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ABSTRACT
We present solutions to two of the most pressing issues in contemporary optical 
music recognition (OMR). We improve recognition accuracy on low-quality, real-
world (i.e. containing ageing, lighting, or dirt artefacts among others) input data 
and provide confidence-rated model outputs to enable efficient human post-
processing. Specifically, we present (i) a sophisticated input augmentation scheme 
that can reduce the gap between sanitised benchmarks and realistic tasks through 
a combination of synthetic data and noisy perturbations of real-world documents; 
(ii) an adversarial discriminative domain adaptation method that can be employed 
to improve the performance of OMR systems on low-quality data; (iii) a combination 
of model ensembles and prediction fusion, which generates trustworthy confidence 
ratings for each prediction. We evaluate our contributions on a newly created test 
set consisting of manually annotated pages of varying real-world quality, sourced 
from the International Music Score Library Project (IMSLP)/Petrucci Music Library. 
With the presented data augmentation scheme, we achieve a doubling in detection 
performance from 36.0% to 73.3% on noisy real-world data compared to state-of-
the-art training. This result is then combined with robust confidence ratings paving 
the way for OMR to be deployed in the real world. Additionally, we show the merits 
of unsupervised adversarial domain adaptation for OMR raising the 36.0% baseline to 
48.9%.

All our code and data are freely available at: https://github.com/raember/s2anet/tree/
TISMIR_publication.
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1. INTRODUCTION

Optical music recognition (OMR) (Rebelo et al., 2012; 
Calvo-Zaragoza et al., 2020) is a classical and challenging 
area of document analysis, that aims to convert images 
of written music to machine-readable, encoded form. 
A crucial component of any OMR pipeline is a music 
object recognition (MOR) system. In recent years MOR 
systems have reached greatly increased performance 
thanks to the adoption of deep learning (Pacha et al., 
2018b; Tuggener et al., 2018b) and the availability of 
large datasets (Hajič Jr and Pecina, 2017; Tuggener et al., 
2018a, 2021).

Despite these advancements, we have identified two 
major roadblocks that hold current MOR systems back 
from reaching their full potential in a practical, real-world 
setting. Even though deep neural networks have been 
consistently revolutionising different computer vision 
tasks like classification, object detection, segmentation, 
image retrieval, and many more, they often fail to 
replicate the benchmark performances and results on 
new domains. This issue is attributed to cross-domain 
mismatch; some of the problems surrounding this issue 
are highlighted below.

Firstly, the currently available (MOR) training datasets 
are either synthetically generated or scans of very 
high quality, which are visually very close to synthetic 
imagery. This causes the resulting detectors to perform 
very well on clean samples (Elezi et al., 2018; Pacha and 
Calvo-Zaragoza, 2018), but they struggle significantly 
when confronted with sub-optimal data quality as is 
common in real-world applications (later referred to as 
real-world data). This can be scans of old or degraded 
pages, or for example, smartphone pictures under non-
ideal conditions.

Secondly, deep neural networks are notoriously 
overconfident in their predictions – especially if an input 
lies outside the previously observed training data (Nguyen 
et al., 2015). This has great implications for the practical 
usability of MOR because it forces quality control, which 
is typically performed manually by humans, to check 
every detection with high diligence. This is particularly 
cumbersome for sheet music, where clusters of many 
tightly packed symbols are very common.

We attempt to resolve the issue of creating effective 
MOR systems for real-world musical sheet images by 
casting it as a domain shift problem. In order to bridge 
this domain gap between synthetic and realistic images, 
we propose two approaches: ScoreAug (Section 5.1), 
which creates augmentations for diversity in feature 
distributions during training, and unsupervised domain 
adaptation (UDA) (Section 5.2), whereby training on one 
data distribution enables the model to also perform well 
on different target distributions.

ScoreAug uses real-world, scanned blank pages with 
natural signs of degradation and combines them with 

the synthetic input from our initial dataset. By melding 
these two together, realistic-looking samples can be 
created on-the-fly. The result of that operation is that 
the model generalises more to real-world data, thereby 
bridging the domain shift.

Unsupervised domain adaptation addresses the 
cross-domain mismatch issue by manipulating the 
target domain samples (in our experiments the real-
world images). In our research, we select a domain-
adversarial loss in order to enforce target (real-world 
data) embeddings to be similar or close to the source 
(synthetic data) embeddings in a latent feature 
space. We bridge the gap between domains without 
the need for the generative modelling capabilities of 
adversarial models but with the help of a binary domain 
discriminator.

We address the problem of overconfident predictions 
by using an ensemble method. Good ensembles result 
when the predictions of the ensemble members are both 
accurate and have independent errors (Wen et al., 2020). 
Thus, the prediction confidence can be estimated over 
the predictions of several members and hence be better 
quantified.

