
RESEARCH

Multi-Objective 
Investigation of Six Feature 
Source Types for Multi-
Modal Music Classification

IGOR VATOLKIN 

CORY MCKAY 

*Author affiliations can be found in the back matter of this article

CORRESPONDING AUTHOR:
Igor Vatolkin

TU Dortmund University, 
Department of Computer 
Science, Germany

igor.vatolkin@udo.edu

KEYWORDS:
Multi-modal data; multi-
objective feature selection; 
supervised music classification

TO CITE THIS ARTICLE:
Vatolkin, I., & McKay, C. (2022). 
Multi-Objective Investigation 
of Six Feature Source Types 
for Multi-Modal Music 
Classification. Transactions of 
the International Society for 
Music Information Retrieval, 
5(1), pp. 1–19. DOI: https://doi.
org/10.5334/tismir.67

ABSTRACT
Every type of musical data (audio, symbolic, lyrics, etc.) has its limitations, and cannot 
always capture all relevant properties of a particular musical category. In contrast to 
more typical MIR setups where supervised classification models are trained on only one 
or two types of data, we propose a more diversified approach to music classification 
and analysis based on six modalities: audio signals, semantic tags inferred from the 
audio, symbolic MIDI representations, album cover images, playlist co-occurrences, 
and lyric texts. Some of the descriptors we extract from these data are low-level, 
while others encapsulate interpretable semantic knowledge that describes melodic, 
rhythmic, instrumental, and other properties of music. With the intent of measuring 
the individual impact of different feature groups on different categories, we propose 
two evaluation criteria based on “non-dominated hypervolumes”: multi-group feature 
“importance” and “redundancy”. Both of these are calculated after the application of a 
multi-objective feature selection strategy using evolutionary algorithms, with a novel 
approach to optimizing trade-offs between both “pure” and “mixed” feature subsets. 
These techniques permit an exploration of how different modalities and feature types 
contribute to class discrimination. We use genre classification as a sample research 
domain to which these techniques can be applied, and present exploratory experiments 
on two disjoint datasets of different sizes, involving three genre ontologies of varied 
class similarity. Our results highlight the potential of combining features extracted from 
different modalities, and can provide insight on the relative significance of different 
modalities and features in different contexts.
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1. INTRODUCTION

Musical information can manifest in a variety of different 
modalities,1 each of which can be of greater or lesser 
interest to different types of domain experts, and with 
respect to different purposes. For example, a musician 
specializing in orally transmitted (as opposed to written) 
musics will likely be particularly interested in audio 
representations, while a musicologist specializing in 
Western Renaissance music will more probably focus on 
symbolic representations, and textual representations 
of vocal content could be important to both. A historian 
or sociologist, on the other hand, might be particularly 
interested in images of illuminations on ancient 
manuscripts, or in publicity videos used in contemporary 
popular music.

Some modalities encapsulate information that 
cannot be found in certain other modalities, and some 
overlap at least partially in what they can reveal. Even in 
the latter case, certain kinds of information can be more 
easily extracted from certain modalities than others, 
such as the segmentation of individual melodies found 
in polyphonic music represented in symbolic compared 
to audio formats. This suggests significant potential 
gains in combining different modalities in a variety of MIR 
research areas.

It would therefore be useful to have a framework 
for quantitatively exploring the relative extent to which 
various modalities, and the feature types that can be 
extracted from them, are meaningful to given musical 
research problems. Making progress towards developing 
a general framework of this kind is the core goal of 
this article. Unfortunately, testing and deploying such 
a framework is currently quite difficult, given that, as 
discussed below, there are very few existing datasets 
combining reliably matched sources belonging to more 
than a few different modalities and, furthermore, very 
little work is available in the MIR literature discussing 
methodologies for meaningfully comparing the relative 
significance of different musical modalities in general 
terms.

This article seeks to contribute to the ultimate long-
term development of this kind of framework as follows: 
1) presenting novel non-dominated hypervolume-based 
approaches for measuring feature importance and 
redundancy; 2) assembling two combined datasets, 
each involving six modalities; and 3) using these to 
explore the potential of multi-modal MIR research and 
highlight the need for improved multi-modal datasets. 
Automatic music classification provides a good domain 
for performing such explorations, as there is MIR interest 
in it, and a range of different types of musical information 
are available. We focus in particular on exploring the 
ability of our novel methodologies to reveal statistical 
patterns associated with modalities and feature types, 
some of which may have musicological or psychoacoustic 

salience, and some not, some of which may be of use 
in improving automatic classification performance, and 
some not; either way, it is our hope that such patterns can 
provide directed motivation for further multidisciplinary 
investigations. Features extracted from diverse types of 
data may both improve classifier performance and reveal 
insights on the music itself.

Supervised genre recognition in particular is chosen as 
the sample subject of our experiments, as it has been a 
long-standing area of MIR interest. Multi-modal research 
is also of particular relevance to genre, since it allows 
researchers to explore intersections between different 
dimensions of the musical experience, both directly 
musical (e.g., symbolic music features) and not (e.g., album 
art features). It is important to acknowledge, however, 
that genre classification is a complex, problematic area. 
Genre labels can be fuzzily defined, and the practice of 
limiting pieces to single labels can be problematic (McKay 
and Fujinaga, 2006). Furthermore, genre can be difficult 
to isolate unambiguously in classification experiments 
from confounding characteristics (Sturm, 2013a), which 
has implications for the meaningfulness of measures 
like classification accuracy. Sturm further notes that 
the errors machine classifiers make are identifiably 
different from misclassifications a human would make, 
and presents this as an indication that they are failing 
to properly model genre. We are certainly not claiming 
in this paper to solve such deep issues with genre; our 
goal is simply to use genre classification as an interesting 
MIR domain to illustrate the multi-modal optimization 
techniques we propose.

In our study, we combined six different source types 
in each of two multi-modal datasets we assembled. 
To compare the influences of these six sources, we 
introduced a multi-objective approach to selecting 
features extracted from them: our first function seeks to 
minimize balanced classification error, and the second 
attempts to maximize (or minimize) the proportion of 
features selected from particular feature groups.

This methodology allows us not only to compare 
source types by identifying high-performing “pure” 
features subsets for each of the six data types (i.e. with 
no features from any of the other data types), but also 
to observe the extent to which classification error can be 
reduced further when features from other source types 
are also allowed. We also experimented with minimizing 
both the classification error and the proportion of 
features from each individual group, so as to explore 
whether good classification performance can be achieved 
without features of the group. We propose normalized 
multi-group feature importance and normalized multi-
group feature redundancy as two formal measures for 
comparing and analyzing information extracted from 
different modalities (e.g., audio vs. lyrics), as well as from 
feature sub-groups extracted from individual modalities 
(e.g., timbre vs. pitch).
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The novel non-dominated hypervolume approach 
and two associated new general measures (importance 
and redundancy) for exploring the relative significance 
of and interactions between different feature groups in 
arbitrary problem domains are key original contributions 
of this work, as are the two datasets we expanded 
to each now consist of six modalities (more than any 
existing MIR dataset, and substantially more than 
almost all). The results and analyses of the exploratory 
experiments we performed using these measures and 
datasets to examine the potential of comparative multi-
modal research are also novel contributions, and they 
demonstrate the important need for more diverse shared 
multi-modal datasets.

This paper is structured as follows: Section 2 identifies 
related work on multi-modal music classification and 
feature selection. Section 3 describes the multi-objective 
feature selection and binary classification methodologies 
we employed, and Section 4 focuses on the measures we 
devised to derive meaning from our experiments. Section 
5 provides an overview of the datasets, modalities, 
features, and partitioning methodology used in our 
study. Experimental results are discussed in Section 6, 
and concluding remarks are presented in Section 7.

2. RELATED WORK
2.1 MULTI-MODAL MUSIC CLASSIFICATION
A common MIR classification approach is to start with 
the audio signal and extract hand-crafted features 
from it, as proposed by Tzanetakis and Cook (2002),2 or, 
more recently, to let neural networks model the audio 
descriptors themselves (Costa et al., 2017; Sigtia and 
Dixon, 2014). Other studies have used features extracted 
from symbolic representations (Dannenberg et al., 
1997), lyrics (Logan et al., 2004), or tags (Lamere, 2008). 
Each musical data source type has its advantages and 
limitations. Audio features can be extracted from a track 
independently of its popularity. User tags, however, may 
be noisy for less popular or new music, due to the “cold 
start” problem (Celma, 2010). It is still hard to reliably 
extract interpretable semantic information like chord 
progressions from polyphonic audio signals. While high-
level features can be reliably extracted from symbolic 
data, such representations often exclude properties 
describing individual performance interpretations or 
studio processing. Furthermore, neither audio nor 
symbolic data specify cultural information explicitly, such 
as a piece’s country of origin or language; mining lyrics 
and cultural data can reveal important properties.

For these and other reasons, many publications on 
music classification have combined features of different 
types. However, in much of the literature these features 
reflect semantic properties based on music theory or 
auditory perception that are all extracted from the same 
type of musical data. For instance, Tzanetakis and Cook 

(2002) distinguish between features associated with 
timbral texture, rhythm, and pitch, and Saari et al. (2011) 
consider features based on dynamics, rhythm, pitch, 
harmony, timbre, and structure. In both cases, however, 
the audio signal served as the only source type.

