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Automatic Transcription of Organ Tablature Music 
Notation with Deep Neural Networks
Daniel Schneider, Nikolaus Korfhage, Markus Mühling, Peter Lüttig and Bernd Freisleben

Organ tablature music notation differs considerably in structure and form from the music notation used 
today. The manual transcription of organ tablature compositions to modern music notation is time-
consuming and often prone to errors. In this paper, we present a deep learning approach to automatically 
recognize organ tablature notation in scanned documents and transcribe it to modern music notation. Our 
approach is aimed at generating a uniform transcription that remains as close as possible to the original 
sheet music and therefore does not perform automatic error correction or musical interpretation. The 
artificial neural network model developed for the recognition of tablature characters is trained using a 
combination of real annotated tablature staves and tablatures produced by a synthetic data generator. 
The results of our experiments are evaluated on tablatures taken from two tablature books. We identify 
several types of error and validate that these are primarily caused by the poor legibility of relevant 
parts of some tablature scans. Overall, our approach achieves an accuracy of 97.2% and 99.3% correctly 
recognized bars, depending on whether note pitch and rest characters or note duration and special 
characters are considered, respectively.
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1. Introduction
The analysis of historical music notation is a major 
research topic in the field of musicology. Often, a manual 
transcription of the source material into modern music 
notation is required to make the material accessible to 
a wider audience and facilitate musicological analyses. 
Manual transcription, however, is a time-consuming and 
error-prone process.

The New German Organ Tablature is one such old 
music notation. It is studied by musicologists and is 
important to improve our knowledge about renaissance 
music. Several archives contain large numbers of organ 
tablatures, some of which have neither been digitized 
nor been transcribed to modern notation yet (Motnik, 
2011; Wojnowska, 2016).

In this paper, we present a deep learning approach that 
automatically transcribes scanned organ tablature pages 
to modern music notation. First, our method segments 
each input image into the corresponding tablature staves 
and recognizes tablature characters in the resulting partial 
images using a deep neural network. Then, the results of this 
process are converted to the format of Lilypond,1 an open-
source music notation program that can be used to generate 
a graphical output in modern notation. An example of such 
an automatic transcription is shown in Figure 1.

We utilize two scanned organ tablature books as data 
sources for training our deep neural network. Using data 
augmentation and a synthetic data generator that we 
developed as part of our work, we generated a data set of 
sufficient size to perform the training. This data set and 
the tools to create it are available online.2

We present the results of an experimental evaluation 
of the performance of the proposed approach. The neural 
network achieves an accuracy of 97.2% and 99.3% correctly 
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Figure 1: Transcription of a tablature row into modern 
music notation. The transcribed row consists of four 
tablature staves that are converted into a four-part score 
in modern notation.
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recognized bars, depending on whether note pitch and 
rest characters or note duration and special characters 
are considered, respectively. On the average, an error 
occurs every 220th pitch/rest character and every 833rd 
duration/special character.

The contributions of this paper are as follows:

•	 We apply, for the first time, a deep learning method to 
automatically transcribe organ tablatures into mod-
ern music notation.

•	 We present a deep neural network architecture called 
Character Sequence Pair (CSP) network that is trained 
to recognize character sequences arranged on two 
lines without requiring bounding box annotations.

•	 We present synthetic data generation and augmen-
tation tools for organ tablature music that could be 
adapted for other tasks in musicology.

•	 We provide a data set with ground-truth label se-
quences for training a neural network to recognize 
sequences of tablature characters.

The paper is organized as follows. Section 2 gives an 
introduction to organ tablature notation. Section 3 reviews 
related work. Section 4 presents our deep learning approach 
to recognize tablature notation. Section 5 explains our data 
generation and augmentation process. Section 6 presents 
experimental results. Section 7 concludes the paper and 
outlines areas for future work.