We use SnapshotEnsemble (Huang et al., 2017), a 
method that creates ensemble members at no additional 
training cost. At inference time, each ensemble member 
makes a prediction independent of the other members. 
These predictions are fused into an average prediction 
with higher accuracy and more reliable confidence 
ratings and thus facilitate subsequent quality control.

In summary, the contributions of this paper are as 
follows (c.f. Figure 1):

•	 A mor test dataset (Realscores, see Section 4) that 
contains 14 pages of real-world sheet music. The 
annotations for this data were newly created by hand 
and follow the class definitions and data structure of 
DeepscoresV2 (Tuggener et al., 2021);

•	 ScoreAug (see Section 5.1): A sophisticated data 
augmentation scheme and training schedule using 
a combination of synthetic data (DeepscoresV2) and 
perturbations sourced from a diverse array of real-
world documents (imslp), which are combined using 
randomised heuristics;

•	 An adversarial discriminative method for 
implementing unsupervised domain adaptation 
(see Section 5.2) in mor for finding indiscriminate 
representations for the distributions of synthetic 
(DeepscoresV2) and real-world (imslp) features and 
bridging the gap between these domains in a latent 
feature space;

•	 Trustworthy confidence ratings (Section 5.3) for 
symbol level detections based on a prediction fusion 
algorithm that utilises confidence scores of ensemble 
outputs to calculate average predictions and 
confidence ratings.
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The rest of this paper is organised as follows: Section 
2 gives a thorough introduction to making omr more 
robust in practice by surveying related work. In Section 
3 we introduce our baseline model on which all of our 
solutions are built. Section 4 presents the Realscores 
dataset, a newly sourced and annotated small test set 
for real-world mor. In Section 5 we present our proposed 
methods. Section 6 contains descriptions and results 
of all our experiments. Lastly, in Section 7 we draw 
conclusions and discuss possible future work.

2. SURVEY OF RELATED WORK

Music Object Detection Traditionally, omr systems 
consisted of a cascade of components such as staff-
line removal (Fujinaga, 2004; Dalitz et al., 2008), 
symbol segmentation (Bellini et al., 2001) and symbol 
classification (Toyama et al., 2006), which were built using 
classical computer vision methods. With the advent of 
increased computing power and the availability of large-
scale datasets (Hajič Jr and Pecina, 2017; Tuggener et al., 
2021), deep-learning-based approaches (Schmidhuber, 
2015) started to take over. Deep learning methods 

resulted in greatly increased performances in the 
above-mentioned tasks (Gallego and Calvo-Zaragoza, 
2017). More recent work applies convolutional neural 
networks directly to the raw input data, making multi-
step designs obsolete (Pacha et al., 2018a; Hajič Jr et al., 
2018; Tuggener et al., 2018b). There are efforts to solve 
the whole omr problem in one single step, as is state of 
the art in related fields such as text (Chowdhury and Vig, 
2018) or speech (Chiu et al., 2018) recognition. However, 
due to the high complexity of music notation, all existing 
solutions focus on a simplified problem such as mensural 
notation (Pugin, 2006) or monophonic scores, both 
typeset (van der Wel and Ullrich, 2017; Calvo-Zaragoza 
and Rizo, 2018b) and handwritten (Baró et al., 2018).

Input Data Augmentation Input data augmentation 
has a rich history in deep learning. However, it is mostly 
used to improve performance on a single domain. 
Typically, data augmentation consists of scaling, 
translations, and rotations (Ciregan et al., 2012; Sato et 
al., 2015). On larger natural datasets such as ImageNet 
more sophisticated transforms like random cropping, 
image flipping, and colour normalization have become 
commonplace (Krizhevsky et al., 2017). Generative 
adversarial networks have been employed to generate 

Figure 1 Graphical overview of the methods we contribute. ScoreAug (Section 5.1) in the top row, unsupervised domain adaptation 
(Section 5.2) in the center and snapshot-ensemble-based confidence ratings (Section 5.3) at the bottom.
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additional realistic training data (Zhu et al., 2017). 
Recently, automatic search of optimal augmentation 
strategies on a per dataset basis has become the 
standard (Cubuk et al., 2019).

There has already been some effort to address the 
domain gap between existing datasets and real-world 
data using data augmentation in the context of mor. 
Datasets that have been altered to mimic realistic data 
have been created, either by applying a sequence of 
graphics filters (Calvo-Zaragoza and Rizo, 2018a) or by 
printing and scanning the data (Elezi et al., 2018).

To the best of our knowledge, this is the first work to 
present an input augmentation technique, that combines 
algorithmic distortions with real-world perturbations for 
mor.