Other studies have been conducted on features 
extracted from two different source types, especially 
audio and lyrics, with varying outcomes. Dhanaraj and 
Logan (2005) reported that the combination of these 
sources did not improve hit song prediction, and Zangerle 
et al. (2018) found that audio features alone were better 
at playlist prediction than the two combined. Other 
studies, however, showed improvements in classification 
performance for both genre (Neumayer and Rauber, 
2007; Mayer and Rauber, 2010) and mood (Laurier et al., 
2008; Hu et al., 2017) when features from both source 
types were combined. Combining audio and symbolic 
features also improved genre classification (Cataltepe 
et al., 2007), as did combining audio features with visual 
descriptors from music videos (Schindler, 2019). Grouping 
audio and tag features improved mood classification 
(Bischoff et al., 2009). Audio and image features have 
also been combined for mood prediction (Dunker et al., 
2008).

Far fewer publications have combined three or more 
feature sources. McKay and Fujinaga (2008) and McKay 
et al. (2010) observed a common, but not universal, 
improvement in genre classification performance when 
features extracted from audio, symbolic, cultural, and 
lyric data were combined. The combination of audio, 
symbolic, and lyric features improved emotion detection 
(Panda et al., 2013). A more recent approach improved 
genre classification by learning features from audio, 
text, and images using deep neural networks (Oramas et 
al., 2017; 2018). McFee and Lanckriet (2012) generated 
playlists by combining audio, lyrics, social tags, 
collaborative filtering, and additional metadata.

Other works broadly discuss the incorporation of 
various modalities to music classification and provide 
overviews of related studies (Mayer and Rauber, 2010; 
Jannach et al., 2017). Knees and Schedl (2013) present 
an overview of contextual modalities beyond audio 
and the score, distinguishing between text retrieval, co-
occurrences, and user ratings. Simonetta et al. (2019) 
provide a partial survey and discussion of multi-modal 
MIR research.

General concern about evaluation of music 
classification is an important theme in MIR, and Sturm 
has been particularly influential in this area (Sturm, 
2012a; b; 2013a; b). Not only is it important to employ 
meaningful measures and considerations of statistical 
significance, one should also consider essential issues 
with ground truth and underlying ontological complexity, 
as well as unique elements of each problem domain. 
As emphasized by Sturm (2012a), experiments should 
ideally go beyond focusing on simple classification 
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measures to also considering aspects like generalizability 
to diverse datasets or robustness to data transformations 
that would not alter human classifications.

There are a few important publicly accessible multi-
modal datasets, but much work remains to be done. 
Copyright restrictions pose a problem, especially but 
not only with respect to audio, which is typically only 
available as short previews accessible via third-party APIs 
or as pre-extracted features. Orio et al. (2011) introduced 
a benchmark with audio features, user tags, web pages, 
and expert labels. The MuMu dataset (Oramas et al., 
2017) compiles audio, review texts, and album cover 
images. DALI (Meseguer-Brocal et al., 2018) contains 
audio files, lyrics, and vocal note annotations. Bogdanov 
et al. (2019) presented the AcousticBrainz dataset, which 
contains low-level audio features together with high-
level descriptors (moods, vocals, etc.) generated by pre-
trained classifiers.

2.2 MUSICAL FEATURE SELECTION
The number of features involved increases as modalities 
are added, some of which may be irrelevant or redundant. 
Feature selection (FS) can remove unnecessary 
descriptors and achieve better classification performance, 
while also reducing computation and storage demands. 
Ideally, one desires FS methods that consider feature 
combinations (not just features individually), or that can 
identify especially relevant or interpretable properties of 
categories.

Guyon et al. (2006) provide a general overview of 
feature selection, and Fujinaga (1998) published early 
work applying FS to music classification, where a genetic 
algorithm was used to estimate weights for a k-nearest 
neighbor instrument identifier. A later contribution 
emphasized the requirement of using an independent 
test set to avoid FS overfitting (Fiebrink and Fujinaga, 
2006).

Doraisamy et al. (2008) compared 7 feature selection 
methods in combination with 18 classifiers, and found 
that classification could be improved in traditional Malay 
music genre recognition involving a relatively small 
dataset of 191 pieces. However, the general success 
of FS is not always evident. For example, Huang et al. 
(2014) reported genre classification accuracy increases 
with all tested FS approaches, but for a larger Latin genre 
dataset with more than 3,000 pieces Silla Jr. et al. (2009) 
observed that the success of FS was dependent on the 
choice of classification method, and in some cases 
accuracy did not increase. Two other studies on mood 
recognition (Saari et al., 2011) and genre recognition (Lim 
et al., 2012) found an increase in performance after FS, 
and estimated curves modeling the impact of increasing 
feature set size: after an initial strong growth in accuracy 
involving small numbers of high-performing features, the 
accuracy then stagnated or decreased for larger feature 
sets.

Mayer et al. (2010) applied FS to features extracted 
from both audio and MIDI files within a Cartesian 
ensemble of classifiers, and the number of feature 
dimensions was reduced to less than 4% of the original, 
while maintaining good performance for two of four 
datasets. Panda et al. (2013) identified relevant mood 
recognition features from audio, scores, and lyrics by 
applying a Relief algorithm for feature weight estimation.

Multi-objective feature selection (MOFS) is another 
promising direction, as several important and less 
correlated evaluation criteria may be in conflict (precision, 
recall, computing costs, robustness, interpretability, 
etc.). Vatolkin et al. (2011) were the first to apply MOFS 
to supervised music classification, by minimizing the 
classification error and number of features for genre and 
style recognition by means of an evolutionary algorithm. 
This setup was later extended to the optimization of 
all pairs between seven different evaluation criteria 
(Vatolkin, 2015) and the measurement of “album effect” 
(modelling albums rather than genres) (Vatolkin et al., 
2015).

Our broader literature survey indicates that the 
substantial majority of MIR FS focuses on applying FS to 
audio data only, and optimizes feature sets with respect 
to only one measure. In Section 4, we propose two novel 
optimization scenarios for MOFS, which are designed 
to measure the classification impact of features, and 
compare different modalities or feature subgroups.

3. FEATURE SELECTION METHODOLOGY
3.1 MULTI-OBJECTIVE EVOLUTIONARY 
ALGORITHM
An important step in FS is the evaluation of feature 
subsets. A single validation measure like classification 
error or F-score is typically calculated, but in practice 
several potentially conflicting measures can be relevant. 
Multi-objective feature selection is formally defined by 
Vatolkin et al. (2015) as the search for an optimal feature 
vector q*:

	

 
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1argmin[ , ( , ), ( , ) ,...,

, ( , ), ( , ) ],
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where x is the original complete feature vector; q is a 
binary vector containing an entry for every feature in x, 
indicating which features are and are not selected; Φ(x,q) 
is a given set of selected features; yL is a vector indicating 
ground truth class labels; yP is the vector of class labels 
predicted using a given Φ(x,q), and m1,...,mO are the 
objective functions to minimize.3

This study focuses on investigating the relative 
classification impact of feature subsets drawn from 
different types of data. Although single-objective FS 
could be used to just minimize classification error for 
subsets drawn from each group independently, we are 
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also interested in the potential effects of combining 
features drawn from different groups to ultimately 
improve performance. This can be addressed via the 
simultaneous optimization of two criteria, repeated 
separately for each of the six feature type groups. 
First, we aim to minimize the balanced relative binary 
classification error me (mean of the relative error on pieces 
belonging to and not belonging to a given class). Second, 
we aim to maximize4 the proportion gk of the features 
from the source type k currently being considered, k ∈ 
{1,...,6}. In other words, we try to simultaneously keep 
a given feature set as “pure” as possible (i.e. excluding 
as many features from the other five groups as we can), 
while at the same time keeping the classification error 
as small as possible. As explained in Section 4 with 
respect to feature group “importance,” this optimization 
strategy provides a framework for comparing the relative 
classification efficacy of feature types (each potentially 
extracted from a different source type) not only in terms 
of how effective each feature type is in isolation, but also 
in terms of the extent to which the addition of feature 
types drawn from additional modalities might improve 
classification performance, among other things. To our 
best knowledge, this approach has not previously been 
applied to multi-modal music classification or feature 
evaluation.

Feature selection is an NP-hard optimization task 
(Amaldi and Kann, 1998), and resolving competing 
solutions in multi-objective selection can be harder still 
(e.g., a pure feature set with larger error vs. a mixed set 
with smaller error). Evolutionary algorithms (Zitzler, 2012) 
are a good choice for this task, particularly for larger 
feature sets (Kudo and Sklansky, 2000). The stochastic 
aspect of the evolutionary process helps to overcome 
local optima, and a population of diverse co-existing 
solutions permits complex explorations of trade-offs 
between the objectives. Also, many other FS methods 
rank features individually, thereby under-emphasizing 
situations where several individually irrelevant or 
correlated features become relevant in combination 
(Weihs et al., 2017, pp. 391–392).

This study uses a variant of the multi-objective 
evolutionary algorithm described by Vatolkin et al. 
(2015), which sought to minimize both classification 
error and the number of selected features, with a few 
adjustments necessitated by the different goals here. 
We used the results of preliminary experiments to 
adjust hyperparameters to start with more varied initial 
solutions. The initial feature rate hyperparameter I

FR, 
which controls the expected proportion of selected 
features before evolution begins, was set to 0.5. For each 
of the p = 50 initial feature sets, there is a 10% chance of 
selecting only “pure” features from the current feature 
type group, a 10% chance of selecting only “other” 
features, and an 80% chance of selecting a mix of the 
two. In the first and second cases, each feature has a 

50% chance of being selected (because IFR = 0.5). In the 
third case, we use another random hyperparameter D 
∈ [0,1] to create different proportions of features in the 
initial feature subset. Later, during each evolutionary 
iteration, we generate new feature sets from randomly 
selected parent solutions with mutation, which randomly 
switches some features on and off. The probability of a 
bit flip for each feature is set to γ/N, where N is the overall 
number of features and the mutation strength γ = 64 
(based on initial experiments).

