and evaluate the full transcription 
systems with real audio recordings (Cantoría dataset).

We report the results of C-VoasCNN and D-VoasCNN 
averaged across all the songs per-voice, in terms of multi-

pitch estimation results before and after the VA process. 
This comparison between pre- and post-VA results in 
terms of multi-pitch estimation provides insights as to 
the amount of error introduced by the VA stage: in the 
ideal case, where no information is lost, the MPE results 
pre- and post-VA should be equivalent. However, if the 
post-VA results are worse than the pre-VA ones, we can 
consider that, even if the VA step adds value for further 
tasks as it provides separated voices, it might come at 
the cost of a lower overall performance.

5.4 EXPERIMENT 3: MODEL GENERALIZATION
In this last experiment we evaluate the complete 
automatic transcription framework by combining MPE 
and VA tasks to assess the generalization capabilities of 
our models, trained with synthetic data, to real recordings 
in a different pitch range than the training set. This is 
done by running the whole pipeline on the Barbershop 
Quartets dataset (BSQ) (cf. Section 3.2). By using this 
material, we can evaluate how our models generalize 
from synthetic to audio recordings, as well as to a vocal 
ensemble where the singers’ tessitura differs from the 
training material, i.e., we trained with SATB data, while 
the BSQ dataset contains only-male voices, thus lower 
pitches in general.

In addition, evaluating with the BSQ recordings is 
beneficial for two further reasons: first, because they 
are used by Schramm and Benetos (2017) and McLeod 
et al. (2017), thus allowing for direct comparison 
with their systems: their MPE systems (MSINGERS 
and VOCAL4-MP, respectively) and the full MPE plus 
VA method (VOCAL4-VA) from the latter. The second 
reason is because Cuesta et al. (2020) provide a version 
of Late/Deep CNN trained with all datasets except the 
BSQ. Therefore, the input recording is also unseen for 
the MPE model, making the entire pipeline run on an 
independent input. In this experiment, we consider this 
version of Late/Deep CNN instead of the full version 
utilized in Experiment 2. We additionally compare 
the results to the combination of Late/Deep CNN and 
the HMM-based VA baseline. We aim to explore the 
behaviour of the VA model when the input salience 
function is noisy and the pitch is more unstable—as 
opposed to the stable pitch that we observe in the 
synthetic dataset examples.

6 RESULTS
6.1 ARCHITECTURE COMPARISON RESULTS
Figure 4 depicts the average results for experiment 1. The 
first aspect we observe is that VoasCNN and VoasCLSTM 
show an almost equivalent performance for all voices, 
while outperforming the HMM baseline by a large margin 
(+10% in average F-Score). While VoasCLSTM shows a 
slightly better performance than its fully convolutional 
equivalent (+1.5% in average F-Score and Recall, +1% in 
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average Precision), the difference is not large enough to 
conclude that it is better than VoasCNN for the task.

In addition, we observe a lower performance in alto 
and tenor voices with all models, which we assume is due 
to these voices having overlapping pitch ranges. Soprano 
and bass parts are at the high and low ends, thus being 
easier for the model to decide where to classify them 
when in case of dubious passages, i.e., the lowest F0 
always goes to the bass, and the highest to the soprano, 
although this is not necessarily always true.

6.2 DATA DEGRADATION RESULTS
In experiment 2, we assessed the combined MPE plus VA 
pipeline on nine songs from the Cantoría dataset, using 
the two VoasCNN variants: without (C-VoasCNN) and 
with (D-VoasCNN) data degradation. Table 1 contains the 
per-voice results in terms of F-Score, which we compute 
for each voice and model, as well as the combined multi-
pitch F-Score (FMPE) before (MPE results directly from Late/
Deep CNN) and after the assignment. We first observe 
that these results follow a similar trend to those in 
experiment 1 from the perspective of the different voice 
parts: in relative numbers, both model variants perform 
better in soprano and bass cases, while they have more 
difficulties with alto and tenor parts.

Regarding the main focus of the experiment, these 
results suggest that C-VoasCNN is more suitable than 
D-VoasCNN for soprano and bass voices, while we 
observe the opposite behaviour for alto and tenor 
voices. Interestingly, the soprano and bass results are 
closer to the multi-pitch results, while they largely 
differ for the alto and tenor voices. Since the multi-pitch 
evaluation only checks whether a pitch is present or not, 
this finding suggests that alto and tenor frequencies 
are misclassified, i.e., the pitches are most likely to be 
assigned to the wrong voice.