Domain Adaptation for Object Detection uda is an 
unsupervised learning approach (Simmler et al., 2021) to 
transfer knowledge obtained from a source domain with 
labelled data to a target domain with unlabelled data. 
One of the fundamental approaches in uda was proposed 
by Tzeng et al. (2017), creating a generalised framework 
for adversarial adaptation in image classification.

Recently, uda methods for tasks outside classification, 
such as object detection, have attracted increasing 
attention, which is the primary focus of our omr models. 
Chen et al. (2018) wrote one of the pioneering works on 
this task. The authors observed image and instance level 
shifts and proposed segregated components to alleviate 
the domain discrepancy.

Adversarial approaches for discriminative uda have 
recently reflected strong results in object detection 
(Zhu et al., 2019; Lehner et al., 2022; Li et al., 2022). 
The primary goal of most of the adversarial approaches 
addressed above is adversarial feature alignment 
between the source and target domain.

In the context of mor, Mateiu et al. (2019) employed 
a domain adversarial neural network (Ganin and 
Lempitsky, 2015) to enable the classification of individual 
handwritten symbols in old music manuscripts. 
Castellanos et al. (2021) use uda to improve document 
analysis (splitting of the input in a layered version 
containing different information, e.g. staffs, notes or 
background) on historical music sheets.

To the best of our knowledge, this is the first work to 
employ and systematically evaluate uda techniques for a 
full-fledged mor system.

Confidence Ratings Most state-of-the-art approaches 
to estimate predictive uncertainty rely on ensembles 
(Gustafsson et al., 2020; Wen et al., 2020; von Oswald 
et al., 2021; Wenzel et al., 2020; Durasov et al., 2021; Xia 
et al., 2021; Huang et al., 2017). Bayesian deep learning 
approaches like MC-dropout have interesting properties 
but fail to deliver in practice due to computational or 
technical constraints (Dürr et al., 2020).

Since we train our models for 1000+ epochs and the 
input images are large (i.e. require a lot of memory), we 

focus on approaches known as “economic ensembles”, 
such as HypernetEnsembles (von Oswald et al., 2021) or 
Masksembles (Durasov et al., 2021). For these methods, 
the computational and memory costs do not increase 
linearly with the number of ensemble members and thus 
scale well with large deep learning models.

SnapshotEnsemble was proposed by Huang et al. 
(2017) and tries to achieve the seemingly paradoxical 
goal of producing an ensemble at no additional training 
cost. Their method leverages work on cyclic learning rate 
schedules (Smith, 2017). They lower the learning rate at 
a very fast pace, thus encouraging the model to converge 
quickly to its first local minimum. Then the optimisation 
is continued with a higher learning rate to dislodge the 
model from this local minimum again. This procedure 
is repeated multiple times. At each local minimum, the 
model is saved (i.e. a snapshot is taken). Ensembling 
the snapshots results in consistently lower error rates 
than single models. In this work, we exclusively employ 
SnapshotEnsembles due to their minimal compute 
requirements.

To the best of our knowledge, this is the first work to 
employ uncertainty measures in the context of omr and 
systematically evaluate their merits.

3. BASELINE MODEL

All our experiments are based on the S2A-Net architecture 
(Han et al., 2021), which allows for oriented detections 
unlike earlier methods (Tuggener et al., 2018b; Pacha 
et al., 2018b). The S2A-Net is an anchor-based object 
detector that uses a single-shot alignment network to 
generate accurately oriented object detections. Its novel 
feature alignment and oriented detection modules are 
fed using a ResNet-based backbone (He et al., 2016) and 
feature-pyramid networks (Lin et al., 2017).

We achieve good results on the “oriented mode” of 
DeepscoresV2 (Tuggener et al., 2021) when training S2A-
Nets by scaling the data with a factor of 0.5 and then 
using random crops of 1000 by 1000 pixels. We are able 
to conserve GPU memory whilst keeping high precision 
by just using a singular anchor ratio of 1.0 and a singular 
anchor scale of 4. We train our models with SGD using 
a learning rate of α = 2.5·10–3 and a momentum of 

DeepscoresV2 dataset

Model AP (overlap = 0.50)

Baseline model 89.3%

DWD 50.3%

Faster R-CNN 79.9%

Table 1 The AP at 0.5 overlap for our baseline model and two 
state-of-the-art models (DWD, Faster R-CNN (Tuggener et al., 
2021)) on DeepscoresV2.
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0.9. Table 1 contains the average precision (AP) of our 
baseline model against two state-of-the-art models, 
which illustrates the competitive performance of our 
new S2A-Net based approach. The complete training 
details can be found in the published code.