3.2 FITNESS FUNCTION AND CLASSIFICATION
Feature sets are evaluated by a fitness function 
that considers both me and gk, based on individual 
hypervolume contributions, as explained in Section 4. 
The most fit μ solutions are selected from the parent and 
offspring populations, and are carried over to comprise 
the next generation. The number of generations was 
set to 2500, as a good compromise between runtime 
demands and convergence behavior.

Binary classification5 experiments were performed for 
each genre using random forests (Breiman, 2001), as 
implemented by the WEKA library (Witten et al., 2016). 
Fortunately, random forests are robust to overfitting, an 
important concern given our large number of features 
and relatively small datasets (Reunanen (2003) and 
Fiebrink and Fujinaga (2006) provide good discussions 
of overfitting in FS). As observed by Hastie et al. (2009, 
p.596): “when the number of relevant variables increases, 
the performance of random forests is surprisingly robust 
to an increase in the number of noise variables.” We 
used random forest decision tree ensembles (100 trees 
per forest) set up so that each tree only considered 
log2|Φ(x,q)| + 1 randomly selected activated features 
in a given feature set. So, even if an individual feature is 
disproportionately effective due to bias in a small training 
set, the danger of that feature significantly impacting the 
overall classification model is reduced. As more multi-
modal data become available in the future, it will permit 
experimentation with alternative classifier types, such as 
deep neural networks.

3.3 CONTEXT
It should be emphasized at this point that the purpose of 
the methodology described above is not to demonstrate 
how one might find optimal or near-optimal feature sets 
for specific applied classification problems. This is why 
results are not compared to alternate dimensionality 
reduction methodologies, such as forward-backward 
selection or factor analysis. Rather, the goal here is to 
investigate the extent to which information drawn from 
different types of musical data or feature types can be 
usefully combined.

The optimization scenarios designed and implemented 
in this article (see Section 4 for details) are largely aligned 
with the “Classify” and “Features” approaches identified 
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in Sturm’s experimental design ontology (Sturm, 2012a 
p.4). Additional approaches from this ontology could be 
usefully implemented as MOFS evaluation measures in 
future research; for example, the ability to generalize to 
diverse datasets could be maximized (“Generalize”), as 
could robustness to data tranformations (“Robust”).

4. FEATURE TYPE EVALUATION 
METHODOLOGY
4.1 HYPERVOLUME-BASED COMPARISON OF 
FEATURE GROUPS
A feature set q1 can be said to dominate feature set q2 (q1 
≺ q2) when it is not worse w.r.t. all O evaluation measures, 
and is better for at least one measure:6

	
 
 

1 2

1 2

1,..., : ( ) ( ) and 

1,..., : ( ) ( ).
i i

j j

i O m m

j O m m

  
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q q

q q
� (2)

The ϕ best compromise feature sets q1,⋯,qϕ, which are 
not dominated by any other feature sets, comprise the 
non-dominated front, and are characterized by their 
dominated hypervolume (Weihs et al., 2017, p. 278):
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where r ∈ ℝO is a reference point corresponding to a 
worst possible feature set and Λd is the volume of a set 
in ℝO. Put simply, the hypervolume contains all possible 
feature sets that are dominated by feature sets in the 
non-dominated front.

Given a theoretical ideal feature set qID with the best 
individual values of m1,...,mO from all non-dominated 
feature sets, we define h as:

	   1(; , , ; .)IDh H H  q r q q r � (4)

The meaning of h is represented by the shaded areas in 
Figures 1 and 3, each of which correspond to different mi 
optimization approaches, as explained below.

4.2 MULTI-GROUP IMPORTANCE AND 
REDUNDANCY
Recall from Section 3 the strategy of minimizing me and 
maximizing gk, for the purpose of obtaining feature sets 
that reduce classification error while at the same time 
keeping the feature group as “pure” as possible. Here the 
reference point r has me = 1 and gk = 0. An example of the 
results of applying this optimization strategy is shown in 
Figure 1. It can be seen from this figure that album cover 
features (the upper sub-figure) perform much worse than 
model-based features (the lower sub-figure) with respect 
to Rock music. First, the minimum em for a pure album 
cover feature subset is only 0.37, compared to 0.03 for 
a pure model-based subset (pure feature subsets, where 
gk = 1, are at the upper right). Second, a larger proportion 

of “other” features is required to achieve the very best 
me in this optimization scenario: me = 0 is achieved with 
a feature set for which 38% (100%–62%) of features do 
not belong to the album cover group,7 compared to 6% 
(100%–94%) for the model-based features.

So, a smaller h value (as represented by the shaded 
area in Figure 1) resulting from this optimization strategy 
suggests that the feature type in question is better 
at identifying the given class. We can say that such a 
feature type is more “important” by defining its multi-
group importance ih as:

	 .)1 ,( e khi h m g    � (5)

h(me ↓, gk ↑) refers to h after minimization of me and 
maximization of gk.

It is important not to confuse this notion of multi-
group “importance” with the concept of feature 
“relevance” during feature selection; as noted by Kohavi 
and John (1997), a feature is “relevant” only if its removal 
decreases classification performance. Since the focus of 
this work is on developing methodologies for measuring 
the relative significance of different types of data and 
features to various classes, and not just on optimizing 
classification performance, this notion of “importance” is 
better suited to our needs.

A best-possible importance of ih = 1 is achieved 
when h = 0 and extending the pure feature group with 

Figure 1: Examples of non-dominated feature sets (connected 
circles) after feature selection in an experiment on Rock 
music (see Section 5) using two criteria: the first is binary 
classification error me, which is minimized, and the second is 
the proportion gk of the features from the k-th group, which is 
maximized. The share of album cover features is maximized 
in the upper sub-figure, and the share of model-predicted 
semantic tags is maximized in the lower sub-figure.
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other features does not reduce classification error, 
e.g., Figure 2(a). This will happen in practice if a feature 
group encapsulates all accessible relevant information. 
However, the opposite case, where ih = 0.0 and h = 1.0, is 
very unlikely to occur in practice, as are other cases with 
very low ih. To illustrate this, consider the example shown 
in Figure 2(b), with a very low importance of ih = 0.0615 
and me = 1 for the pure feature set; for this to happen, 
the binary classifier would have to misclassify every track 
using the pure feature group, despite having a 0.5 chance 
of correctly classifying an instance simply by guessing. 
me would also need to decrease substantially when 
other features types are added. An example of a more 
realistic worst case, what we call a “completely non-
important” feature group, is shown in Figure 2(c): here the 
pure feature group effectively consists of random noise, 
since me = 0.5 for it, and me decreases linearly as other 
features are added, with me = 0.0 when the pure group 
is excluded entirely. This more realistic worst case (for a 
binary classifier) leads to lim 0.25h


  and lim 0.75hi

  
(recall that ϕ is the number of non-dominated solutions). 
So, since we expect no values of ih below 0.75, we can 
normalize ih between 0.75 and 1, setting any values 
below 0.75 (i.e. worse than random) to 0; this results in 
the normalized multi-group importance:

	
0.75

,0 .
0.25

h
h

i
I max

   
 

� (6)

An interesting alternative approach is to minimize both 
me and gk: this allows one to investigate the extent 
to which it is possible to achieve high classification 
performance without the feature group in question. 
Figure 3 demonstrates an example of this approach, with 
respect to Traditional Blues music. The upper sub-figure 
shows that the best me = 0.32 achieved without symbolic 
features can be reduced to me = 0.14 when the feature 
set consists of 2.31% symbolic features. The bottom sub-
figure shows that the impact of model-based features 
is less, since me is only reduced from 0.13 to 0.09 by 
allowing them.

So, under this optimization strategy a lower h-value 
suggests that a feature group is more redundant, 
since allowing its features has a reduced impact on 

classification performance. We can thus define a feature 
group’s multi-group redundancy rh as:

	 .)1 ,( e khr h m g    � (7)

h(me ↓, gk ↓) refers to h after minimization of both me and 
gk. Just as ih can be normalized to Ih, rh can be scaled to 
the normalized multi-group redundancy:

	
0.75

,0 .
0.25

h
h

r
R max

   
 

� (8)

Different goals are involved in identifying feature groups 
with high Ih or low Rh values. Multi-group importance 
helps identify features whose classification performance 
cannot be significantly improved by adding features 
from other groups. For example, if a music class is 
characterized by distorted guitars or other spectrally noisy 
instruments, but all other classes under consideration 
involve only spectrally clean harmonic instruments, then 

Figure 2: Theoretically possible non-dominated fronts for the minimization of me and maximization of gk.

Figure 3: Binary classification performance of symbolic (top) 
and model-based (bottom) features on Traditional Blues music 
(see Section 5), based on minimization of both me and gk.
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both features based on instrumentation and features 
based on spectral properties of the audio signal will be 
“important” (and potentially musically meaningful) in 
describing this class. Multi-group redundancy, on the 
other hand, helps identify feature groups that can be 
omitted in order to create more robust and efficient 
classification models that use as few features as possible. 
In the aforementioned example, a model that classifies 
tracks based only on instrumentation or based only on 
spectral properties might be entirely sufficient.