2. Organ Tablature Notation
Organ tablature music notation originates from the mid-
14th century as a representation of multipart vocal music for 
keyboard or string instruments (Wolf, 1919). It differs from 
modern musical notation with 5 staves. There is a Spanish 
and a German form of organ tablature letter notation. The 
German form can be further divided into an older and a 
newer one. The New German Organ Tablature notation 
was not only used to spread free popular compositions, 
but also in the guild-based education of organists in the 
17th and 18th centuries. The most prominent example is 
Johann Sebastian Bach, who used organ tablature notation 
for transcriptions of works of Dietrich Buxtehude and 
Johann Pachelbel during his lessons with Georg Böhm 
(Maul and Wollny, 2007). Organ tablature notation, which 
saved space and paper when writing down compositions, 
disappeared from the organists’ horizon with the decline 
of church music in the 18th century.

2.1 Musicological Background
It was only with the rediscovery of early music, especially 
vocal music in mensural notation (which began in the 
second half of the 19th century (Bellermann, 1858)) 
that musicological interest in organ tablature notation 
was reestablished. Since then, transcriptions of organ 
tablatures into modern music notation have formed the 
basis for the music-making patterns required to perform 
this music (Apel, 1967, 2006). In the contemporary 
training of organists, however, organ tablature is found 
only in a few exceptional cases.

On December 6, 2017, UNESCO has included organ 
manufacturing and organ music in Germany in the list 
of the intangible cultural heritage of mankind (German 
UNESCO Commission, 2018). Therefore, the identification 
and philologically correct transcription of organ tablatures 
is becoming an important topic.

Due to the different nature of their notation and a 
dwindling knowledge of organ tablatures in general, some 
tablatures have not even been recognized as pieces of music. 
For example, Johann Sebastian Bach’s oldest manuscript, the 
Weimar organ tablature (Maul and Wollny, 2007), was for a 
long time considered a cabalistic work and was therefore 
assigned to the field of theology. For the scientifically 
unambiguously identified tablature sources, transcriptions 
to modern notation do not always exist. For example, a 
significant part of the organ tablatures with intabulations of 
vocal music have not (or have only partially) been transcribed 
(Motnik, 2011). This includes works that explore previously 
unknown collections, but do so without a complete 
source-critical transfer (Wojnowska, 2016). Furthermore, 
the problems of transcription and reconstruction of music 
manuscripts preserved in the New German Organ Tablature 
notation have only been examined more closely in individual 
cases, as in Warsaw (Hulková, 2015) or Prague (Horyna, 2018).

But even when transcriptions into modern notation 
exist, they are not always uniform, transparent, and philo-
logically accurate. Figure 2 shows an example of two 
transcriptions of a few bars of the “Orgel oder Instrument 
Tabulaturbuch” (“Organ or instrument tablature book”) 
by Elias Nikolaus Ammerbach (Ammerbach, 1583), one 
of the first printed books containing New German Organ 
Tablature. The differences in the transcriptions of Cecil 
Warren Becker (Becker, 1963) and Hans-Thomas Müller-
Schmidt (Müller-Schmidt, 2017) are apparent. Müller-
Schmidt octaves the alto voice in bars two and three, 
while in Becker’s transcription it is in the position that 
the original dictates. In the bass voice, too, the second 
note in bar two is transcribed once as ‘A’ (incorrect), the 
other time as ‘B’ (correct). These differences demonstrate 
that the results depend on the particular transcription 
approach and the individual knowledge of the two 
authors. This example indicates that uniform methods of 
transcription, as currently used in the field of music of 
the 15th and 16th centuries (Huang et al., 2015; Calvo-
Zaragoza et al., 2016, 2019), are indispensable.

Figure 2: Deviations in transcriptions of Ammerbach’s 
“Orgel oder Instrument Tabulaturbuch” by (1) Becker 
(1963) and (2) Müller-Schmidt (2017).
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2.2 Automatic Organ Tablature Transcription
The use of automated methods for the transcription of 
organ tablatures promises both to simplify the time-
consuming task of manual transcription and to guarantee 
a standardized transcription. Automated methods can also 
increase the number of available notation examples for the 
analysis of musical semantics, for instance with regard to 
harmonic features or contrapuntal processes. This would 
greatly support musicological research in this area.

