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ABSTRACT
Artist similarity plays an important role in organizing, understanding, and 
subsequently, facilitating discovery in large collections of music. In this paper, we 
present a hybrid approach to computing similarity between artists using graph 
neural networks trained with triplet loss. The novelty of using a graph neural network 
architecture is to combine the topology of a graph of artist connections with content 
features to embed artists into a vector space that encodes similarity. Additionally, we 
propose a simple and effective regularization method—connection dropout—which 
aims at improving results for long-tail artists, for which few existing connections 
are known.

To evaluate the proposed method, we use two datasets: the open OLGA dataset, 
which contains artist similarities from AllMusic, together with content features from 
AcousticBrainz, and a larger, proprietary dataset. We find that using graph neural 
networks yields superior overall results compared to state-of-the-art methods.

Beyond the overall evaluation, we investigate the effectiveness of the proposed model 
for long-tail artists. Such artists may benefit less from graph-based methods, since 
they typically have few known connections. We show that the proposed regularization 
approach clearly improves the performance for long-tail artists, without negatively 
affecting results for well-connected ones; it computes high-quality embeddings and 
good similarity scores for everyone.
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1. INTRODUCTION

Music similarity has sparked interest early in the Music 
Information Retrieval community, (Aucouturier and 
Pachet, 2002; Ellis et al., 2002) and has since then 
become a central concept for music discovery and 
recommendation in commercial music streaming 
services.

There is however no consensual notion of ground 
truth for music similarity, as several viewpoints are 
relevant (Ellis et al., 2002). For instance, music similarity 
can be considered at several levels of granularity; musical 
items of interest can be musical phrases, tracks, artists, 
genres, to name a few. Furthermore, the perception of 
similarity between two musical items can focus either 
on (1) comparing descriptive (or content-based) aspects, 
such as the melody, harmony, timbre (in acoustic or 
symbolic form), or (2) relational (sometimes called 
cultural) aspects, such as listening patterns in user-item 
data, frequent co-occurrences of items in playlists, web 
pages, et cetera.

In this paper—which is an extended version of our 
previous work (Korzeniowski et al., 2021)—, we focus 
on artist-level similarity, and formulate the problem as 
a retrieval task: given an artist, we want to retrieve the 
most similar artists, where the ground truth for similarity 
is cultural. More specifically, artist similarity is defined by 
music experts in some experiments, and by the “wisdom 
of the crowd” in other experiments.

In this sense, we aim at bridging the semantic gap 
(Celma and Serra, 2008) between content (music) 
and context (culture). Connecting these two disparate 
views is crucial for music recommendation: the user’s 
perception of similarity is driven by cultural aspects, but 
reliable context-related data (such as ratings) is available 
only for established artists; for the undiscovered long tail, 
we may only have content-based features. Thus, if we 
want to build a similarity model for everyone—popular, 
upcoming and niche artists—, we need our system to 
consider both content and context. Neglecting context, 
we would miss the cultural perspective of listeners; 
neglecting content, our model would only work well for 
the selected few.

2. RELATED WORK

A variety of methods have been devised for computing 
artist similarity, from the use of audio descriptors to 
measure similarity (Pohle et al., 2009), to leveraging text 
sources by measuring artist similarity as a document 
similarity task (Schedl et al., 2014). A significant effort has 
been dedicated to the study of graphs that interconnect 
musical entities with semantic relations as a proxy to 
compute artist similarity. For instance, Celma and Serra 

(2008) combine user profiles, music descriptions and 
audio features in a domain-specific ontology to compute 
artist similarity, whereas Oramas et al. (2015) extract 
semantic graphs of artists from artist biographies.

Other approaches use deep neural networks to learn 
artist embeddings from heterogeneous data sources 
and then compute similarity in the resulting embedding 
space (McFee and Lanckriet, 2009). Furthermore, metric 
learning approaches trained with triplet loss have been 
applied to learn the embedding space where similarity 
is computed (Lee et al., 2020a; Doras et al., 2020; Lee 
et al., 2020b; Park et al., 2018; Yesiler et al., 2020; Dorfer 
et al., 2017). While these models work well in objective 
tasks (e.g. genre classification, artist and song version 
identification), they do not consider cultural aspects 
of similarity.

Most recently, graph neural networks (GNNs) 
successfully improved upon metric-learning-based 
approaches: Salha-Galvan et al. (2021) train a GNN for 
directed link prediction between artists, considering both 
artist similarity and popularity, with a focus on cold-
start artists with no known connections; our previous 
work (Korzeniowski et al., 2021), on the other hand, 
used a metric-learning objective to learn a GNN for artist 
similarity, and provided an overall evaluation for all artists, 
long-tail or not. Compared to older graph embedding 
methods such as node2vec (Grover and Leskovec, 2016), 
GNNs easily leverage both graph structure and node 
features.