5 DATASETS AND MODAL FEATURE 
GROUPS

Now that we have introduced our feature selection 
methodology and optimization strategies for comparing 
different feature types in general terms, we can turn 
our attention to the particular datasets, modalities, and 
features we used to conduct our experiments, as well 
as our data partitioning approach. As an overview, we 
combined six different source types to create one dataset 
consisting of 2,803 features extracted from 1,575 pieces 
selected from a modified version of the LMD-aligned 
dataset (Raffel, 2016), and 2,671 features extracted 
from the 250 pieces in the SLAC dataset (McKay et al., 
2010).8

5.1 DATA USED
LMD-aligned (Raffel, 2016) is a part of the Lakh dataset, 
which contains 31,034 MIDI files aligned to publicly 
available 30-second 7digital previews9 associated 
with the Million Song Dataset (MSD) (Bertin-Mahieux 
et al., 2011). The number of matching tracks declines 
significantly when modalities are expanded, however. 
First, only 12,827 tracks have lyrics with a musiXmatch 
ID and copyright permission.10 Then, after eliminating 
tracks without tagtraum genre annotations (Schreiber, 
2015) and without album covers available on either of 
the two APIs we accessed (see Section 5.5), only 4,579 
tracks remained. 26 MIDI files and 20 audio previews 
then had to be removed because of errors. The result 
was unbalanced, with Rock (2282 tracks) and Pop (1828) 
dominating, and genres like Punk (26) or Reggae (38) 
underrepresented. We therefore removed all but the five 
genres with at least 300 tracks: Rock, Pop, Country (415), 
Electronic (323), and RnB (316). Balanced experimental 
partitioning required further reduction of the data, 
leading to the final number of 1,575 tracks (3 partitions 
of 525 tracks equally distributed across 5 genres, see 
Table 3 in Section 5.8). These data also have limitations 
with respect to the features that can be be extracted 
from them: the musiXmatch data have incomplete lyrics 
for certain tracks and, since the audio clips are only 30s, 
some long-framed audio features had a diminished force 

of expression, like the number of segment changes. 
Finally, the ground truth user-submitted genre labels are 
noisily and inconsistently annotated.

SLAC (McKay et al., 2010) consists of 250 pieces of 
music, and includes separately acquired MP3 files, MIDI 
files, lyrics, and cultural data11 for each piece.12 It is 
divided into five broad genres (Blues, Classical, Jazz, Rap, 
and Rock), which can be expanded into five pairs of more 
closely-related sub-genres: Modern Blues (BluesMod), 
Traditional Blues (BluesTra), Baroque (ClassBar), 
Romantic (ClassRom), Bop (JazzBop), Swing (JazzSwi), 
Hardcore Rap (RapHar), Pop Rap (RapPop), Alternative 
Rock (RockAlt), and Metal (RockMet). This arrangement 
permits experiments examining performance on both 
broad and more similar genres. Although SLAC is relatively 
small, it has the advantage of allowing audio, symbolic, 
and other features to be extracted independently (the 
MP3, MIDI, lyric, and cultural data were each acquired 
independently). Furthermore, its music was carefully 
selected and hand-labeled by genre based on expert 
knowledge, with the specific SLAC genre ontology in 
mind.

Overall, LMD-aligned and SLAC are complementary for 
this research: LMD-aligned is larger with almost all data 
publicly available, and SLAC has high-quality labels, fully 
accessible features, and a balanced genre distribution.

Table 1 provides a summary of the primary feature 
groups we extracted, each corresponding to a different 
modality. We employed a large feature catalogue 
with a high number of bespoke features so that we 
could explore as broad a range of musical qualities as 
possible, in hope of revealing unexpected meaningful 
patterns. Using too few features would risk limiting 
results due to the effects of our pre-existing biases 
when selecting features, and would reduce the potential 
for serendipitous discoveries. Of course, this approach 
comes with disadvantages, as a large feature catalogue 
increases complexity, which can be particularly 
problematic with small datasets.

Some features describe similar musical concepts 
extracted from different modalities, like the tempo or 
instrument presence features, which are estimated both 
from the audio and symbolic data. This reflects the reality 
that such features may sometimes be more reliably 
extracted from one modality than another, something 
that should be taken into account when measuring the 
“importance” and “redundancy” of the corresponding 
modalities.

Not all features are relevant to all music. The features 
used here are designed such that an absence of a 
relevant musical quality can still result in a meaningful 
feature, so that, for example, an instrumental piece will 
have a NumberOfWords value of 0, which could usefully 
reflect a higher prevalence of instrumental music in the 
piece’s genre.
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5.2 AUDIO SIGNAL FEATURES
Audio features were extracted with AMUSE (Vatolkin 
et al., 2010). This group of features includes both low-
level audio features and “semantic audio features” from 
(Vatolkin et al., 2015). The dimensionality of this set was 
reduced by removing similar features (e.g., calculated 
using different chroma and MFCC implementations). 
Features extracted from frames below 1s in length 
were stored only for time frames between onset times 
previously estimated with MIRtoolbox (Lartillot and 
Toiviainen, 2007). The list of the audio signal features is 
provided in the supplementary material (Section A.1), 
and has 908 dimensions.

5.3 FEATURES BASED ON SEMANTIC TAGS 
PREDICTED FROM AUDIO BY PRE-TRAINED 
MODELS
These features are based on high-level, interpretable 
annotations relating to areas like instrumentation, 
vocal characteristics, or moods inferred from the audio 
signal by an ensemble of classifiers pre-trained on 
expert-annotated audio data disjoint from SLAC and 
LMD-aligned, as described by Vatolkin et al. (2015). This 
approach transfers modeled expert tag predictions to 
genre recognition; although the models operate as black 
boxes, they can provide interpretable insights on genre, 
as they predict semantically meaningful characteristics. 
Choi et al. (2017) provide another musical example of 
transfer learning, in their case using neuron activation 
weights as a feature for further classification tasks. 
Section A.2 in the supplementary material summarizes 
these 494 features.

5.4 SYMBOLIC FEATURES
These features were extracted from MIDI files with 
jSymbolic 2.2 (McKay et al., 2018). Certain histogram 

features were omitted to reduce dimensionality, but 
summary features derived from these histograms were 
kept. Section A.3 in the supplementary material lists the 
789 jSymbolic features we used.

5.5 ALBUM COVER DATA AND FEATURES
We mined images of album covers and extracted features 
from them using the methodology described by Wilkes 
(2019). The covers were automatically downloaded using 
the Discogs13 and MusicBrainz14 APIs (the first available 
covers on Discogs were saved manually when automatic 
download failed). We then extracted scale-invariant 
feature transform (SIFT) descriptors, as described by 
Lowe (2004), which estimate “key points” in pictures and 
highlight relevant statistical properties. Bag-of-keypoint 
features (Csurka et al., 2004) were then extracted in order 
to reduce dimensionality; the original SIFT descriptors 
were mapped to 100 clusters, which together comprised 
a visual vocabulary. Finally, we calculated the relative 
frequencies of these visual words for each album cover, 
which led to a 100-dimensional album cover feature 
vector.

5.6 PLAYLIST DATA AND CO-OCCURRENCE 
FEATURES
Playlist features were extracted as by Vatolkin et al. 
(2014). This involved creating a list of representative 
music tracks for six genres and eight styles based on 
AllMusicGuide15 annotations from the training sets used 
by Vatolkin et al. (2015). For each class, ten “positive” 
and ten “negative” artists were stored (e.g., Beethoven 
and Haydn as positive Classical examples, and Ray 
Charles and Madonna as negative ones). As in Vatolkin 
et al. (2014), relevant artists for each class were selected 
based on the top ten co-occurring artists for 280 genre- 
and style-representative artists in playlists from 8tracks 

Group Sub-Groups Sample Features Dim.

Audio signal Timbre, pitch + harmony, tempo + 
rhythm + structure, structural complexity 

MFCCs and delta MFCCs (Lartillot and Toiviainen, 2007), CMRARE 
modulation features (Martin and Nagathil, 2009), chroma 
DCT-reduced log pitch (Müller and Ewert, 2011), structural 
complexity (Mauch and Levy, 2011) for chroma, chords, 
harmony, tempo/rhythm, timbre 

908

Model-based Instruments, instrumental complexity, 
moods, various semantic descriptors 

Share of guitar, piano, wind, and strings, semantic descriptors 
annotated by music experts: orchestra occurence, clear or 
rough vocals, melodic range, dynamics, digital effects, level of 
activation 

494

Symbolic Pitch, melodic, chords, rhythm, tempo, 
instrument presence, instruments, 
texture, dynamics 

Pitch class histogram, amount of arpeggiation, tempo, number 
of instruments, dynamic range and variation 

789

Album covers – SIFT descriptors (Lowe, 2004) 100

Playlists – Co-occurrences of artists (Vatolkin et al., 2014) 293

Lyrics – Average number of syllables per word, rate of misspelling, 
vocabulary size, bag-of-words, Doc2Vec 

87/219

Table 1: Summary of feature groups associated with each of the six modalities. The complete list of features is provided in the 
supplementary material, Sections A.1 to A.6.
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and Last.fm datasets (Bonnin and Jannach, 2014). We 
then calculated normalized playlist co-occurrences 
between tracks by these class-relevant artists and the 
SLAC and LMD-aligned music; after removing identical 
artists, this produced a playlist co-occurrence feature 
vector with 293 dimensions, shown in Section A.5 in the 
supplementary material.16

5.7 LYRIC TEXT FEATURES
For SLAC, lyrics for all non-instrumental pieces were 
accessed and had features extracted from them using 
jLyrics, lyricFetcher, and related tools described by McKay 
et al. (2010). This resulted in 87 feature values per piece. 
As some of these tools are not publicly available and 
it was not possible to extract all features from LMD-
aligned, we supplemented the jLyrics features for LMD-
aligned with a 100-dimensional Bag-of-Words vector 
(Harris, 1954) based on the Term-Frequency/Inverse 
Document Frequency (TF-IDF) implemented in scikit-
learn (Pedregosa et al., 2011) and the 100-dimensional 
Doc2Vec (Le and Mikolov, 2014) function implemented 
in gensim (Řehůřek and Sojka, 2010). Section A.6 in the 
supplementary material provides more details.