When we focus on the comparison between pre- and 
post-VA scenarios in terms of multi-pitch metrics (last 
row), we find a difference of 8–10% in average F-Score for 
both VA models with respect to the MPE alone. In practice, 
this means that almost all (roughly 90%) information that 
the polyphonic salience function contains at the output 
of the Late/Deep CNN is preserved when we combine 
the four outputs of VoasCNN. However, the numbers are 
significantly lower in the per-voice evaluation, which we 
associate to the voice confusion errors mentioned above.

Figure 5a depicts an example of the outputs of Late/
Deep CNN + C-VoasCNN, while the output in Figure 5b 
uses D-VoasCNN, both for the same excerpt of the song 
Virgen Bendita sin par. This example illustrates some 
of the voice confusions, especially present in alto and 
tenor voices, and helps detecting potential recurrent 
errors. If we focus on the alto part, we observe how it 
has several spurious peaks that belong to the soprano 
voice; looking at the tenor voice, we also observe a 
significant increase of misplaced peaks that belong to 
the alto voice. An additional observation is that we find 
more spurious peaks in the bass voice with D-VoasCNN 
than with C-VoasCNN; similarly, some lower pitch values 
are assigned to the soprano with the D-VoasCNN, while 
most mistakes with the C-VoasCNN come from higher 
pitch values.

This experiment provides some insights about the use 
of data degradation in our synthetic dataset, although 
the results are not conclusive enough. While degradation 
does not consistently improve the performance of 
VoasCNN, it does seem to help with the alto and tenor 
parts. Since these are the two most challenging voices in 
our task, we use the degraded version of the SSCS to train 
VoasCLSTM for our last experiment.

6.3 MODEL GENERALIZATION RESULTS
Table 2 summarizes the results of the generalization 
experiment: first, we report the MPE results pre-VA for 
reference with MSINGERS, VOCAL4-MP and Late/Deep 
CNN (L/D CNN). Then, the post-VA results with several 
configurations: Late/Deep CNN combined with our 

Figure 4: Experiment 1 results. Boxplots with the evaluation 
results (per-voice F-Score) of the two proposed models 
(VoasCNN and VoasCLSTM) and the HMM-based baseline on the 
synthetic test set. The horizontal line inside the boxes shows 
the median of the distribution, and the numbers above each 
box indicate the corresponding numerical value.

Voice/Model C-VoasCNN D-VoasCNN L/D CNN

FSoprano 0.77 (0.05) 0.73 (0.06) –

FAlto 0.51 (0.07) 0.56 (0.10) –

FTenor 0.54 (0.05) 0.56 (0.08) –

FBass 0.76 (0.06) 0.71 (0.06) –

FMPE 0.75 (0.03) 0.77 (0.03) 0.85 (0.03)

Table 1: Data degradation experiment results: voice-specific 
F-Score obtained with C-VoasCNN and D-VoasCNN (Fvoice), and 
multi-pitch F-Score (FMPE) calculated by combining the four 
assigned trajectories (post-VA). We additionally report the 
average FMPE obtained with L/D CNN (Late/Deep CNN, pre-VA). 
The best result for each voice is highlighted in bold and 
standard deviations are displayed in italics.
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C-VoasCNN, D-VoasCNN and D-VoasCLSTM, VOCAL4-VA 
system, and the combination of Late/Deep CNN with our 
baseline HMM-based system on the BSQ recordings. The 
results with MSINGERS, VOCAL4-MP, Late/Deep CNN, and 
VOCAL4-VA are taken directly from their original papers, 
since the input data is the same.

These results provide several insights into the 
generalization capabilities of our model. First, we observe 
that the results with C-VoasCNN and D-VoasCNN are 
very similar for three (STB) of the four voices, while 
D-VoasCNN scores a 9% higher average F-Score in the 
alto voice. Looking at VoasCLSTM, it shows a slightly 
better performance for the tenor voice (+2%), while 
it achieves inferior results for the other voices, when 
compared to both VoasCNN variants. Comparing our 
VA models to the baselines, we find they outperform 
them in all voice parts, the performance increase being 
larger when compared to VOCAL4-VA than to Late/Deep 
combined with the HMM baseline. However, we find the 
same pattern with all systems: better results for soprano 
and bass than alto and tenor.

We report the MPE results with and without VA in the 
last column. In this case we observe that C-VoasCNN 
and D-VoasCNN produce the best results post-VA, 
achieving the same average F-Score as Late/Deep CNN 
alone. Late/Deep CNN with D-VoasCLSTM follows with an 
equivalent performance (–1% in average F-Score), while 
the combination of Late/Deep with the HMM baseline 
performs worse (–7% with respect to Late/Deep CNN).