However, a method applicable to all kinds of organ 
tablature seems quite difficult to develop, due to the 
large variation. Organ tablatures are mostly preserved 
as handwritten manuscripts and rarely exist as printed 
versions. In general, tablatures from different sources can 
vary considerably in layout and font style.

In the context of this work, we focus on two publications of 
printed tablature music by the German organist and arranger 
Elias Nikolaus Ammerbach: the “Orgel oder Instrument 
Tabulaturbuch” (“Organ or instrument tablature book”) 
(Ammerbach, 1583) and “Ein new künstlich Tabulaturbuch” 
(“A new artificial tablature book”) (Ammerbach, 1575).

Using Ammerbach as an example for developing an 
automatic organ tablature transcription is justified by the 
fact that his tablature books are among the first printed 
works on this subject. In addition, Ammerbach offers a 
complete basic course for organists: up to the fingering, 
all topics are covered in his books. Last but not least, 
Ammerbach’s books have been a formative influence 
for many organists due to their wide distribution in the 
German-speaking world.

2.3 Character Set
Unlike modern musical notation, the New German Organ 
Tablature does not use staff lines, and the pitch is not 
indicated by the positioning of note marks. Instead, a 
letter notation is used, in which the pitches are specified 
as a sequence of note names. The octave position of the 
notes is indicated by upper and lower case letters and 
additional horizontal strokes above the characters. The 
note duration is indicated by rhythmic symbols placed 
above the pitch symbols, whose appearance is similar to 
the note stems and bars of modern music notation. For 
pause signs and special characters, additional symbols 
exist, which also resemble symbols of modern music 
notation.

Figure 3 shows examples of the different types of 
tablature characters taken from Ammerbach’s tablature 
books (labeling from left to right):

1.  Note duration symbols: whole note, half note, two 
quarter notes, four quavers

2.  Note pitch symbols for the note g (from high to low): 
two-line octave position, one-line octave position, 
small octave position (without strokes), great octave 
position (in capital letters)

3.  Pause signs: whole rest, half rest, quarter rest, eighth 
rest

4.  Special characters: repetition mark, time change 
(three-four time)

2.4 Page Layout
An organ tablature page consists of several rows separated 
by horizontal lines. Some editors additionally divide their 
tablatures into bars by vertical lines. Each row consists 
of staves arranged one below the other, separated only 
by a small distance, with one staff for each voice of the 
composition.

The tablature characters of a voice are arranged in two 
lines, as shown in Figure 4. The upper line contains note 
duration symbols, while the lower line contains note pitch 
symbols and pause signs. The position of special characters 
may vary from editor to editor, but they are usually located 
in the upper line. We therefore refer to the upper line as 
duration/special line and to the lower line as pitch/rest line.

3. Related Work
The analysis and transcription of organ tablature music 
notation has not been a research topic outside the field 
of musicology and thus no research on this particular 
topic exists in the field of computer science. However, the 
research areas Optical Character Recognition (OCR) and 
Optical Music Recognition (OMR) deal with the automatic 
recognition of handwritten or printed text and notes on 
images, respectively, and are thus related to the topic of 
organ tablature character recognition.

Figure 3: Examples of the different types of organ tabla-
ture symbols taken from Ammerbach (1583): (1) Note 
duration symbols; (2) Note pitch symbols; (3) Pause 
signs; (4) Special characters.

Figure 4: The layout of printed tablature characters using 
the example of Ammerbach (1583). Each staff (S1, S2) 
inside the row consists of two lines (duration/special 
(d/s) and pitch/rest (p/r) line) in which the tablature 
characters are arranged.
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In all of these tasks, the goal of the analysis is to 
recognize characters of a given alphabet in an input 
image. In OMR, however, the positioning of the characters 
in relation to each other also plays an important role. The 
pitch, for example, cannot be derived from the symbols 
alone, but is determined by the position of the note head 
on the staff. The necessity of analyzing these semantic 
relationships makes note recognition more complex than 
text recognition, in which individual characters can be 
recognized and transcribed independently of each other 
(Calvo-Zaragoza et al., 2020; Bainbridge and Bell, 2001).