5.8 DATA PARTITIONING
The datasets were each divided into three equal non-
overlapping partitions, or folds, in our experiments, and 
these were used in a 3-fold cross-validation scheme: in 
each of the three corresponding splits, each fold served as 
either training data, validation data to measure feature 
set fitness during FS, or testing data for final independent 
evaluation (see Table 2).

For a better balance, the training set for a given 
genre’s binary experiment was compiled from subsets 
of the corresponding fold using the maximum possible 
same number of “positive” and “negative” tracks with 
respect to the genre to predict. The negative tracks 
were sampled equally from each remaining genre. The 
validation and test sets were not balanced, however. So, 
for LMD-aligned, balancing required constraining the fold 
sizes based on the genre with the smallest number of 
tracks (RnB, with 316 tracks), with the result that for a 
given genre 105 tracks were available as positives in each 
of the three folds, and 104 as training negatives (26 for 
each remaining genre); this left 420 negatives each for 
validation and testing (105 for each remaining genre). In 
the exceptional case of the SLAC sub-genre experiments, 
instances belonging to the paired similar sub-genre were 
emphasized in each negative group, but all other sub-

genres were also represented. For example, a training set 
for the BluesMod sub-genre contained 8 positive tracks 
of this class, 8 negative tracks of the BluesTra sub-genre, 
and 8 negative tracks from all 8 remaining sub-genres 
(one track per sub-genre). Table 3 shows the distribution 
of tracks for a given genre and a given split.

6. RESULTS AND DISCUSSION
6.1 CLASSIFICATION ERROR AND MULTI-
GROUP IMPORTANCE
Table 4 summarizes the multi-objective h(me ↓, gk ↑) 
FS results for each feature type. Each experiment was 
repeated ten times, with different randomly initialized 
feature subsets every time, according to a “multi-start” 
procedure (Martí et al., 2018); this permitted a better 
exploration of the search space and reduced the potential 
influence of local optima. Evaluation was performed in all 
cases on the reserved test set, which was not involved 
in the optimization process. We performed single-tailed 
Wilcoxon rank tests in order to get a sense of statistical 
certainty and significance comparing modalities for each 
(sub-)genre. The detailed p-values are shown in the 
supplementary material (Sections B.1 to B.6)

Playlist co-occurrence features tended to have the 
best individual (pure) em: they had the lowest mean em 
for 13 of the 20 classes, and the lowest em for 40 of the 
60 individual genre/fold combinations (see Section C.1 
in the supplementary material), as well as the highest 
mean hI

 for 9 classes and 41 combinations. This might 
be expected, as listeners often create playlists based 
on genre preferences. Album cover and lyrics features, 
in contrast, were the worst performers, with one or the 
other corresponding to the highest mean error for all 
20 classes (17 and 3, respectively, with the lyrics alone 
performing worst for LMD-aligned Rock and the SLAC 
ClassBar and JazzSwi sub-genres).

Despite the clear effectiveness of pure playlist 
features, still better performance was almost always 
obtained when they were combined with other feature 
types. This is demonstrated by the fact that for no 
class on average and in only 4 of the 60 genre/fold 

Split Training Validation Test

1 Fold 1 Fold 2 Fold 3

2 Fold 2 Fold 3 Fold 1

3 Fold 3 Fold 1 Fold 2

Table 2: Fold assignments in cross-validation splits.

Tracks Training Validation Test

LMD-aligned genres

Positives 105 105 105

Negatives 104 420 420

SLAC genres

Positives 16 16 16

Negatives 16 64 64

SLAC sub-genres

Positives 8 8 8

Negatives 16 72 72

Table 3: Numbers of positive and negative tracks in the training, 
validation, and test sets for a split.
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combinations (SLAC Rock fold 1; Rap folds 2 and 3; and 
RockAlt fold 1, cf. Section C.1 in the supplementary 
material) did playlist features alone match the best em 
achieved when mixed feature types were allowed (as 
shown in the rows starting with “Combined” in Table 4 
or the last three columns in Table 13, Section C.1 in the 
supplementary material). In fact, all mean em-values 
achieved with combined feature sets in Table 4 are lower 
than the mean smallest errors of all the pure feature 
groups for each corresponding genre. This supports the 
potential utility of a multi-modal approach for both 
attempting to improve classification performance and 
for research on learning more about complex class 
traits, even when a single highly discriminative source 
data type is available.

Turning our attention to hI
, it should be noted that a 

value of 1.000 on Table 4 does not typically correspond 
to an h of absolute 0, but rather to very small h values 
rounded to zero. So, for entries with high hI

 values, 
improvements do exist when features are added from 
other groups, but they are very small. It is also notable 
that none of the feature groups resulted in an hI

 anywhere 
near 0, which suggests that all the feature groups do 

carry some useful information. By far the smallest mean 

hI
 in Table 4 is 0.606 (ClassRom, album cover features).

Symbolic features have the highest mean hI
 for 7 of the 

20 classes, audio signal features for 3, and lyrics features 
for 1. This relative success of symbolic features does 
make some intuitive sense, as many harmonic, melodic, 
rhythmic, and other important musical properties can be 
derived from the score. However, other characteristics 
like applied digital effects cannot typically be extracted 
from symbolic data.

Certain feature types are better suited to certain 
genres than others. For instance, audio signal and 
model-based features seem to be more important for 
Rap than symbolic features. However, symbolic features 
have higher hI

 values for the RapPop sub-genre, which 
suggests they are better at separating RapPop tracks 
from RapHar (as well as other genres). Lyrics are the most 
important for RapHar and the least important for Jazz. 
Playlist features have a lower importance for the SLAC 
Blues and Classical genres, but have a higher importance 
for the sub-genres BluesMod and ClassRom, which may 
be explained by a poor balance of specific sub-genres in 
the playlist data taken into account.

Table 4: Comparison of the six feature types based on h (me ↓, gk ↑) FS optimization. Mean and standard deviations are estimated 
for the three folds in the splits in which they respectively played a test role (see Section 5.8), and across all ten repetitions of each 
experiment. All rows but the two starting with “Combined” indicate mean best test classification errors em for pure feature groups 
only (lower values are better) and mean normalized multi-group feature importance hI

 (higher values are better). em values are 
averaged across the ten repetitions, and each hI

 value specifies the highest-importance non-dominated solution among all ten 
experimental trials. The mean best em and hI

 for each class is in bold, and cell background color indicates sorted mean hI
 values: 

deep red indicates highest importance and deep blue corresponds to lowest importance for a given column and its folds. Finally, 
the values in the rows starting with “Combined” indicate the smallest mean test error em obtained across all non-dominated 
solutions for each class, including (in this row only) mixed feature sets. The following procedure was used to estimate em: first, the 
smallest error from all non-dominated solutions for each individual experimental run is noted, this is then averaged across the ten 
experimental trials, and the minimum is taken across all six feature groups.

LMD-aligned genres SLAC genres

Group Country Electronic Pop RnB Rock Blues Classical Rock Jazz Rap

Audio Signal m∗
e 0.241±0.01 0.212±0.02 0.439±0.02 0.319±0.03 0.423±0.02 0.181±0.06 0.051±0.02 0.030±0.02 0.091±0.03 0.022±0.02

I�h 0.968±0.01 0.966±0.02 0.875±0.11 0.939±0.04 0.877±0.03 0.989±0.00 0.998±0.00 0.999±0.00 0.997±0.00 1.000±0.00
Model-Based m∗

e 0.294±0.00 0.259±0.01 0.433±0.02 0.333±0.03 0.402±0.02 0.185±0.01 0.074±0.04 0.052±0.02 0.129±0.04 0.024±0.01
I�h 0.928±0.02 0.944±0.02 0.894±0.08 0.949±0.01 0.899±0.01 0.983±0.01 0.991±0.00 0.996±0.00 0.989±0.01 1.000±0.00

Symbolic m∗
e 0.254±0.02 0.256±0.01 0.456±0.01 0.329±0.03 0.457±0.02 0.130±0.03 0.016±0.01 0.048±0.03 0.047±0.01 0.126±0.04

I�h 0.927±0.03 0.933±0.03 0.846±0.03 0.956±0.01 0.821±0.06 0.987±0.01 0.999±0.00 0.996±0.00 0.999±0.00 0.990±0.01
Album Cover m∗

e 0.403±0.01 0.429±0.00 0.479±0.01 0.453±0.02 0.471±0.01 0.375±0.05 0.366±0.03 0.400±0.04 0.448±0.06 0.435±0.05
I�h 0.830±0.01 0.844±0.01 0.753±0.08 0.839±0.05 0.765±0.03 0.856±0.02 0.901±0.01 0.865±0.04 0.890±0.01 0.913±0.01