Our artist similarity model thus combines graph 
approaches and embedding approaches using GNNs. 
The proposed model, described in detail in Section 3, 
uses content-based features (audio descriptors, or 
musicological attributes) together with explicit similarity 
relations between artists made by human experts (or 
extracted from listener feedback). These relations are 
represented in a graph of artists; the topology of this 
graph thus reflects the contextual aspects of artist 
similarity. The proposed graph neural network is trained 
using triplet loss to learn a function that embeds artists 
using both content features and graph connections. In 
this embedding space, similar artists are close to each 
other, while dissimilar ones are further apart.

We use two datasets (described in-depth in 
Section 4) to evaluate our approach: the OLGA dataset, 
which is collected from publicly available sources, 
comprising 17,673 artists; and a larger, proprietary 
dataset, consisting of 136,731 artists. Our experiment 
setup—metrics, models, data partitioning, etc.—is 
detailed in Section 5.

Beyond overall results, we take a deeper look at 
the model’s performance on long-tail artists. Both are 
presented in Section 6. In contrast to Salha-Galvan et 
al. (2021), we consider not only artists with no known 
connections, but evaluate the change in performance 
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at different levels of known connectivity. We do find 
that performance suffers for artists with fewer known 
connections. To impede this effect, we devise a simple 
and effective training method—which we call connection 
dropout—that drastically mitigates this problem. This 
deeper evaluation, and the presentation of a novel 
method which improves results, constitute the main 
extension of our previous work on this topic (Korzeniowski 
et al., 2021).

3. MODELLING

The goal of an artist similarity model is to define a 
function s(a, b) that estimates the similarity of two 
artists—i.e., yields a large number if artist a is considered 
similar to artist b, and small number if not.

Many content-based methods for similarity 
estimation have been developed in the last decades 
of MIR research (see Section 2). The field has closely 
followed the state-of-the-art in machine learning 
research, with general improvements coming from the 
latter translating well into improvements in the former. 
Acknowledging this fact, we select our baselines 
based on the most recent developments: Siamese 
neural networks trained with variants of the triplet loss 
(Doras et al., 2020; Lee et al., 2020b; Park et al., 2018; 
Yesiler et al., 2020; Dorfer et al., 2017). Building and 
training this type of model falls under the umbrella of 
metric learning.

3.1 METRIC LEARNING
The fundamental idea of metric learning is to learn a 
projection yv = f (xv) of the input features xv of an item 
v into a new vector space; this vector space should be 
structured in a way such that the distances between 
points reflect the task at hand. In our case, we want 
similar artists to be close together in this space, and 
dissimilar artists far away.

There is an abundance of methods that embed 
items into a vector space, many rooted in statistics, 
that have been applied to music similarity (Slaney et al., 
2008). In this paper, we use a neural network for this 
purpose. The idea of using neural networks to embed 
similar items close to each other in an embedding space 
was pioneered by Bromley et al. (1993), with several 
improvements developed in the following decades. 
Most notably, the contrastive learning objective—where 
two items are compared to each other as a training 
signal—was replaced by the triplet loss (Hoffer and 
Ailon, 2015; Wang et al., 2014). Here, we observe three 
items simultaneously: the anchor item xa is compared 
to a positive sample xp and a negative sample xn. With 
the following loss formulation, the network is trained to 
pull the positive close to the anchor, while pushing the 
negative further away from it:

( ) ( ) ( ) , , ,  a p a nt d d
+é ù= - +Dê úë û

y y y y

where t denotes the triplet (ya, yp, yn), d(·) is a distance 
function (usually Euclidean or cosine), ∆ is the 
maximum margin enforced by the loss, and [·]+ is the 
ramp function.

As mentioned before, state-of-the-art music similarity 
models are almost exclusively based on learning deep 
neural networks using the triplet loss. We thus adopt 
this method as our baseline model, which will serve 
as a comparison point to the graph neural network we 
propose in the following sections.