These experiments show that our models are capable 
of generalizing to audio recordings even if they are 
trained exclusively on synthetic data from MIDI. When 
compared to the results from experiment 1, we observe 
a performance drop in the BSQ case with respect to the 
evaluation on synthetic data, which is expected given 
the synthetic training data. Nevertheless, our models 
significantly outperform the baselines on the same real 
audio recordings. In addition, these results also show 
that our model is capable of generalizing to input audio 
mixtures where singers have a different pitch range 
(i.e., BSQ), compared to the Western standard choir 
configuration, i.e., SATB (cf. Table 1).

Figure 5: Post-VA F0 outputs (color) vs. F0 ground truth (black) for an excerpt of Virgen Bendita sin par from the Cantoría dataset. The 
thresholds we use for this experiment are optimized per-voice on the validation set.

Model generalization Barbershop Quartets Dataset

Model FSoprano FAlto FTenor FBass FMPE

MSINGERS – – – – 0.71 (0.06)

VOCAL4-MP – – – – 0.59 (0.05)

L/D CNN – – – – 0.84 (0.03)

VOCAL4-VA 0.42 (0.18) 0.34 (0.16) 0.35 (0.16) 0.84 (0.06) 0.75 (0.06)

L/D + HMM 0.68 (0.12) 0.43 (0.16) 0.40 (0.18) 0.66 (0.15) 0.77 (0.06)

L/D + C-VoasCNN 0.75 (0.12) 0.50 (0.16) 0.57 (0.13) 0.89 (0.04) 0.84 (0.04)

L/D + D-VoasCNN 0.76 (0.09) 0.59 (0.15) 0.57 (0.14) 0.85 (0.05) 0.84 (0.04)

L/D + D-VoasCLSTM 0.65 (0.15) 0.54 (0.17) 0.59 (0.14) 0.84 (0.05) 0.83 (0.05)

Table 2: Evaluation results of the generalization experiment on the BSQ. L/D stands for Late/Deep, and HMM refers to the HMM-
based baseline for VA. The first three rows correspond to MPE models, thus we only report MPE results. Rows 4 to 8 show MPE+VA 
results with two baselines (VOCAL4-VA and L/D + HMM) and our proposed models (L/D + C-/D-VoasCNN and D-VoasCLSTM). Standard 
deviations are indicated in italics, and the best performance for each voice and configuration are highlighted in boldface.
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7. DISCUSSION AND ERROR ANALYSIS

This section starts by comparing the outputs of the 
models on the same song we considered in Figure 5. 
More specifically, we compare the output of D-VoasCNN 
(Figure 5b) and the output of D-VoasCLSTM, depicted in 
Figure 6. Both figures look similar overall (a large part 
of the melodies are correctly predicted in both cases), 
which agrees with the results from our experiments. 
However, we observe that the outputs of VoasCLSTM 
contain less jumps to other voices, showing a tendency 
to preserve time continuity of the pitch contours better. 
For instance, the spurious peaks in lower frequencies 
from D-VoasCNN’s soprano output disappear with 
VoasCLSTM and similarly for bass, where the erroneous 
F0 values in higher frequencies are greatly reduced. 
For alto and tenor the effect is the same, although the 
number of remaining spurious peaks is larger. We find 
one interesting difference between the two models’ 
behaviour in the last three seconds of the tenor voice: 
while VoasCNN mistakenly predicts alto notes in the 
tenor voice, VoasCLSTM does a much better job in this 
same excerpt. Although this is only one short example, it 
shows the potential benefits of adding recurrence in the 
network for preserving time continuity. However, given 
that the differences are not very large, more research 
on the optimal design parameters for the ConvLSTM is 
necessary for more effectiveness. Besides the network 
type, the error analysis reveals that imposing some 
continuity constraints on the outputs via further post-
processing should improve the results. Alternatively, 
replacing the current post-processing with Viterbi 
decoding to find the most likely sequence for each voice 
would also lead to improved results with better time 
continuity. Hence, future research on the topic could 
explore these methods further.