Playlists m∗
e 0.060±0.01 0.109±0.00 0.223±0.01 0.073±0.01 0.225±0.01 0.102±0.08 0.109±0.15 0.026±0.04 0.040±0.01 0.015±0.03

I�h 1.000±0.00 0.999±0.00 0.998±0.00 0.998±0.00 0.996±0.01 0.874±0.22 0.889±0.15 1.000±0.00 0.950±0.06 1.000±0.00
Lyrics m∗

e 0.304±0.00 0.387±0.02 0.446±0.01 0.370±0.02 0.473±0.01 0.180±0.05 0.150±0.03 0.140±0.06 0.273±0.08 0.051±0.01
I�h 0.912±0.02 0.899±0.01 0.857±0.03 0.922±0.02 0.811±0.03 0.908±0.04 0.973±0.00 0.959±0.02 0.850±0.10 0.992±0.01

Combined m∗∗
e 0.052±0.01 0.099±0.00 0.212±0.02 0.067±0.01 0.211±0.01 0.006±0.00 0.002±0.00 0.000±0.00 0.006±0.01 0.000±0.00

SLAC sub-genres

Group BluesMod BluesTra ClassBar ClassRom JazzBop JazzSwi RapHar RapPop RockAlt RockMet

Audio Signal m∗
e 0.287±0.07 0.296±0.17 0.417±0.07 0.073±0.07 0.167±0.02 0.387±0.13 0.218±0.07 0.336±0.01 0.213±0.16 0.094±0.05

I�h 0.984±0.01 0.976±0.04 0.946±0.03 0.989±0.01 0.996±0.00 0.975±0.01 0.987±0.01 0.957±0.04 0.976±0.03 0.999±0.00
Model-Based m∗

e 0.267±0.07 0.317±0.11 0.416±0.01 0.149±0.17 0.178±0.08 0.323±0.09 0.202±0.08 0.314±0.01 0.348±0.09 0.159±0.08
I�h 0.974±0.01 0.937±0.06 0.854±0.08 0.946±0.09 0.975±0.01 0.947±0.04 0.988±0.01 0.959±0.03 0.966±0.01 0.993±0.01

Symbolic m∗
e 0.271±0.09 0.242±0.07 0.248±0.11 0.116±0.05 0.154±0.09 0.118±0.04 0.343±0.09 0.321±0.03 0.266±0.08 0.213±0.11

I�h 0.946±0.05 0.999±0.00 0.963±0.04 0.999±0.00 0.850±0.14 0.991±0.01 0.988±0.01 0.998±0.00 0.967±0.02 0.911±0.15
Album Cover m∗

e 0.453±0.03 0.492±0.11 0.366±0.17 0.458±0.08 0.437±0.08 0.428±0.07 0.522±0.04 0.435±0.01 0.382±0.17 0.483±0.07
I�h 0.829±0.13 0.781±0.08 0.838±0.11 0.606±0.20 0.764±0.09 0.806±0.03 0.666±0.11 0.797±0.07 0.657±0.26 0.769±0.04

Playlists m∗
e 0.135±0.12 0.389±0.17 0.257±0.15 0.246±0.12 0.057±0.02 0.159±0.16 0.258±0.15 0.241±0.02 0.070±0.06 0.098±0.08

I�h 1.000±0.00 0.943±0.08 0.747±0.42 0.969±0.03 0.993±0.01 0.988±0.02 0.987±0.01 0.997±0.00 1.000±0.00 0.999±0.00
Lyrics m∗

e 0.315±0.06 0.403±0.09 0.477±0.05 0.320±0.06 0.374±0.16 0.479±0.04 0.158±0.01 0.290±0.02 0.270±0.10 0.372±0.05
I�h 0.937±0.01 0.806±0.11 0.919±0.09 0.868±0.07 0.888±0.04 0.808±0.10 0.992±0.01 0.883±0.06 0.881±0.07 0.861±0.08

Combined m∗∗
e 0.073±0.07 0.158±0.04 0.113±0.05 0.036±0.05 0.023±0.03 0.046±0.05 0.086±0.03 0.169±0.01 0.028±0.03 0.022±0.03
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As one might expect, differences between folds are 
lower in LMD-aligned than SLAC, as the former contains 
more music. Also, differences between the “strongest” 
and “weakest” modalities are clearer in LMD-aligned: 
playlists achieve the smallest em and largest hI

 in all 15 
genre/fold combinations, and album covers the largest 

em and smallest hI
.

6.2 EVALUATION WITHOUT PLAYLISTS
Although playlist features are highly predictive of genre, 
they have two important disadvantages: they are less 
effective in revealing semantic properties of genre, and 
they suffer from the cold-start problem. We therefore 
repeated the experiments described above omitting 
playlist features, to see how the other feature groups 
would perform without them.

Figure 4 shows the extent to which each feature group 
is represented in the mixed feature subset with the 

smallest test error for each genre. The most-represented 
feature type depends on the particular genre; for 
example, symbolic features are good at identifying 
Classical, BluesTra, and JazzSwi music, but are less 
important than audio or model-based features for other 
genres (or lyrics, for some of the LMD-aligned genres). 
Interestingly, album covers also play a more prominent 
role in LMD-aligned than in SLAC. Of course, a single 
feature from a given group could potentially have high 
discriminative power, even if no other features from its 
group do.

Large differences often exist across the three folds, 
particularly for SLAC genres. For instance, the best feature 
sets for two of the three RockMet folds are mainly audio, 
but for the third fold model-predicted semantic features 
dominate. Two possible explanations for this come to 
mind. First, SLAC is a relatively small dataset, and it also 
contains a few tracks by the same artists, especially in 

Figure 4: Share of each non-playlist feature group in the feature subsets with the smallest test errors for each genre. A: audio; M: 
model-predicted tag; S: symbolic; C: album cover; T: lyrics. Results are based on h(me ↓, gk ↑) FS optimization, and are shown for each 
of the three folds separately, for the splits in which they played a test role.
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the case of RockMet. This necessitated a difficult decision 
during fold partitioning: including tracks from the same 
artist in both the training and validation partitions leads to 
higher fold interdependency, but restricting all the tracks 
by the same artist to a single fold (as done in this study) 
could lead to the learning of artists rather than genres; this 
may be responsible for some of the inter-fold variance. 
Second, the feature space is huge and the exploration 
method has its limits, so one cannot guarantee that 
optimal features are always found. Having more distinct 
features from the same group and, in particular, different 
groups would help to overcome local optima. As many 
application scenarios may involve small or overlapping 
datasets (e.g., if a listener defines some personal music 
category with just a few representative tracks), this 
strengthens our recommendation to combine features 
from different sources.

6.3 MULTI-GROUP REDUNDANCY
Table 5 reports multi-group feature redundancy ( )hR


 

results after h(me ↓, gk ↓) optimization. The research 
question in this optimization is to find whether it is 
possible to achieve a good classification performance 
using as few features from the given group as possible. 
Note that very low values of mean hR

 are rare: the 
smallest one is 0.8036.

Symbolic features appear to be the least redundant, 
as they contribute to the smallest mean hR

 values for 8 of 
20 classes and for 24 of the 60 genre/fold combinations 
(Section C.2 in the supplementary material lists individual 
values). This means that classification performance 
suffers more when symbolic features are omitted from 
the feature set, supporting the notion that it may be 
hard to identify all important genre properties from the 
audio signal only, or from other modalities other than 
the score. Lowest mean hR

 values are achieved for 6 
classes using audio signal features, for 4 classes using 
model-based features, and for 2 classes using lyrics. 
Album cover features are completely redundant for 14 
classes, but are second-best for the SLAC sub-genres 

BluesTra and ClassBar. Jazz-Swi and Classical are the only 
classes for which all feature groups but symbolic have a 
fully redundant mean Rh = 1.0. Lyrics features are least 
redundant for the Country and Rap genres.

Overall, we see once again that it can be useful to 
have a variety of feature types available when dealing 
with varied classes. Different modalities can differ widely 
in both their importance and redundancy with respect to 
different classes.

6.4 SPECIFIC FEATURE GROUPS
The comparative strategies discussed above can be 
applied not only to comparing features drawn from 
different modalities like audio or lyrics, but also to 
specialized feature groups from the same modality. 
For instance, one can explore which kinds of symbolic 
features (harmonic, rhythmic, etc.) are most helpful 
in recognizing a particular genre. Other potential 
approaches might focus on examining feature groups 
in terms of extraction cost, availability in open-source 
vs. closed-source software frameworks, methods for 
aggregating over time frames, etc. To delve into this 
experimentally, we selected 15 feature sub-groups. This 
is illustrated in Table 6, which compares mean hI

 values 
for these sub-groups across all folds after h(me ↓, gk ↑) FS 
optimization.

The particular grouping of audio signal features is 
based on Vatolkin et al. (2015). However, we have created 
a separate group for structural complexity features based 
on Mauch and Levy (2011), as their calculation principle 
is distinct from the others: the changes of original feature 
values are measured over long time frames. Model-based 
features are also grouped after Vatolkin et al. (2015); the 
“various” sub-group is a subset of binary descriptors of 
personal music categories defined by musicologists 
in a study by Rötter et al. (2013), like “presence of 
drums” or “high activation level” (see Section A.2 
in the supplementary material). Groups of symbolic 
features describe different music properties based on 
the categorization of features in jSymbolic (McKay et 

Table 5: Normalized multi-group feature redundancy (Rh
⋆) comparison of the five feature types left after excluding playlist features 

(lower values are better). The mean and standard deviation are shown across three folds. The best value for each class is in bold. 
Deep red indicates the best mean Rh

⋆ and deep blue the worst (equal values are possible).