3.2 GRAPH NEURAL NETWORKS
A set of artists and their known similarity relations can 
be seen as a graph, where the artists represent the 
nodes, and the similarity relations their (undirected) 
connections. Graph methods thus naturally lend 
themselves to model the artist similarity problem 
(Oramas et al., 2015). A particular set of graph-based 
models that has been gaining traction recently are graph 
neural networks (GNNs), specifically convolutional GNNs. 
Pioneered by Bruna et al. (2014), convolutional GNNs 
have become increasingly popular for modelling different 
tasks that can be interpreted as graphs. We refer the 
interested reader to Wu et al. (2021) for a comprehensive 
and historical overview of GNNs. For brevity, we will focus 
on the one specific model our work is based on—the 
GraphSAGE model introduced by Hamilton et al. (2017) 
and refined by Ying et al. (2018)—and use the term GNNs 
for convolutional GNNs.

3.2.1 Model Overview
The GNN we use in this paper comprises two parts: 
first, a block of graph convolutions (GC) processes each 
node’s features and combines them with the features of 
adjacent nodes; then, another block of fully connected 
layers projects the resulting feature representation 
into the target embedding space. See Figure 1 for an 
overview.

Figure 1 Overview of the graph neural network we use in 
this paper. First, the input features xv are passed through a 
front-end of graph convolution layers (see Section 3.2.2 for 
details); then, the output of the front-end is passed through a 
traditional deep neural network back-end to compute the final 
embeddings yv of artist nodes. Based on these embeddings, we 
use the triplet loss to train the network to project similar artists 
(positive, green) closer to the anchor, and dissimilar ones 
(negative, red) further away.
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We train the model using the triplet loss, in an 
identical setup as the baseline model. Viewing the 
proposed GNN from this angle, the only difference of 
the GNN from a standard embedding network is the 
additional Graph Convolutional Frontend. In other words, 
if we remove all graph convolution layers, we arrive at our 
baseline model, a fully connected Deep Neural Network 
(DNN).

3.2.2 Graph Convolutions
The graph convolution algorithm, as defined by Hamilton 
et al. (2017); Ying et al. (2018), features two operations 
which are not found in classic neural networks: a 
neighborhood function N(·), which yields the set of 
neighbors of a given node; and an aggregation function, 
which computes a vector-valued aggregation of a set of 
input vectors.

As a neighborhood function, most models use guided 
or uniform sub-sampling of the graph structure (Oh et al., 
2019; Hamilton et al., 2017; Ying et al., 2018). This limits 
the number of neighbors to be processed for each node, 
and is often necessary to adhere to computational limits. 
As aggregation functions, models commonly apply 
pooling operators, LSTM networks, or (weighted) point-
wise averages (Hamilton et al., 2017).

In this work, we take a simple approach, and 
use point-wise weighted averaging to aggregate 
neighbor representations, and select the strongest 25 
connections as neighbors. If weights are not available, 
we use the simple average of random (but fixed) 25 
connections. This enables us to use a single sparse 
dot-product with an adjacency matrix to select and 
aggregate neighborhood embeddings. Note that this 
is not the full adjacency matrix of the complete graph, 
as we select only the parts of the graph which are 
necessary for computing embeddings for the nodes in 
a mini-batch.

Algorithm 1 describes the inner workings of the 
graph convolution block of our model. Here, the 
matrix ´ÎX D V  stores the D-dimensional features 
of all V nodes, the symmetric sparse matrix ´ÎA V V  
defines the connectivity of the graph, and N(v) is a 
neighborhood function which returns all connected 
nodes of a given node v (here, all non-zero elements in 
the vth row of A).

To compute the output of a graph convolution layer 
for a node, we need to know its neighbors. Therefore, 
to compute the embeddings for a mini-batch of nodes 
, we need to know which nodes are in their joint 
neighborhood. Thus, before the actual processing, we 
first need to trace the graph to find the node features 
necessary to compute the embeddings of the nodes in 
the mini-batch. This is shown in Figure 2, and formalized 
in lines 1–4 of Algorithm 1.

At the core of each graph convolution layer k ϵ [1…K] 
there are two non-linear projections, parameterized by 
projection matrices ´Î QkH D

kQ  and ´ +Î ( )W Qk kH H D
kW , 

and a point-wise non-linear activation function σ, in our 
case, the Exponential Linear Unit function (ELU). Here, 

kQ
H  and 

kWH  are the output dimensions of the respective 
projections. The last output, 

´Î WKH V
KX , holds the l2-

normalized representations of each node in the mini-batch 
in its columns. It is fed into the following fully connected 
layers, which then compute the output embedding yv of 
a node. Finally, these embeddings are used to compute 
the triplet loss and back-propagate it through the GNN.