The automated analysis of organ tablatures poses similar 
challenges. Here, the alphabet consists of a comparatively 
large number of characters, many of which are quite 
similar. The relative position of the characters to each other 
plays a role as well, in particular for note duration and note 
pitch characters that together represent one note.

In OCR and OMR, the recognition process is usually carried 
out in several stages that commonly pass through the same 
basic steps (Pansare and Joshi, 2012; Awel and Abidi, 2019; 
Patel and Thakkar, 2015; Rebelo et al., 2012; Calvo-Zaragoza 
et al., 2020). First, the input images are pre-processed to 
better discriminate the foreground and background from 
each other. Commonly performed steps are noise removal 
(application of a smoothing filter), binarization (conversion 
to grayscale with thresholding), and deskewing (correction 
of image orientation and reduction of distortions) (Awel 
and Abidi, 2019; Patel and Thakkar, 2015; Rebelo et al., 
2012; Calvo-Zaragoza et al., 2020).

After pre-processing, the actual character analysis is 
performed. In the past, several methods have been used 
to perform OCR, such as pattern matching (e.g., Chain 
Code Histogram (CCH)), statistical models (e.g., Hidden 
Markov Model (HMM)), k Nearest Neighbor (kNN) and 
kernel-based machine learning methods (e.g., Support 
Vector Machine (SVM)) (Purohit and Chauhan, 2016). In 
recent years, however, deep neural networks, in particular 
Convolutional Neural Networks (CNNs), have increasingly 
become the standard for image analysis tasks and often 
provide the best results in this area. Almost all current 
approaches for text or note recognition use artificial 
neural networks, but in some cases they are combined with 
other machine learning methods such as HMMs or SVMs 
(Patel and Thakkar, 2015; Purohit and Chauhan, 2016; 
Rebelo et al., 2012).

A common approach to automatically process printed 
documents is to first segment the input images into 
individual objects (e.g., single letters or musical symbols) 
to be analyzed further by a neural network. In this case, 
bounding boxes indicating the position of the individual 
characters are required for labeling the training data for the 
neural network. When an input is analyzed, the characters 
are recognized individually and are not combined into a 
single output as part of the recognition task. However, 
semantic information such as the coherence of characters 
(e.g., the position of note heads on staves) is lost when 
characters are recognized independently. This information 
has to be restored for merging the results, which requires 
additional effort. Examples of this approach can be found 
in the works of Feng et al. (2017) for handwritten text and 
Tuggener et al. (2018) for scanned sheet music.

Instead, so-called sequence-to-sequence approaches, 
in which larger units (e.g., entire rows) are recognized 
at once, can be used. For this purpose, Recurrent Neural 
Networks (RNNs) are usually employed in combination 
with CNNs. When recognizing larger sequences, semantic 
relationships between characters in the sequence are 
preserved, which simplifies the combination of results 
considerably. In addition, the creation of ground truth data 
required for training a neural network is less expensive, 
since bounding boxes for each character are usually not 
required. Examples of this approach can be found by Su 
and Lu (2017) or Dutta et al. (2018) for handwritten texts, 
and Calvo-Zaragoza et al. (2017); Calvo-Zaragoza and Rizo 
(2018) or Alfaro-Contreras et al. (2019) for sheet music.

Typically, a post-processing step follows after the 
recognition step is finished. If the recognition was performed 
on smaller units, the individual results are now combined. 
When recognizing notes, the semantic relationships of the 
detected characters must be determined (for example, the 
position of a note on the staff) and transferred to a data 
structure in which these relationships are modeled. After 
the results have been merged, an automatic error correction 
can be performed, in which the syntax and semantics of 
the analysis results are examined using dictionaries, and 
identified analysis errors are corrected. In OMR, the results 
are finally encoded in the desired output format (e.g., 
MusicXML or MIDI) (Patel and Thakkar, 2015; Rebelo et al., 
2012; Calvo-Zaragoza et al., 2020).