4 THE REALSCORES DATA

So far, no real-world test data is available to benchmark 
models on. Such data is crucial to observe how well our 
models will perform when facing a domain gap. To create 
a benchmark dataset for real-world omr, we sourced 
digitised music scores from the International Music 
Score Library Project (IMSLP)/Petrucci Music Library.1 Of 
the downloaded music scores, only those with specific 
characteristics were considered for the new test set: the 
sheets had to be scans or photographs of music scores 
and be visibly non-synthetic, meaning that they come 
with scanning artefacts, discolourations, stains, folds, 
be angled, and have other imperfections. Music scores 
that were handwritten, of very bad quality, or using 
non-standard notation were considered out of scope for 
this work. The selected samples had to be annotated by 
hand using ScorePad’s current omr pipeline (Stadelmann 
et al., 2018). The resulting test set consists of 12 music 
sheets with a total of 12553 annotations that we name 
RealScores. The annotations are stored in the same 
format that DeepScoresV2 (Tuggener et al., 2021) 
introduced. Due to its limited size, only 61 of the original 
136 classes are present. Excerpts from two samples with 
their corresponding annotations are visible in Figure 2.

In a second step, we sourced a number of “blank” 
pages from the aforementioned Petrucci Music Library. 
This was possible because many uploaded music 
scores would be sourced from completely scanned 
books, including the front and back covers. Such scans 
sometimes contain blank pages without any written 
music, but all the perturbations that naturally occur on 
sheets of paper. This is a valuable source of real-world 
noise that can be overlayed with synthetic data. We 
manually looked through the sourced data for suitable 
blanks, then converted them into pictures and normalised 
their size to fit with the synthetic data of DeepScoresV2. A 
total of 51 such blank pages were selected – 30 of which 
have a significant portion of the sheet border visible, and 
21 do not. Figure 3 shows six of those pages.

5. METHODS

In this section, we present our proposed methods to 
address domain shift and overconfidence. In Section 
5.1 we propose a powerful data augmentation method, 
in Section 5.2 we present an alternative solution based 
on UDA, and in Section 5.3 we describe our scheme to 
produce confidence ratings.

Figure 2 Example snippets from two RealScores pages with 
ground truth annotations overlayed. Figure 3 Example blank pages.
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5.1 INPUT DATA AUGMENTATION
We propose a sophisticated data augmentation scheme 
to address the domain gap that we call ScoreAug. With 
ScoreAug, input samples first can be blurred, get salt-and-
pepper-like noise, get irregular edges in the border area, 
be rotated by a small angle, or become augmented with 
other irregularities not found in a synthetic dataset like 
DeepScoresV2. Additionally, we go one step beyond these 
algorithmic perturbations and complement them by 
overlaying them on our blank pages from the RealScores 
dataset. Using this combination of augmentation 
techniques, we aim to bring synthetic data close enough 
to the real-world domain to train models that generalise 
to real-world inputs. For a given synthetic input image, 
we select one out of our set of the 51 blank pages. To 
increase variability, the blank page and the synthetic 
data undergo a variety of further augmentations, as 
shown in Table 2.

To ensure alignment with the transformed image data, 
the ground-truth bounding boxes also undergo the same 
transformations. Upon completing these augmentations, 
the foreground and background are merged by preserving 
the darker pixel at each position. This means that darker 
pixels overpower the lighter shades, preserving the 
dark symbols from the augmented synthetic dataset 
(the foreground) and replacing the pixels of its white 
background with the darker pixels from the augmented 
blank pages (the background). This yields optically similar 
results to real-world scanned music scores as seen in 
Figure 4, which can be adapted with hyperparameters 
(Psnp, Paug, Pblur) to adjust to one’s needs.

5.2 UNSUPERVISED ADVERSARIAL DOMAIN 
ADAPTATION
The most common approach to overcome a domain 
shift is supervised domain adaptation, where densely 
annotated images are required in the target domain 

(annotations generally involve instance-level bounding 
boxes for object detection). Such a solution would 
require the collection and annotation of a full-scale 
training dataset consisting of data from the target 
domain. This approach, therefore, would be tedious 
and lack the ability to scale, especially for detecting tiny 
objects in images that are cumbersome to annotate, 
such as notes in sheet music. Unsupervised domain 
adaptation (UDA), on the other hand, reduces the 
expense of annotation by only requiring annotations in 
the source domain.

Adversarial domain adaptation, which strives 
to minimise the domain dependency of an object 
detector via a domain-adversarial loss function utilising 
a discriminator, is a popular approach for UDA. As 
highlighted by Tzeng et al. (2017), adversarial domain 
adaptation is similar to generative adversarial learning, 
where a generator and discriminator are pitted against 
each other. For UDA, this concept is used to train a 
neural network to be unable to differentiate between 
two domains (in our case synthetic and real-world sheet 
music images) and ultimately show similar performance 
on source and target domain samples.