3.2.3 Connection Dropout
As we observed in our experiments (see Section 5), 
the GNNs learned to overly rely on the graph topology. 
This is because—given enough GC layers—graph 
topology trumps features when it comes to predicting 
similarity (as we will see in Section 5). To alleviate this 
issue, we introduce a tweak during training: each time 
we consult the neighborhood of a node k, we return 
a randomly sampled subset of its neighbors. This is 
achieved by dropping each connection to k with a given 
probability p. Concretely, in Algorithm 1, line 7, we 
randomly set each element Ak to 0 with probability p. 
During evaluation, we do not drop any connections, and 
use the allowed maximum of 25. As we will see when 
discussing our results, this method greatly improves 
the GNN’s performance on artists with few known 
connections.

Connection Dropout can be seen as sub-sampling 
the neighborhoods in the graph. Sub-sampling has 
been previously used in GNNs, but for a different 
purpose: to condense neighborhoods and to control the 
computational burden. Indeed, Ying et al. (2018) finds 

Figure 2 Tracing the graph to find the necessary input 
nodes for embedding the target node (orange). Each graph 
convolution layer requires tracing one step in the graph. Here, 
we show the trace for a stack of two such layers. To compute 
the embedding of the target node in the last layer, we need 
the representations from the previous layer of itself and its 
neighbors (green). In turn, to compute these representations, 
we need to expand the neighborhood by one additional step in 
the preceding GC layer (blue). Thus, the features of all colored 
nodes must be fed to the first graph convolution layer.
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importance-weighted, dense neighborhoods using short 
random walks; these random walks were carried out until 
convergence criteria determined that the neighborhoods 
are stable enough (Eksombatchai et al., 2018). This 
is in stark contrast to our method, which randomly 
destabilizes and sparsifies neighborhood structures on 
purpose to achieve better generalization. Future work 
could aim at combining these two purposes; it is however 
out of scope of this work.

4. DATASETS

Many published studies on the topic of artist similarity are 
limited by data: datasets including artists, their similarity 
relations, and their features comprise at most hundreds 
to a few thousand artists. In addition, the quality of the 
ground truth provided is often based on 3rd party APIs 
with unknown similarity methods like the last.fm API, 
rather than based on data curated by human experts.

For instance, Oramas et al. (2015) provides two 
datasets, one with ~2k artists and similarity based on 
last.fm relations, and another with only 268 artists, but 
based on relations curated by human experts. Schedl et 
al. (2014) use a dataset of 1,677 artists based on last.
fm similarity relations for evaluation. Also, the dataset 
used in the Audio Music Similarity and Retrieval (AMS) 
MIREX task, which was manually curated, contains data 
about only 602 artists. Others, like Lee et al. (2020a), 
use tag data shared among tracks or artists as a proxy 
for similarity estimation—which can be considered as 
a weak signal of similarity—and use a small set of 879 
human-labeled triplets for evaluation.

Due to all these issues regarding existing datasets, we 
compiled a new dataset, the OLGA Dataset, which we 
describe in the following.

4.1 THE OLGA DATASET
For the OLGA (“Oh, what a Large Graph of Artists”) 
dataset, we bring together content-based low-level 
features from AcousticBrainz (Porter et al., 2015), and 
similarity relations from AllMusic, as curated by their 
music editors. Assembling the data works as follows:

1.	 Select a common pool of artists based on the unique 
artists in the Million Song Dataset (Bertin-Mahieux et 
al., 2011).

2.	 Map the available MusicBrainz IDs of the artists 
to AllMusic IDs using mapping available from 
MusicBrainz.

3.	 For each artist, obtain the list of “related” artists from 
AllMusic; this data can be licensed and accessed on 
their website. Use only related artists who can be 
mapped back to MusicBrainz.

4.	 Using MusicBrainz, select up to 25 tracks for each 
artist using their API, and collect the low-level 
features of the tracks from AcousticBrainz.

5.	 Compute the track feature centroid of each artist.

In total, the dataset comprises 17,673 artists connected 
by 101,029 similarity relations. On average, each artist is 
connected to 11.43 other artists. The quartiles are at 3, 
7, and 16 connections per artist. The lower 10% of artists 
have only one connection, the top 10% have at least 27.

While the dataset size is still small compared to 
industrial catalog sizes, it is significantly bigger than other 
datasets available for this task. Its size and available 
features permits to apply more data-driven machine 
learning methods to the problem of artist similarity.1

For our experiments, we partition the artists following 
an 80/10/10 split into 14,139 training, 1767 validation, 
and 1767 test artists.

4.2 PROPRIETARY DATASET
We also use a larger proprietary dataset to demonstrate 
the scalability of our approach. Here, explicit feedback 
from listeners of a music streaming service is used to 
define whether two artists are similar or not: we derive 
similarity connections based on the co-occurrence of 
positive feedback for two artists.