4. Deep Tablature Transcription
Our deep learning approach for organ tablature transcri ption 
receives scanned documents in organ tablature notation as 
its input and outputs a corresponding transcription of the 
musical score in modern notation (i.e., Lilypond1 format).

For multi-page documents, the individual scanned 
pages are first extracted from the input document and 
processed sequentially. The transcription process consists 
of three successive steps with several sub-steps:

1.  Pre-processing: deskewing and segmentation of the 
input images into tablature rows and staves

2.  Recognition: recognition of tablature characters in 
the individual staves

3.  Post-processing: merging of the recognition results 
into a combined result and generation of output files

4.1 Pre-processing
In this first step, the input data is prepared so that OCR 
can be performed. This includes image deskewing and 
segmentation into rows and individual staves.

4.1.1 Deskewing
The quality of scans of old documents can vary significantly. 
Many documents are marked by age and signs of use, 
which limits readability. Often, the paper is yellowed and 
in some places the print has faded. Moreover, due to the 
woodcut printing technique of the 16th century, the print 
is often irregular and many pages are printed skewed or 
appear distorted due to the age of the paper.

This is a challenge not only for recognition, but also for 
segmentation. If the tablature rows run at an angle due to 
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distortions, it is possible that characters are cut off when 
the input images are divided into partial images for the 
individual tablature staves. At the same time, however, no 
unnecessary margins should be added.

To meet these challenges, the first pre-processing step 
is to correct distortion and rotation of the image. The 
algorithm used for deskewing first performs a horizontal 
line detection on the input image by applying the 
morphological opening operation with a gain in x-direction 
to the binarized input. The resulting connected areas 
represent the lines. On these lines, points are sampled at 
regular x-intervals. For each of these points, the amount 
of offset required to align the sample points horizontally 
is calculated. Based on these offsets, a transformation 
matrix is created to align the lines horizontally.

4.1.2 Segmentation
The pages of Ammerbach’s tablature books contain 
multiple rows of tablature separated by horizontal dividing 
lines. Each row consists of a number of staves, one for each 
voice of the piece of music. Since tablature recognition can 
only be performed for individual staves, the input must be 
segmented accordingly.

While the number of rows on each page can be 
determined by detecting the horizontal dividing lines, the 
number of voices within a row is difficult for an algorithm 
to determine, since there are rarely clear boundaries 
between the staves. Since an incorrect assumption of the 
number of voices would lead to major errors in character 
recognition, the number of voices in each row is not 
automatically determined by the program, but must be 
specified by the user.

The dewarped input image is first split into partial images 
for rows. For this purpose, line detection is performed to 
find all horizontal dividing lines. The detected middle y 
positions of each line serve as separation edges. The row 
images are then divided into images of individual staves. 
Since no further dividing lines exist between the different 
voices and since it is not always possible to draw clear 
cutting edges due to overlaps, the voices’ positions are 
estimated by dividing the image pitch by the given number 
of voices. The pitch and width of the partial images to be 
generated are set according to the size of the input layer 
of the neural network. The row image is then cropped so 
that the estimated middle position of the staff is located at 
the center of the resulting partial image. The segmentation 
process is illustrated by an example in Figure 5.