Here, the source domain is the DeepScoresV2 dataset. 
For our target domain data, we source non-annotated 
real-world images from IMSLP. Our system consists of a 
baseline S2A-Net (comprising a backbone network backbonef   
and an object detector detectf   ), a gradient reversal layer 
and a small domain classifier neural network domainf   . The 
network weights are denoted by θ, θ′ and θ″ respectively. 
The system is trained using two independent losses, the 
domain confusion loss Ldomain and the object detection 

 Blanks Scores

Salt and Pepper Noise – Psnp

No Additional Augmentations – Paug

Horizontal Flip 50% –

Vertical Flip 50% –

Crop and Resize 20% –

Randomise Brightness 50% –

Higher Contrast – 20%

Small Angle Rotation 60% 60%

Additional Brightness  –  40%

Gaussian Blur –  Pblur

Table 2 Probabilities of augmentations as part of ScoreAug that 
can be applied to either the blanks, synthetic scores, or both 
at the same time. Note that Paug decides how likely any other 
augmentations (after the salt and pepper noise) will be applied, 
in order to not only feed ScoreAugmented samples to the 
model. Our final model uses Psnp = 0%, Paug = 30%, Pblur = 10%.

Figure 4 ScoreAug examples (top right, bottom row) derived 
from the same synthetic sample (top left).



7Tuggener et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.157

loss Ldetect. The following paragraph gives an overview of 
each component. See Figure 5 for a graphical overview.

The baseline S2A-Net is configured as described in 
Section 3. Here we start with networks that have been 
fully trained on DeepScoresV2 to ensure that the network 
filters are tuned to sheet music. The gradient reversal 
layer (Ganin et al., 2016) can be viewed as a virtual layer 
in the network that is only active on the backward pass 
inverting all gradients passing through it. This causes the 
layers coming after this layer to maximise the training 
loss (in our case backbonef   maximizing Ldomain, causing the 
backbone embeddings to carry as little information about 
the domain as possible). domainf    has the job of classifying 
whether an embedding generated by backbonef   stems from 
a data point of the source domain or the target domain. 
Ldomain is a binary classification target based on the input 
domain, as used in GANs (Goodfellow et al., 2020). 
Finally, Ldetect is the base S2A-Net loss to train the whole 
object detector.

Training the whole system requires the following 
steps: (I) training domainf    based on Ldomain (θ″ is getting 
updated, θ is frozen); (II) use the gradients generated 
by Ldomain and propagate them through domainf   , applying 
the gradient reversal layer and propagating the resulting 
gradients through backbonef   tuning θ to maximise Ldomain; 
and (III) use labelled samples from the source domain 
and do a regular S2A-Net training step (training backbonef   
and detectf    based on Ldetect). Steps (I) and (II) are pitted 
against each other in an adversarial game, with the goal 
of “deleting” information that allows the discriminator to 
differentiate between domains based on the output of 
the backbone, making the system “domain blind”. Step 
(III) is necessary since the backbone changes and the 
object detection head needs to adapt to the embeddings 
accordingly.

Preliminary experiments show that for models without 
pretraining on the DeepScoresV2 dataset the resulting 
uda does not perform at all. We conjecture that as we 
are dealing with unlabelled target domain data, it is 
crucial to learn good representations initially, otherwise 
the embeddings produced by the backbone would be 

too noisy and the domain classifier is unable to learn 
anything.

While implementing adversarial discriminative 
domain adaptation, we methodologically distinguish our 
work from Tzeng et al. (2017) in the following ways:

•	 We do not use separate networks for source and 
target domains for efficient sharing of weights.

•	 We do not fix the weights of our object detection 
module to allow the object detection module to 
adapt to the changes in the backbone.

•	 We do not adopt the asymmetric objective mappings 
of the feature extractor (in our case the output from 
S2A-Net).

5.3 CONFIDENCE RATINGS
A music sheet often contains hundreds of musical 
symbols. Even if omr software works very reliably, 
the probability of some misclassifications is high 
due to the high number of symbols. To identify such 
misclassifications, it is helpful to analyse the prediction 
confidence of the model. However, deep learning 
networks for classification are over-confident because 
their Softmax layer, which assigns decimal probabilities 
to each class, tends to push the probabilities either close 
to 0 or close to 1. Therefore, the model outputs cannot 
directly be used as a useful measure of confidence (Dürr 
et al., 2020).