For artist features, we use the centroid of an artist’s 
track features. These track features are musicological 
attributes annotated by experts, and comprise hundreds 
of content-based characteristics such as “amount of 
electric guitar”, or “prevalence of groove”.

In total, this dataset consists of 136,731 artists 
connected by 3,277,677 similarity relations. The number 
of connections per artist is a top-heavy distribution with 
a few artists sharing most of the connections: the top 
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10% are each connected to more than 134 others, while 
the bottom 10% to only one. The quartiles are at 2, 5, 
and 48 connections per artist.

We follow the same partition strategy as for the 
OLGA dataset, which results in 109,383 training, 13,674 
validation, and 13,674 test artists.

5. EXPERIMENTS

Our experiments aim to evaluate how well the 
embeddings produced by our model capture artist 
similarity. To this end, we set up a ranking scenario: 
given an artist, we collect its K nearest neighbors sorted 
by ascending distance, and evaluate the quality of this 
ranking. To quantify this, we use normalized discounted 
cumulative gain (Järvelin and Kekäläinen, 2002) with a 
high cut-off at K = 200 (“NDCG@200”). We prefer this 
metric over others, because it was shown that at high 
cut-off values, it provides better discriminative power, as 
well as robustness to sparsity bias (and, to a moderate 
degree, popularity bias) (Valcarce et al., 2018). Formally, 
given an artist a with an ideal list of similar artists s 
(sorted by relevance), the NDCGK of a predicted list of 
similar artists ŝ is defined as:

=

=

=
å
å

1
K

1
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k
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where g(·, a), the gain, is 1 if an artist is indeed similar 
to a, and 0 otherwise, and -= +1

2( ) log ( 1)d k k  the 
discounting factor, weights top rankings higher than the 
tail of the list.

In the following, we first explain the models, their 
training details, the features, and the evaluation data 
used in our experiments. Then, we show, compare and 
analyze the results.

5.1 MODELS
As explained in Section 3.2.1, a GNN with no graph 
convolution layers is identical to our baseline model (i.e. a 
DNN trained using triplet loss). This allows us to fix hyper-
parameters between the baseline and the proposed GNN, 
and isolate the effect of adding graph convolutions to 
the model. For each dataset, we thus train and evaluate 
four models with 0 to 3 graph convolution layers.

The other hyper-parameters remain fixed: each layer 
in the graph convolutional front-end consists of 256 
ELUs (Clevert et al., 2016); the back-end comprises two 
layers of 256 ELUs each, and one linear output layer with 
100 dimensions; we train the networks using the ADAM 
optimizer (Kingma and Ba, 2015) with a linear learning-
rate warm-up (Ma and Yarats, 2021) for the first epoch, 
and following a cosine learning rate decay (Loshchilov 
and Hutter, 2017) for the remaining 49 epochs (in 

contrast to Loshchilov and Hutter (2017), we do not use 
warm-restarts); for selecting triplets, we apply distance-
weighted sampling (Wu et al., 2017), and use a margin 
of ∆ = 0.2 in the loss; finally, as distance measure, we use 
Euclidean distance between l2-normalized embeddings.

We are able to train the largest model with 3 graph 
convolution layers within 2 hours on the proprietary 
dataset, and under 5 minutes on OLGA, using a Tesla P100 
GPU and 8 CPU threads for data loading, which includes 
tracing the graph to find the relevant neighborhood as 
explained in Section 3.2.2.

5.2 FEATURES
We build artist-level features by averaging track-level 
features of the artist’s tracks. Depending on the dataset, 
we have different types of features at hand.

In the OLGA dataset, we have low-level audio features 
extracted by the AcousticBrainz project using the Essentia 
library. These features represent track-level statistics 
about the loudness, dynamics and spectral shape of the 
signal, but they also include more abstract descriptors 
of rhythm and tonal information, such as BPM and the 
average pitch class profile.2

Although AcousticBrainz also provides high-level 
features such as mood and genre predictions, we refrain 
from using them. The reason is twofold: first, they are 
derived from the low-level features themselves, and 
as such, do not provide complementary information; 
second, as stated on the AcousticBrainz website itself, 
the high-level features may be subject to change if and 
when the models predicting them are changed, re-
trained or improved.

We select all numeric features and pre-process them 
as follows: we apply element-wise standardization, 
discard features with missing values, and flatten all 
numbers into a single vector of 2613 elements.

In the proprietary dataset, we use numeric 
musicological descriptors annotated by experts (for 
example, “the nasality of the singing voice”). We apply 
the same pre-processing for these, resulting in a total of 
170 values.