In the second part of this discussion, we briefly 
demonstrate the models’ performances on the song 
Riu riu chiu from Cantoría, which has alternating bass 
solo and quartet passages. An inspection of the results 
revealed that this scenario is especially challenging 

for VA models: it is very likely that every time a solo 
takes place, the other voices’ trajectories are lost. We 
evaluate the performance of both models considering 
monophonic F0 estimation evaluation metrics 
and find two main tendencies: VoasCNN is better 
at assigning the correct F0s to the correct voices 
(higher pitch accuracy in general), but VoasCLSTM 
shows smaller Voicing False Alarm (VFA),5 indicating 
a tendency to reduce the number of F0s assigned to 
the wrong voice. In this context, these results show 
that VoasCNN is more likely to predict the solo melody 
in the wrong voice than VoasCLSTM. For instance, the 
bass solo melody is predicted by VoasCNN in the bass, 
tenor, and alto voices, yielding VFA of 52% and 49% 
for the last two, respectively. VoasCLSTM predicts the 
silent passages correctly for the alto, decreasing the 
VFA to 10%. Overall, this example shows the tendency 
of VoasCLSTM to model pitch trajectories’ continuity 
better than VoasCNN, since it can keep track of voices 
better in the presence of solos. However, the presented 
numerical results and output examples show that the 
models’ performance can largely improve, especially 
for the inner voices. This last example additionally 
shows that the proposed networks are not constrained 
to assigning each bin to only one voice, which enables 
the correct prediction of unisons but makes models 
more susceptible to producing this type of error in the 
presence of solos. One idea to address this situation 
would be adding voice-wise weights to the training 
loss to penalize multiple assignments of the same 
bin. This would complicate the correct prediction of 
unisons, which would be penalized but still possible, 
and it has the potential to significantly improve the 
performance on situations as the one we presented 
here.

8. CONCLUSION

In this paper, we have presented and evaluated two 
novel deep learning based models for voice assignment 
(VA).6 Combined with an existing deep learning model 
for multiple F0 estimation (MPE), they constitute a 
full framework for audio to pitch contours for four-
part a cappella singing recordings. To our knowledge, 
our work is the first attempt to use deep neural 
networks to approach the VA task. The two proposed 
network architectures operate on the output of the 
MPE system—a pitch salience representation of the 
input audio. Then, they output four independent pitch 
salience representations, each of which contains only 
one melodic source. We first proposed VoasCNN, a fully 
convolutional architecture (see Figure 3a) that aims at 
considering the pitch proximity principle. Second, we 
proposed VoasCLSTM, a convolutional LSTM (ConvLSTM) 
architecture (see Figure 3b) that combines the properties 

Figure 6: Excerpt of the output of Late/Deep CNN + 
D-VoasCLSTM on Virgen Bendita sin par from Cantoría dataset.
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of CNNs with the properties of LSTMs in a network that 
aims at considering the pitch proximity as well as the 
time continuity principles.

We conducted several experiments to evaluate our 
models on a novel synthetic dataset for the task (Synth-
salience Choral Set, SSCS) and on two different sets of 
four-part a cappella audio recordings (BSQ and Cantoría). 
Our experiments show an equivalent performance of 
both architectures on synthetic data, while VoasCNN 
slightly outperforms VoasCLSTM when the input is a real 
audio recording. We additionally assessed the effect 
of the proposed degradation of the synthetic dataset. 
We found VoasCNN trained on “clean” data to perform 
slightly better than on “degraded” data for two of the 
four SATB voices, but larger scale experiments would be 
helpful to draw final conclusions. Moreover, the proposed 
pipeline outperformed the HMM-based baselines both 
on the synthetic test set and on real audio recordings. 
Besides, we observed similar trends for all models and 
baselines: alto and tenor voices obtain poorer results 
than soprano and bass.

While this work focused on vocal recordings, it 
has the potential to be trained with other types of 
music recordings and be considered for MPS in other 
contexts where the input recordings contain multiple 
simultaneous melodic lines. Furthermore, besides the 
post-processing aspects discussed in Section 7, one 
direction to expand this work further is the study of 
unisons: how the proposed models behave when two 
voices coincide at the same note at the same time. 
While this is very common in choral music, we did not 
look into this specifically in this work, although we 
anticipate it is very challenging for the models to detect 
such cases and account for them. Moreover, future 
work could also create different synthetic training data 
by generating audio recordings from scores employing 
singing synthesis techniques, and calculating the pitch 
salience representations via MPE algorithms.

NOTES
1	 http://cpdl.org/.

2	 The Synth-salience Choral Set is hosted on Zenodo.

3	 The Cantoría Dataset is hosted on Zenodo.

4	 In the notation F(n × m), F indicates the number of filters in one 
layer and n × m refers to the size of the convolutional kernels in 
the layer.

5	 Voicing False Alarm (VFA) measures the proportion of predicted 
F0s in voiced frames that are unvoiced in the reference.

6	 Pre-trained models, code, and data splits are available from this 
Github repository.
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