We mitigate this issue by using SnapshotEnsemble 
(Huang et al., 2017) (i.e. multiple predictions) to quantify 
the predictive uncertainty of our model. This method 
generates several snapshots (i.e. ensemble members) 
during training. During inference, each snapshot 
creates independent predictions of bounding boxes. 
We use the Weighted Box Fusion (WBF) (Solovyev et 
al., 2021) algorithm to fuse the bounding boxes. This 
method constructs the averaged bounding boxes with a 
corresponding confidence score by utilising the position 
and confidence scores of all proposed boxes. This overall 
score can be used as a measurement of the predictive 
uncertainty.

Figure 5 Overview of our UDA system, with data, gradient, and label flow of step (I) shown in orange, of step (II) in green and of step 
(III) in blue.
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6. EXPERIMENTS AND RESULTS

6.1 INPUT DATA AUGMENTATION
Experimental Setup To measure the impact of ScoreAug, 
we trained one baseline model with ScoreAug and 
another without it – each for 2000 epochs. Both models 
were trained on half-resolution, cropped samples to 
allow for larger batch sizes and faster convergence. 
During training, we used a learning rate of α = 2.5·10–3 
throughout and used linear warmup with a ratio of 1

3  
for the first 500 epochs. We observed that the models 
lack global awareness (e.g. predicting noteheads at the 
corner of the page), therefore we trained some models 
an additional 200 epochs on full pages; we denote this 
step as Finalise. During evaluation, we make sure to only 
consider the results of classes that have at least one 
positive prediction per model. We evaluate our models 
using average precision (AP) at an overlap of 25%. We 
use this unusually low overlap threshold due to the 
very small object sizes common in MOR, which cause 
detections that are very usable in practice to often be 
below the 50% mark.

Results Thanks to ScoreAug and Finalise we observe 
an absolute increase in AP of roughly 40% compared 
to models trained for the same number of epochs and 
without using both (see Table 3). We observe that on 
the source Dataset DeepScoresV2 the performance 
slightly degrades from 87.6% to 83.3%. However, this is 
to be expected since we move from a model specifically 
trained on and for synthetic data to one that can handle 
a much wider variety of data.

6.2 UNSUPERVISED ADVERSARIAL DOMAIN 
ADAPDATION
Experimental Setup Pretraining the S2A-Net for uda 
showcased impressive results, allowing us to train for 
relatively few epochs. In our experiments, the pretrained 
checkpoint had been trained for 250 epochs on the 
DeepScoresV2 dataset. We train our uda pipeline for 

30 further epochs. For the domain discriminator, the 
source domain label is set to 1 and the target domain 
label is set to 0. The input feature size is 128, based on 
the output from S2A-Net, and the hidden feature size is 
256. Batch normalisation (Ioffe and Szegedy, 2015) is 
applied to calculate the mean and standard deviation 
per dimension over the mini-batches. We use an Adam 
optimiser (Kingma and Ba, 2021) with an initial learning 
rate of 0.01 and constant epoch-driven decay for both 
targets. We train with a batch size of 4 for both source 
and target data loaders, which is the maximum batch 
size our GPUs allowed while keeping the number of 
samples balanced between domains. In our experiments, 
for a fair comparison, we follow the same configuration 
as the baseline model, in terms of S2A-Net initialisation 
and DeepScoresV2 data loader structures. We limit data 
augmentations on the RealScores data to geometric 
transformations such as scaling by a factor of 0.5 and 
random cropping of 1000 by 1000 pixels, both of which 
are similar to the DeepScoresV2 data loader samples.

Results Table 4 shows the average precisions for uda. 
For the target domain RealScores we observe a gain of 
12.9% from 36.0% to 48.9%. uda results in the largest 
source domain performance loss from 87.6% down 
to 72.4%. This gain is not quite as impressive as for 
ScoreAug, but we believe it shows the merits of this fully 
unsupervised approach for mor. Additionally, the uda 
models have been trained only on low-resolution samples 
to overcome current GPU constraints. It is likely that 
results would improve in the future with higher resolution 
images which have generally aided object detection 
models dealing with tiny objects, such as in mor.

6.3 PRODUCING CONFIDENCE RATINGS
Experimental Setup We train different ensemble 
versions as well as a model not utilising ensembles on 
the DeepScoresV2 dataset. We train each model for 
1000 epochs and with ScoreAug. For the model not 
utilising ensembles, we use a constant learning rate of 
α = 2.5·10–3. For the SnapshotEnsemble models, we start 
with the same learning rate and decrease it over 500 
epochs to 1·10–5 using one single cosine annealing cycle. DeepScoresV2 dataset

Model AP (overlap = 0.25)

Baseline 87.6%

ScoreAug 86.0%

ScoreAug + Finalise 83.3%

RealScores dataset

Model AP (overlap = 0.25)

Baseline 36.0%

ScoreAug 56.5%

ScoreAug + Finalise 73.7%

Table 3 The AP for the baseline model and models with 
ScoreAug and Finalise data augmentation on the DeepScoresV2 
and the RealScores datasets.