Using two different types of content features gives 
us the opportunity to evaluate the utility of our graph 
model under different circumstances, or more precisely, 
features of different quality and signal-to-noise ratio. 
The low-level audio-based features available in the OLGA 
dataset are undoubtedly noisier and less specific than 
the high-level musical descriptors manually annotated 
by experts, which are available in the proprietary 
dataset. Experimenting with both permits us to gauge 
the effect of using the graph topology for different data 
representations.

In addition, we also train models with random vectors 
as features. For each artist, we uniformly sample a random 
vector of the same dimension as the real features, and 
keep it constant throughout training and testing. This 
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way, we can differentiate between the performance of 
the real features and the performance of using the graph 
topology in the model: the results of a model with no 
graph convolutions is only due to the features, while the 
results of a model with graph convolutions but random 
features is only due to the use of the graph topology.

5.3 EVALUATION DATA
As described in Section 4, we partition artists into a 
training, validation and test set. When evaluating on 
the validation or test sets, we only consider artists from 
these sets as candidates and potential true positives. 
Specifically, let eval be the set of evaluation artists; we 
only compute embeddings for these, and retrieve nearest 
neighbors from this set, and only consider ground truth 
similarity connections within eval.

This notion is more nuanced in the case of GNNs. 
Here, we want to exploit the known artist graph topology 
(i.e.,which artists are connected to each other) when 
computing the embeddings. To this end, we use all 
connections between artists in train(the training set) and 
connections between artists in train and eval. This process 
is outlined in Figure 3.

Note that this does not leak information between train 
and evaluation sets; the features of evaluation artists 
have not been seen during training, and connections 
within the evaluation set—these are the ones we want 
to predict—remain hidden.

5.4 EMULATING LONG-TAIL ARTISTS
Overall evaluations portray a model’s performance from 
a birds-eye view. Beyond that, we are interested in the 
performance of our model for the segment of long-tail 
artists. Such artists usually have few known connections, 
which not only limits the information a GNN is able to 
leverage, but also limits our capability to evaluate how 
well the GNN is able to leverage existing information. 
Since ground truth for these artists is sparse, retrieved 
lists of similar artists can contain relevant items for 

which we do not know that they are relevant; we cannot 
quantitatively distinguish a list of bad recommendations 
from a list of good recommendations of which we do not 
know that they are indeed good.

To circumvent this problem, we collect a subset of 
well-connected artists for which we will then artificially 
sparsify known evaluation connections (i.e.,connections 
between validation artists and training artists, see 
Figure 3). This will enable us to emulate a long-tail artist 
for which the GNN cannot use a dense neighborhood to 
compute embeddings. At the same time, we retain the 
ability to quantify the quality of retrieved similar artists, 
since we have a lot of unseen evaluation connections at 
hand. In particular, we will sweep the number of known 
evaluation connections from zero to 25 (the maximum 
number of connections), and inspect the results for each 
degree of connectivity.

Depending on the dataset, we use different criteria to 
select these artists. Since each dataset differs in size and 
connection density, parameters that work for one would 
not work for the other. For the proprietary dataset, which 
is large and densely connected, we use artists with at least 
25 connections to the training graph (known evaluation 
connections), and 50 unseen connections (“evaluation 
connections” in Figure 3); this results in 207 artists. For 
the OLGA dataset, we also require 25 known evaluation 
connections, but are satisfied with at least 5 unseen 
evaluation connections; this gives us 44 artists to look at.

6. RESULTS AND DISCUSSION

We will first discuss the overall results in the following 
section. Then, we will use the subsets of artists selected 
in Section 5.4 to evaluate the sensitivity of our model 
to decaying connectivity, as observed with less popular 
artists.

6.1 OVERALL EVALUATION
Table 1 compares the baseline model with the proposed 
GNN, trained without connection dropout. We can see 
that the GNN easily out-performs the DNN. It achieves 

Figure 3 Artist nodes and their connections used for training 
(green) and evaluation (orange). During training, only green 
nodes and connections are used. When evaluating, we extend 
the graph with the orange nodes, but only add connections 
between validation and training artists. Connections among 
evaluation artists (dotted orange) remain hidden. We then 
compute the embeddings of all evaluation artists, and evaluate 
based on the hidden evaluation connections.