4.2 Recognition
We use an RNN architecture that contains CNN components 
for recognizing tablature staves. The network is trained 
on a large and diverse data set of annotated images of 
tablature staves and learns to recognize tablature character 
sequences. After training, the network can recognize 
tablature characters displayed on previously unseen 
images. The proposed Character Sequence Pair (CSP) 
network is implemented in Keras.3

4.2.1 Character Sequence Pair Network
The biggest difference between the recognition of 
arbitrary text lines and organ tablature staves in images is 
that tablature staves each consist of two lines on which the 
tablature characters are arranged. The upper line contains 
note duration symbols and special characters, while the 
lower line contains note pitch symbols and pause signs 
(see Figure 4). To consider this two-line arrangement, we 
present the Character Sequence Pair (CSP) recognition 
network. It has two output heads (called duration/special 
head and pitch/rest head) that are trained to predict 
the upper and lower line characters, respectively. This 
follows the basic idea of multitask learning as originally 
introduced by Caruana (1997), where the tasks in this case 
are to recognize the two different character sets.

Splitting the output is necessary because the recognition 
network is not built to recognize individual characters at 
specific positions, since this would require tedious labeling 
with bounding boxes. Instead, for each x coordinate 
of the input image, a probability distribution over all 
possible labels at this position is produced. From these 
probability distributions, the label sequence maximizing 
the probabilities for each coordinate is determined.

With only one output head, all combinations of 
duration/special and pitch/rest line characters that 
could occur at the same x position would have to be 
encoded by different labels. This would increase the 
number of labels immensely, which in turn would lead 
to a significantly higher training duration and a larger 
number of required training samples. By using two output 
heads, the characters of the two lines can be recognized 
independently of each other, which reduces the training 
effort significantly.

The CSP network consists of a CNN part, followed 
by an RNN part. Figure 6 shows the architecture of 
the network. The input layer has a size of 2000 × 128 
neurons corresponding to the pixels of the input image. 
This size provides space for one tablature staff and leaves 
sufficient room for rows that are not aligned perfectly 
horizontally.

We utilize two blocks of convolutional layers that first 
detect simple and then more complex shapes in the input 
image. In the first convolutional block, we use two sets 
of 64 filters, and in the second block we use two sets of 
128 filters (due to the increased complexity level). After 
each block, we use max-pooling that cuts the size of the 
input down to half of its size. This results in a reduction of 
the weights to be trained and thus in a faster convergence 
of the training, but additionally increases the invariance 
of the network with respect to small displacements 
(Goodfellow et al., 2016).

Figure 5: Segmentation of the input image. The input 
image is split into separate images for each row on 
the displayed horizontal dividing lines. Afterwards, the 
results are split into images for each staff using the esti-
mated voice positions.



Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks 19

The processing of the input by the CNN part yields 128 
activation maps with a size of 500 × 32 neurons each, 
thus a three-dimensional output. To further process this 
information in the RNN part, it has to be condensed into a 
two-dimensional form. For this purpose, we use a reshape 
layer that arranges the activations of the individual 
filters vertically one below the other, thereby creating 
an activation map of 500 × 4096 neurons. To reduce the 
number of parameters of the subsequent recurrent layers 
and thus speed up training, we insert a fully-connected 
layer with a smaller number of neurons (500 × 1024) after 
the reshape layer.

After the fully-connected layer, the path through the 
network, which has been shared so far, splits into two paths 
for the recognition of the duration/special characters 
and the pitch/rest characters of a staff. The recurrent 
networks we use are bidirectional Gated Recurrent Units 
(GRUs) with a size of 500 × 512 neurons. GRUs (Cho et al., 
2014) are designed for processing sequential data (such as 
sequences of organ tablature characters).

On each of the two paths of the CSP network, we use 
two bidirectional GRUs, followed by a fully connected 
layer with softmax activation function. The softmax 
layers serve as output heads of the network for the 
characters of the upper (duration/special head) and 
lower (pitch/rest head) lines. These layers differ in size 
due to the different character sets to be recognized. 
There are 15 different characters to be recognized by 
the duration/special head, and there are 52 characters 
for the pitch/rest head (each plus two reserved labels: 
blank and no output).

4.2.2 Training and Recognition
The neural network is trained with Stochastic Gradient 
Descent (SGD). The cost function used is the Connectionist 
Temporal Classification (CTC) loss (Graves et al., 2006; 
Hannun, 2017). This makes it possible to train the network 
using training data without bounding boxes. The loss values 
are calculated independently for the duration/special head 
and the pitch/rest head. The total loss optimized during the 
training is calculated as the sum of the duration/special and 
the pitch/rest loss. Details of the training and validation 
process are explained in Section 6.