DeepScoresV2 dataset

Model AP (overlap = 0.25)

Baseline 87.6%

uda 72.4%

RealScores dataset

Model AP (overlap = 0.25)

Baseline 36.0%

uda 48.9%

Table 4 The AP for the baseline model and a model with uda 
on DeepScoresV2 and the RealScores dataset.
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This rather long cycle is a pretraining of the model before 
the actual ensemble members are generated. To obtain 
the ensembles, we train the model for 500 additional 
epochs with shorter cosine annealing cycles over 10, 20, 
and 30 epochs with learning rates in the range of 1·10–5 
≤ α ≤ 7.5·10–3.

After training, the AP for a given overlap of 0.25 
is calculated on the test set. In addition, the overlap 
between snapshots is calculated by using the output 
from one model as ground truth and the output from 
a second model as the prediction. We build a set of 10 
ensemble members iteratively. We start with an empty 
set of snapshots. First, the snapshot with the highest AP 
is added. Afterwards, we add the snapshot which has 
(i) an overall AP which is max. 5% worse than the AP of 
our best model; and (ii) has the smallest average overlap 
with the models which are already added to our set of 
ensemble members. We repeat this procedure until our 
set of ensemble members contains 10 snapshots.

The final predictions are the fused boxes generated 
by the wbf algorithm. The fusion threshold of WBF was 
set to 0.3, meaning that boxes with the same label and 
an intersection over union (IoU) of ≥ 0.3 are fused into 
one box. Since WBF can be used to quantify predictive 
uncertainty, we use this score to remove predictions with 
a confidence score below 10% on the RealScores dataset. 
We found that this improves the prediction quality and 
reduces false positive rates in particular. In contrast, 
the predictions on the DeepScoresV2 dataset are of high 
quality and no bounding boxes have to be removed 
based on their confidence score.

Results We found that ensembles yield better results 
than a single model. Table 5 shows the AP of the ensemble 
approaches as well as the AP of the model not utilising 
ensembles. It can be observed that ensembles improve 
the AP by up to 5.2 p.p. on the DeepScoresV2 dataset and 
up to 9.1 p.p. on the RealScores dataset compared to the 

model without ensembles. Of the three cosine annealing 
cycle lengths validated, the ensemble with a cycle length 
of 20 worked best on the DeepScoresV2 dataset while the 
ensemble with a cycle length of 30 achieves the highest 
AP on the RealScores dataset. Compared to the results 
reported in Table 3, the ensemble approaches achieved a 
lower AP. Since the model’s prediction accuracy increases 
continuously with more training epochs, we suspect that 
this is due to the fact that the ensembles are trained for 
only 1000 epochs, while the models in Table 3 are trained 
for 2000 epochs. However, it is likely that the ensemble 
would achieve similar or slightly better results, since 
ensembles typically improve results (Dietterich, 2000).

Having a high precision and thus a low false-positive rate 
is particularly important for omr since it is easier for human 
annotators to find and label missing annotations than to 
identify wrong predictions. The confidence ratings can be 
used to reduce the number of false positive predictions 
and to increase the precision. We found that removing 
predictions with a confidence score below 10% increases 
precision from 87.8% to 97.2% on the DeepScoresV2 
dataset, and from 35.7% to 41.9% on the RealScores 
dataset respectively. Thus, retaining only predictions with 
a confidence score larger than a predefined threshold 
allows to increase precision at the expense of recall.

Additionally, we assess the confidence ratings visually. 
Figure 6 shows result excerpts from model outputs with 

DeepScoresV2 dataset

Model AP (overlap = 0.25)

ScoreAug 82.1%

ScoreAug ensemble (10 cycles) 85.6%

ScoreAug ensemble (20 cycles) 87.3%

ScoreAug ensemble (30 cycles) 83.4%

RealScores dataset

Model AP (overlap = 0.25)

ScoreAug 37.9%

ScoreAug ensemble (10 cycles) 44.6%

ScoreAug ensemble (20 cycles) 46.7%

ScoreAug ensemble (30 cycles) 47.0%

Table 5 The AP for the model not utilizing ensembles and 
ensemble models with different cosine annealing cycle lengths 
on the DeepScoresV2 and the RealScores dataset.

Figure 6 Four cropped visualisation samples of predictions 
made by an ensemble. The colour of the bounding box 
indicates the model’s confidence (green means high 
confidence, and red means low confidence). For symbols with 
a confidence score below 30%, we plot not only the coloured 
bounding box but also the assigned label as well as the 
confidence score.
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the predictions coloured according to their confidence 
score. These visualisations can provide useful insights for 
creating annotations. In accordance with the previous 
findings, we observed that analysing the predictions 
with low confidence is particularly helpful as wrong 
predictions usually have low confidence.