DATASET FEATURES DNN GNN

OLGA
Random 0.02 0.45

AcousticBrainz 0.24 0.55

Proprietary
Random 0.00 0.52

Musicological 0.44 0.57

Table 1 NDCG@200 for the baseline (DNN) and the proposed 
model with 3 graph convolution layers (GNN), using features or 
random vectors as input. The GNN with real features as input 
gives the best results. Most strikingly, the GNN with random 
features—using only the known graph topology—out-performs 
the baseline DNN with informative features.
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an NDCG@200 of 0.55 vs. 0.24 on the OLGA dataset, and 
0.57 vs. 0.44 on the proprietary dataset. The table also 
demonstrates that the graph topology is more predictive 
of artist similarity than content-based features: the GNN, 
using random features, achieves better results than a DNN 
using informative features for both datasets (0.45 vs. 0.24 
on OLGA, and 0.52 vs. 0.44 on the proprietary dataset).

Additionally, the results indicate—perhaps to little 
surprise—that low-level audio features in the OLGA 
dataset are less informative than manually annotated 
high-level features in the proprietary dataset. Although 
the proprietary dataset poses a more difficult challenge 
due to the much larger number of candidates (14k vs. 
1.8k), the DNN—which can only use the features—
improves more over the random baseline in the proprietary 
dataset (+0.44), compared to the improvement (+0.22) 
on OLGA. These are only indications; for a definitive 
analysis, we would need to use the exact same features 
in both datasets.

Similarly, we could argue that the topology in the 
proprietary dataset seems more coherent than in 
the OLGA dataset. We can judge this by observing the 
performance gain obtained by a GNN with random 
features—which can only leverage the graph topology to 
find similar artists—compared to a completely random 
baseline (random features without GC layers). In the 
proprietary dataset, this performance gain is +0.52, while 
in the OLGA dataset, only +0.43. Again, while this is not 
a definitive analysis (other factors may play a role), it 
indicates that the large amounts of user feedback used 
to generate ground truth in the proprietary dataset give 
stable and high-quality similarity connections.

Figure 4 depicts the results for each model and feature 
set depending on the number of graph convolution 
layers used. (Recall that a GNN with 0 graph convolutions 
corresponds to the baseline DNN.) In the OLGA dataset, 
we see the scores increase with every added layer. This 
effect is less pronounced in the proprietary dataset, 
where adding graph convolutions does help significantly, 
but results plateau after the first graph convolution layer. 
We believe this is due to the quality and informativeness 
of the features: the low-level features in the OLGA dataset 
provide less information about artist similarity than high-
level expertly annotated musicological attributes in the 
proprietary dataset. Therefore, exploiting contextual 
information through graph convolutions results in more 
uplift in the OLGA dataset than in the proprietary one.

Looking at the scores obtained using random features 
(where the model depends solely on exploiting the graph 
topology), we observe two remarkable results. First, 
whereas one graph convolution layer suffices to out-
perform the feature-based baseline in the OLGA dataset 
(0.28 vs. 0.24), using only one GC layer does not produce 
meaningful results (0.05) in the proprietary dataset. We 
believe this is due to the different sizes of the respective 
test sets: 14k in the proprietary dataset, while only 1.8k in 

OLGA. Using only a very local context seems to be enough 
to meaningfully organize the artists in a smaller dataset.

Second, most performance gains are obtained with 
two GC layers, while adding the third GC layer pushes the 
results to a much lesser degree. Our explanation for this 
effect is that most similar artists are connected through 
at least one other, common artist. In other words, most 
artists form similarity cliques with at least two other 
artists. Within these cliques, in which every artist is 
connected to all others, missing connections are easily 
retrieved by no more than 2 graph convolutions.

In fact, in the OLGA dataset, ~71% of all cliques 
fulfill this requirement. This means that, for any hidden 
similarity link in the data, in 71% of cases, the true similar 
artist is within 2 steps in the graph—which corresponds 
to using two GC layers.

6.2 EVALUATION OF LONG-TAIL ARTISTS
Let us now focus on the results specific for long-tail 
artists. As explained in Section 5.4, we will not use 
actual long-tail artists for this, since data sparsity 
prevents a solid evaluation. Instead, we emulate the 
long-tail condition by removing known connections of 
well-connected artists, while keeping all their unseen 
evaluation connections. From the OLGA dataset, we 
collected 44 artists with at least 25 known connections 
and at least 5 unseen ones; for the proprietary dataset, 

Figure 4 Results on the OLGA (top) and the proprietary 
(bottom) dataset with different numbers of graph convolution 
layers, using either the given features (left) or random vectors 
as features (right). Error bars indicate 95% confidence intervals 
computed using bootstrapping.
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we found 207 artists with at least 25 known connections, 
and at least 50 unseen ones (the proprietary dataset is 
larger and more densely connected).