LMD-aligned genres SLAC genres

Group Country Electronic Pop RnB Rock Blues Classical Rock Jazz Rap

Audio Signal 0.9982±0.00 0.9715±0.01 0.9995±0.00 0.9954±0.01 0.9753±0.04 0.9492±0.09 1.0000±0.00 1.0000±0.00 1.0000±0.00 1.0000±0.00
Model-Based 0.9998±0.00 0.9998±0.00 0.9769±0.02 0.9989±0.00 0.9569±0.01 0.9453±0.09 1.0000±0.00 1.0000±0.00 1.0000±0.00 1.0000±0.00
Symbolic 0.9949±0.00 0.9987±0.00 0.9997±0.00 0.9820±0.02 0.9998±0.00 0.9229±0.13 0.9875±0.01 0.9919±0.01 0.9908±0.00 1.0000±0.00
Album Cover 0.9994±0.00 0.9996±0.00 1.0000±0.00 1.0000±0.00 0.9986±0.00 1.0000±0.00 1.0000±0.00 1.0000±0.00 1.0000±0.00 1.0000±0.00
Lyrics 0.9934±0.01 0.9866±0.00 0.9881±0.02 0.9974±0.00 0.9999±0.00 0.9992±0.00 1.0000±0.00 1.0000±0.00 1.0000±0.00 0.9988±0.00

SLAC sub-genres

Group BluesMod BluesTra ClassBar ClassRom JazzBop JazzSwi RapHar RapPop RockAlt RockMet

Audio Signal 0.8889±0.16 1.0000±0.00 1.0000±0.00 0.8814±0.12 0.9506±0.09 1.0000±0.00 0.8716±0.13 1.0000±0.00 0.8125±0.22 0.9845±0.02
Model-Based 0.9675±0.05 0.9996±0.00 1.0000±0.00 0.9435±0.10 0.9593±0.07 1.0000±0.00 0.9044±0.09 0.9414±0.05 0.9057±0.08 0.9372±0.05
Symbolic 0.9168±0.14 0.8320±0.28 0.8824±0.13 0.9799±0.03 0.9873±0.02 0.8036±0.31 0.9564±0.07 0.9871±0.01 0.8957±0.16 0.9902±0.02
Album Cover 0.9999±0.00 0.9918±0.01 0.9848±0.03 1.0000±0.00 1.0000±0.00 1.0000±0.00 1.0000±0.00 1.0000±0.00 1.0000±0.00 1.0000±0.00
Lyrics 0.9881±0.01 1.0000±0.00 0.9880±0.02 0.9802±0.03 0.9818±0.01 1.0000±0.00 0.9627±0.02 0.9745±0.02 0.9755±0.03 0.9900±0.02
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al., 2018), with two exceptions: features that simply 
measure instrument presence are separated from other 
instrumental statistics, and “rhythm-related features 
that are influenced by tempo” are also separated out into 
their own group. The groups selected here are only one 
possible way to distinguish features by their properties; 
finer or different groupings may be appropriate for future 
experiments (e.g., properties of string instruments).

Low-level audio features have the highest mean 

hI
 values in 12 of the 20 classes, symbolic instrument 

presence features in 5, audio semantic in 2, and model-
based in 1. These groups seem to be particularly 
important, as they also contribute to more than half of 
the second-highest mean hI

 values: instrument presence 
(7), semantic (4), and low-level (4), and moods (1). The 
least important sub-group is symbolic dynamics, which 
may be explained by its small size (only 4 dimensions) and 
inconsistent MIDI encoding practice.17 Interestingly, the 
symbolic group “instruments”, which measures higher-
level features like the number of pitched instruments 
or electric instrument prevalence, performs worse than 
simpler statistics of instrument presence for all classes, 
and is even the second worst for six genres (but has a 
better performance on the SLAC sub-genres).

There is some variance across folds (see Section 
C.3 in the supplementary material for individual fold hI

 
values), especially in the smaller SLAC classes, but some 
interesting outcomes can still be identified. The Classical 

sub-genres Baroque and Romantic, as well as Pop, can 
be identified very well with only symbolic features noting 
the instruments present. Model-based mood features 
are very important for RapPop and RockMet. RnB, SLAC 
Rock and RapHar can be best recognized with low-level 
audio signal descriptors, which also have the highest 

hI
 values for two of the three Blues, Jazz, Rap, RockAlt, 

and RockMet folds. Dynamics features perform the worst 
for most classes, but not for two folds of the BluesTra, 
ClassBar, and ClassRom sub-genres.

These results open up interesting avenues for future 
research. Understanding which types of features grouped 
by semantic, statistical, or extraction properties work 
best for different genres may not only provide musically 
interesting insights, but may also give useful hints as to 
what types of new features might be most promising to 
investigate and develop further.

7 CONCLUSIONS

This article introduces two novel statistics based on 
multi-objective evolutionary feature selection and non-
dominated hypervolumes. These allow one to measure 
how “important” or “redundant” various feature groups 
are with respect to the identification of given classes. 
These statistics respectively permit the investigation 
of the extent to which it is possible to achieve as high 

Table 6: Comparison of 15 feature sub-groups from the modalities Audio Signal, Model-Based, and Symbolic with respect to 
normalized multi-group importance hI

, after h(me ↓, gk ↑) FS optimization. Higher values are better. Mean values and standard 
deviations across the three folds are reported. The highest mean hI

 value for each genre is in bold; cells with higher values are marked 
in red, and cells with lower values in blue.

LMD-aligned genres SLAC genres

Group Country Electronic Pop RnB Rock Blues Classical Rock Jazz Rap

Audio Signal: Low-Level 0.956±0.01 0.969±0.01 0.875±0.09 0.965±0.01 0.896±0.04 0.988±0.00 0.997±0.00 0.999±0.00 0.997±0.00 0.999±0.00
Audio Signal: Semantic 0.923±0.00 0.957±0.02 0.881±0.07 0.940±0.02 0.875±0.01 0.970±0.01 0.998±0.00 0.984±0.00 0.988±0.00 0.992±0.00
Audio Signal: Str. Compl. 0.813±0.04 0.848±0.03 0.805±0.04 0.815±0.01 0.732±0.07 0.924±0.03 0.978±0.02 0.975±0.01 0.973±0.01 0.974±0.02
Model-Based: Instruments 0.859±0.03 0.888±0.04 0.812±0.06 0.880±0.02 0.831±0.02 0.934±0.01 0.975±0.02 0.977±0.00 0.975±0.00 0.989±0.01
Model-Based: Moods 0.857±0.02 0.877±0.01 0.868±0.05 0.883±0.02 0.848±0.04 0.950±0.01 0.990±0.01 0.991±0.00 0.980±0.01 0.997±0.00
Model-Based: Various 0.899±0.01 0.937±0.02 0.856±0.07 0.928±0.00 0.874±0.02 0.959±0.02 0.995±0.00 0.992±0.01 0.984±0.01 0.999±0.00
Symbolic: Pitch 0.796±0.05 0.825±0.04 0.752±0.05 0.808±0.04 0.726±0.06 0.923±0.03 0.934±0.02 0.933±0.00 0.967±0.01 0.967±0.01
Symbolic: Melodic 0.675±0.07 0.774±0.02 0.694±0.07 0.689±0.10 0.602±0.03 0.742±0.07 0.782±0.04 0.887±0.03 0.924±0.02 0.920±0.02
Symbolic: Chords 0.798±0.02 0.815±0.01 0.735±0.04 0.807±0.05 0.713±0.07 0.858±0.06 0.962±0.01 0.911±0.07 0.965±0.03 0.930±0.05
Symbolic: Rhythm 0.820±0.04 0.871±0.02 0.806±0.04 0.844±0.03 0.748±0.03 0.902±0.03 0.949±0.01 0.917±0.03 0.966±0.00 0.928±0.02
Symbolic: Tempo 0.656±0.03 0.754±0.07 0.701±0.04 0.716±0.02 0.655±0.03 0.759±0.05 0.872±0.02 0.833±0.05 0.900±0.02 0.861±0.02
Symbolic: Instr. Presence 0.945±0.01 0.951±0.02 0.927±0.02 0.958±0.02 0.917±0.02 0.975±0.00 0.996±0.00 0.995±0.00 0.996±0.00 0.996±0.00
Symbolic: Instruments 0.614±0.02 0.697±0.03 0.626±0.06 0.621±0.09 0.598±0.02 0.769±0.10 0.945±0.05 0.915±0.04 0.908±0.02 0.849±0.03
Symbolic: Texture 0.700±0.03 0.746±0.02 0.713±0.04 0.697±0.07 0.657±0.05 0.723±0.13 0.885±0.05 0.905±0.02 0.888±0.06 0.912±0.04
Symbolic: Dynamics 0.216±0.04 0.304±0.03 0.416±0.01 0.318±0.05 0.321±0.07 0.473±0.18 0.663±0.10 0.477±0.03 0.614±0.15 0.538±0.05

SLAC sub-genres

Group BluesMod BluesTra ClassBar ClassRom JazzBop JazzSwi RapHar RapPop RockAlt RockMet