As in Section 6.1 (c.f. Table 3), we examine the 
effect of using ScoreAug in combination with Finalise 
(i.e. training on full pages) for the ensemble approach. 
We perform Finalise for 50 epochs on each ensemble 
member obtained. The results with and without Finalise 
are shown in Table 6. The effectiveness of using Finalise 
can be observed particularly clearly on the RealScores 
dataset. When training the ensemble approach for 
1000 epochs with ScoreAug but without Finalise, we 
achieve an AP of 46.7%. If ScoreAug is combined 
with 50 additional Finalise epochs per ensemble 
member, the AP further improves to 63.6%. Finalise 
thus improves the results not only for single models 
but also for ensembles. On the source dataset, this 
once again leads to a small loss in performance from 
87.3% to 81.5%. However, Finalise in combination with 
SnapshotEnsembles has the disadvantage that after 
creating the ensemble members, each member must 
be fine-tuned separately. This increases the duration of 
the fine-tuning linearly with the number of ensemble 
members.

A combination of uda with ScoreAug and snapshot 
ensembles is currently not indicated by the individual 
results: performance on RealScores exceeds 73% using 
ScoreAug + Finalise (see Table 3) and reaches beyond 
63% when adding confidence ratings via ensembling 
(see Table 6), but only achieves ca. 49% using uda (over a 
baseline of 36%, see Table 4). We do not expect a strong 
performance boost from a combination, especially since 
integration is technically uncertain due to the fact that 
uda relies on fully pretrained networks and the fragile 
interplay between steps (I) to (III) that require specific 
learning rates (see Section 5.2).

7. CONCLUSIONS AND FUTURE WORK

We presented multiple successful avenues towards 
improving the practical usability of omr systems. 
Together, they improve the speed of professional-
grade music digitisation on medium-quality scores 
by more than a factor of 3 over a strong baseline 
(Tuggener et al., 2018b) for high-quality scores. 
Specifically, 11 minutes per page using the baseline 
could be reduced to 3.5 minutes on average within the 
digitisation pipeline of ScorePad AG, which consists 
of our MOR solution mated to a proprietary backend 
that combines all the information and features a 
human-in-the-loop correction step. A fully manual 
transcription by professional musicians would take ca. 
40 minutes.

To bridge the domain gap between synthetic datasets 
and real-world data, algorithmic input augmentation 
paired with noise sourced from aged real-world 
documents proved especially fruitful, increasing average 
detection precision by nearly 50% on the RealScores 
data. In conjunction with Finalise, the model performed 
twice as well as the model trained on synthetic data 
only.

Unsupervised adversarial domain adaptation showed 
some promise, outperforming the baseline by 36%. We 
believe this could be further improved by a uda method 
working at very high resolution, to prevent the destruction 
of fine-grained information in the small patterns of 
music notation. Both domain adaptation methods had 
a marginally adverse effect on the performance of the 
model on synthetic data. In a practical setting, this can 
be alleviated by employing a data quality classifier and 
using multiple expert models for high and low-quality 
data

Using ensembles in combination with weighted box 
fusion has improved the AP by up to 9.1pp. Besides the 
better results, ensembles allow us to calculate reliable 
confidence ratings. These confidence ratings can be used 
to identify misclassifications, and thus to simplify the 
manual post-processing of the predictions.

The current models cannot deal with hand-written 
music scores, which could be addressed in the future. 
Another drawback is the heavy reliance on exact 
interline scaling: we observed a steep performance 
drop-off when the interline space is outside of the 8 to 
12 pixel range. SnapshotEnsembles create ensembles 
without additional training costs by storing snapshots 
during a single training cycle. The resulting snapshots 
are fine-tuned separately by using Finalise to achieve 
better performance on real-world data. Training would 
be more efficient if Finalise could be incorporated 
into the ensemble-generating training cycle and 
does not have to be done for each ensemble member 
separately.

DeepScoresV2 dataset

Ensemble (cycle length = 20) AP (overlap = 0.25)

ScoreAug 87.3%

ScoreAug & Finalise 81.5%

RealScores dataset

Ensemble (cycle length = 20) AP (overlap = 0.25)

ScoreAug 46.7%

ScoreAug & Finalise 63.6%

Table 6 The AP for the ensemble trained with a cosine 
annealing cycle length of 20. The model is trained once with 
ScoreAug only and once with ScoreAug in combination with 50 
subsequent Finalise cycles.
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NOTE
1	 Petrucci Music Library (imslp): https://imslp.org/wiki/Main_Page.
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