We train the largest models with 3 graph convolution 
layers using varying connection dropout probabilities: 
0.0, 0.25, 0.5, 0.75, 0.95 and 0.99; a connection dropout 
probability of 0.0 corresponds to the baseline GNN 
model with no connection dropout. Once these models 
are trained, we use them to evaluate the resulting 
artist embeddings in different connectivity settings: we 
sweep the known evaluation connections between 25 
and zero (the cold-start scenario) for each evaluation 
artist, dropping the weakest connection at each step. 
To reiterate, we do not re-train the models; we only 
manipulate the connectivity of validation artists when 
computing artist embeddings.

Figure 5 shows the results. We see that for the baseline 
model (blue, no connection dropout), results degrade 
significantly with decreasing connectivity. We observe 
this effect—though with different intensity—on both 
datasets. Indeed, the baseline model with no connection 
dropout performs poorly for cold-start artists: it needs 
2 known connections in the OLGA dataset to be on-par 
with a simple DNN without GC layers (and even 5 in the 
proprietary one).

We also observe how connection dropout greatly 
reduces that degradation, without negatively impacting 
results for well-connected artists: in the OLGA 
dataset, we can use very high dropout rates such as 
0.95 to achieve better-than-baseline results for cold-
start artists without significantly sacrificing results 
for others; in the proprietary dataset, we achieve this 
with a lower dropout probability of 0.75. The optimal 
ratio of connection dropout clearly depends on the 
dataset, and is a hyper-parameter to be tuned. 
However, values of 0.5 or 0.75 seem to be good starting  
points.

Using connection dropout achieves better results 
for sparsely connected artists because it prevents the 
GNN from relying too much on the graph connectivity 
when computing the embedding. To substantiate this 
claim, we examine the stability of artist embeddings 
while manually removing known connections, using 
the same subset of artists as before. We consider the 
embedding computed using all 25 known connections 
to be the true embedding of an artist. We then remove 
known connections one by one, compute a new artist 
embedding at each level of connectivity, and calculate 
the cosine distance of these embeddings to the true 
embedding.

Figure 5 Evaluation of the long-tail performance of a 3-GC-layer model on the OLGA dataset (top) and the proprietary dataset 
(bottom). The different bars represent models trained with different probabilities of connection dropout. The gray line in the 
background represents the baseline model with no graph convolution layers, with the shaded area indicating the 95% confidence 
interval. We see that for the standard model (blue, no connection dropout), performance degrades with fewer connections. 
Introducing connection dropout significantly reduces this effect.
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The results are shown in Figure 6: the distance stays 
close to zero at first, but degrades quickly after we 
dropped a certain number of connections. We also see 
how connection dropout greatly reduces this effect. 
In the OLGA dataset, the cosine distance between the 
embedding using no connections and the one using all 
25 connections is more than 0.5 on average when no 
connection dropout is used; this number drops to less 
than 0.2 if we employ a connection dropout rate of 
0.99. Similar effects can be observed for the proprietary 
dataset.

7. SUMMARY AND FUTURE WORK

In this paper, we described a hybrid approach to 
computing artist similarity, which uses graph neural 
networks to combine content-based features with 
explicit relations between artists.

To evaluate our approach, we assembled a dataset 
with 17,673 artists, their features, and their similarity 
relations. Additionally, we used a much larger proprietary 
dataset to show the scalability of our method. The results 
showed that leveraging known connections between 

artists can be more effective for understanding their 
similarity than high-quality features, and that combining 
both gives the best results.

The introduction of Connection Dropout in training was 
shown to be effective in decreasing the model’s reliance 
on the number of known artist connections, which was 
detrimental for sparsely connected long-tail artists. The 
proposed method significantly improves results for such 
artists without negatively affecting densely connected 
ones.

Our work is a first step towards models that directly 
use known relations between musical entities, like 
tracks, albums, artists, or even genres. Future work 
could investigate how to employ multi-modality in this 
context; for example, we could build a multi-modal 
graph by using connections between different types 
of entities (e.g. tracks, albums, artists), or different 
types of connections between the same entities (e.g. 
artist collaborations, band memberships). Another 
avenue of research could focus on collecting and 
using better and/or higher-level features for the OLGA 
dataset. This would provide a better judgement of 
the importance of feature quality in the proposed 
model.

NOTES
1	 The procedure to assemble the dataset, including relevant 

metadata, is available on https://gitlab.com/fdlm/olga/.

2	 The exact list of low-level features we use is available at https://
gitlab.com/fdlm/olga/.
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