Audio Signal: Low-Level 0.982±0.01 0.984±0.01 0.934±0.01 0.982±0.01 0.984±0.01 0.977±0.00 0.994±0.01 0.940±0.03 0.968±0.04 0.999±0.00
Audio Signal: Semantic 0.952±0.03 0.945±0.03 0.947±0.03 0.975±0.02 0.987±0.01 0.971±0.01 0.967±0.04 0.930±0.02 0.948±0.04 0.976±0.00
Audio Signal: Str. Compl. 0.875±0.02 0.819±0.12 0.832±0.10 0.981±0.01 0.942±0.02 0.918±0.01 0.888±0.04 0.896±0.03 0.914±0.00 0.976±0.01
Model-Based: Instruments 0.930±0.05 0.904±0.13 0.875±0.10 0.888±0.17 0.952±0.03 0.919±0.06 0.885±0.07 0.901±0.04 0.899±0.02 0.971±0.02
Model-Based: Moods 0.939±0.04 0.859±0.06 0.939±0.05 0.917±0.09 0.978±0.02 0.928±0.03 0.974±0.00 0.976±0.01 0.945±0.03 0.998±0.00
Model-Based: Various 0.978±0.01 0.908±0.09 0.894±0.03 0.983±0.02 0.973±0.01 0.934±0.04 0.979±0.02 0.916±0.05 0.958±0.02 0.993±0.01
Symbolic: Pitch 0.922±0.05 0.836±0.10 0.914±0.07 0.831±0.12 0.957±0.01 0.957±0.01 0.845±0.00 0.851±0.08 0.787±0.06 0.914±0.03
Symbolic: Melodic 0.711±0.07 0.664±0.10 0.747±0.26 0.710±0.14 0.767±0.15 0.863±0.07 0.790±0.07 0.637±0.03 0.768±0.10 0.840±0.06
Symbolic: Chords 0.775±0.04 0.909±0.02 0.921±0.06 0.940±0.04 0.855±0.04 0.911±0.06 0.898±0.06 0.926±0.04 0.815±0.07 0.873±0.09
Symbolic: Rhythm 0.701±0.18 0.949±0.03 0.804±0.11 0.893±0.07 0.824±0.08 0.946±0.05 0.880±0.03 0.883±0.06 0.891±0.02 0.847±0.11
Symbolic: Tempo 0.732±0.19 0.778±0.18 0.815±0.14 0.781±0.12 0.863±0.03 0.932±0.04 0.688±0.18 0.787±0.19 0.824±0.08 0.840±0.04
Symbolic: Instr. Presence 0.965±0.04 0.971±0.01 0.997±0.00 1.000±0.00 0.966±0.03 0.947±0.04 0.965±0.01 0.953±0.01 0.971±0.01 0.988±0.00
Symbolic: Instruments 0.826±0.05 0.844±0.09 0.816±0.03 0.895±0.14 0.818±0.10 0.876±0.05 0.693±0.11 0.644±0.16 0.728±0.09 0.950±0.03
Symbolic: Texture 0.837±0.14 0.673±0.14 0.860±0.14 0.670±0.09 0.865±0.03 0.861±0.08 0.883±0.11 0.658±0.17 0.681±0.05 0.840±0.09
Symbolic: Dynamics 0.329±0.31 0.626±0.05 0.513±0.38 0.603±0.18 0.411±0.19 0.588±0.21 0.271±0.10 0.457±0.14 0.423±0.05 0.565±0.11
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a classification performance as possible while 1) 
maintaining as pure a feature group as possible, or 2) 
excluding to the greatest extent possible the feature 
group under investigation. This not only allows one 
to gain insights into which types of features or data 
might be most interesting to investigate from a strictly 
performance-oriented perspective, but can also result in 
ontological and other high-level insights with domain-
specific value.

Our experimental results18 suggest genre classification 
benefits from combining diverse features drawn from multi-
modal data. For example, we found that for all predicted 
music genres or styles the best-performing feature subset 
was comprised of multiple feature types, even when our 
methodology explicitly attempted to favor pure feature 
groups. The most effective feature types varied with the 
particular genre under consideration, and the performance 
of different feature sub-groups for a given type of data 
could also vary widely in a way dependent on the genre. 
However, some feature groups did perform better than 
others overall: playlist features tended to be the most 
discriminative, and album cover features the least.

This highlights the potential of more MIR research 
involving comparative multi-modal feature analysis. 
The work presented here both introduces evolutionary 
techniques that can be usefully applied to this purpose 
and integrates a broad variety of features drawn from six 
different types of musical data, more than any previous 
research. The proposed approaches also facilitate the 
comparison of different types of features drawn from 
the same kind of data. It is notable that the techniques 
proposed here are quite general; there is nothing about 
them that is specific to musical genre, or even to music. 
They can be applied to any classification domain involving 
features.

It is hoped that this work will stimulate further general 
research on multi-modal classification. Human listeners 
consume and create music in ways that are cognizant 
of the audio signal, symbolic musical abstractions, lyrics, 
cultural context, etc., and MIR can benefit from similarly 
considering a fuller scope of relevant information and its 
interrelations. The MIR community is uniquely positioned 
to address this kind of work, with its broad range of 
disciplines and techniques touching on many kinds of 
musical information, and there are many promising 
areas for future research using the multi-objective 
evolutionary approaches we propose here. The feature 
selection experiments can be repeated or re-evaluated 
with respect to other evaluation criteria, and compared 
to other feature selection algorithms. Types of music 
classification other than genre can be investigated, such 
as cover song detection, or mood or artist identification. 
Additional types of data can also be added, such as music 
videos, and a broader range of evolutionary approaches 
can be experimented with.

An essential area of future work is the construction of 
expanded and unified publicly accessible multi-modal 
MIR datasets, as accessing matched data is currently 
difficult, as seen in Section 5.1: individual independent 
linked data resources can become inaccessible over 
time, or identifiers used to match items between them 
can change or disappear, for example. We argue that the 
substantial potential of expanded multi-modal research, 
both pure and applied, makes the construction of high-
quality multi-modal MIR datasets well worth the effort.

NOTES

1	 In this paper, the terms “modality” and “source type” are used 
to refer to a specific kind of musical data (e.g., lyric texts or album 
cover images). A “source” indicates information belonging to a 
given modality for a particular instance (e.g., a text file specifying 
lyrics for a piece). A “feature” denotes a quantitative measure 
that can be calculated from sources of a given modality (e.g., the 
number of different instruments specified in scores). “Multi-modal” 
refers to work involving more than one source type.
2	 Earlier work on music genre recognition that has received less 
attention is highlighted by Sturm (2012a).
3	 Function maximization can alternatively be employed (e.g., by 
multiplying by -1). Different strategies can be applied for selecting 
and evaluating concrete “trade-off” solutions while minimizing 
m1,...,mO; the one employed in our study (based on hypervolumes 
and non-dominated sorting) is introduced in Section 4.1. A list of 
alternatives is provided, e.g., by Audet et al. (2021).
4	 We also follow another optimization strategy with the 
minimization of both me and gk, as discussed in Section 4.2.
5	 Although genre recognition, this article’s sample domain, can 
be addressed as a multi-class problem (or even multi-label, which 
better reflects the reality of genre), we restrict this study to binary 
classification to obtain individual strengths and weaknesses of 
modalities and feature sub-groups for distinct classes.
6	 Once again, maximization follows a similar procedure.
7	 Very small errors are achieved for some classes using playlist 
features, as discussed in Section 6.1; the evaluation without playlist 
features is explicitly addressed in Section 6.2.
8	 All feature values extracted from both of these datasets, along 
with relevant metadata, are available at: https://zenodo.org/
record/5651429.
9	 https://colinraffel.com/projects/lmd, accessed on: 13.11.2021.
10	 http://millionsongdataset.com/musixmatch, accessed on: 
13.11.2021.
11	 The SLAC cultural data consist of statistics derived from search 
engine hit counts and Last.fm tag counts for predetermined search 
strings based on genre, archived from the time of SLAC’s original 
publication. These data were excluded from the present study, as it 
was not possible to update it.
12	 https://zenodo.org/record/4571050#.YD1SlmhKj-g, accessed on: 
13.11.2021.
13	 https://www.discogs.com, accessed on: 13.11.2021.
14	 https://musicbrainz.org, accessed on: 13.11.2021.
15	 https://www.allmusic.com, accessed on: 13.11.2021.
16	 These features represent co-occurrences of tracks with music 
categories from the source publication (Vatolkin et al., 2014), not 
with the SLAC/LMD-aligned genre categories used in this research; 
the integration of these playlist statistics can also be understood as 
transfer learning, as with the Section 5.3 features.
17	 Some MIDI files are encoded using live encoding capture, 
typically with a keyboard, while others are encoded with score 
editing or sequencing software, which might encode dynamics 
differently.
18	 It is important to acknowledge that genre recognition suffers 
from fundamental labeling and evaluation concerns, as discussed 
above, and that large feature sets are associated with complexity 
issues. This provides important context when considering this 
and other research in genre classification and large-scale feature 
selection.

https://zenodo.org/record/5651429
https://zenodo.org/record/5651429
https://colinraffel.com/projects/lmd
http://millionsongdataset.com/musixmatch
https://zenodo.org/record/4571050#.YD1SlmhKj-g
https://www.discogs.com
https://musicbrainz.org
https://www.allmusic.com
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The additional file for this article can be found as follows:

•	 Supplementary Material. A: Feature Lists; B: Results 
of Statistical Tests; C: Experiment Results for Three 
Folds. DOI: https://doi.org/10.5334/tismir.67.s1
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