When performing a prediction on a tablature staff, 
the neural network outputs probability distributions 
for the duration/special and the pitch/rest line for 
each x coordinate of the input image, representing the 
occurrence of all possible labels at that position. From 
these, we use an adapted version of beam search (Hannun, 
2017) to determine the label sequences with the highest 
overall probabilities independently of each other for the 
two lines of the staff.

4.3 Post-processing
In this step, the results of the recognition network for 
each staff are combined into an overall result, from which 
a Lilypond file is generated. This file is subsequently used 
to generate a graphical output in modern music notation.

4.3.1 Result Combination
The label sequences for duration/special head and 
pitch/rest head determined independently for each 
given staff are now merged into a single sequence. This 
is achieved by repeatedly combining one note duration 
symbol with one note pitch symbol, since these together 
represent a single note in modern notation. Pause signs 
and special characters can be transferred directly to 
the result sequence during this process. If a complete 
matching is not possible due to analysis errors, the 
remaining characters are added individually to the result, 
but formatted with an x as note head (if no pitch sign 
was found) or without note stem (if no duration sign was 
found) to indicate that a matching error occurred for this 
character.

When analyzing a sequence of tablature staves, the result 
sequences for each staff are combined into a single overall 
result. Thereby, the character sequences of all staves that 
are assigned to the same voice are concatenated to a single 
long sequence. Thus, the analysis of a four-voice organ 
tablature piece, for example, will result in four character 
sequences, regardless of the number of pages analyzed.

4.3.2 Output Generation
The results are saved in a Lilypond file to be able to 
generate a graphical output in modern music notation. 
The Lilypond file format is a LaTex-like structured format 

Figure 6: Architecture of the CSP tablature recognition network. The different layer types are color-coded and the size 
is indicated below each layer. This image was generated with PlotNeuralNet (Iqbal, 2018).
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in which each voice of a polyphonic composition is 
recorded as a separate string. In these, letters of the note 
names indicate note pitch (with commas and quotation 
marks for the octave position) and numbers indicate note 
duration. Owing to its simple but clear structure, this file 
format is well suited for musicological analyses, especially 
statistical studies.

The labeling of the training data for the network has been 
largely adapted to Lilypond’s notation scheme, making 
it very easy to transfer network outputs to Lilypond. For 
example, the note duration symbols are labeled with the 
corresponding numbers (e.g., 4 for a quarter note) and 
the note pitch labels each consist of a note name letter 
followed by quotation marks or commas to indicate the 
octave position (e.g., d” for the note d in the two-line 
octave, the second octave above middle c).

We only use abbreviations for special characters and a few 
other exceptions that require a more complex command 
in Lilypond. These abbreviations are replaced by their 
corresponding Lilypond commands during the combination 
step. The result for each voice is therefore a string with the 
recognized character sequence in Lilypond format.

To generate a Lilypond file from the result sequences, a 
template is used containing all necessary commands for 
the desired layout. The strings for the individual voices 
are inserted into this template at the appropriate places. 
Further down the file, the voices are then assigned to 
corresponding staves, for example, to create a four-part 
composition. Finally, the Lilypond file is used to generate 
graphical sheet music output in the desired format (pdf, 
png) or digital music output (MIDI).

5. Tablature Data Set
Since no data sets for training a neural network for organ 
tablature recognition existed until now, we created such a 
data set in the context of our work.

Two organ tablature books by Elias Nikolaus Ammer-
bach are the basis of our data set. First, the “Orgel oder 
Instrument Tabulaturbuch” (“Organ or Instrument 
Tablature Book”) (Ammerbach, 1583) is used; it consists 
of 213 pages in tablature notation. Second, “Ein new 
künstlich Tabulaturbuch” (“A new artificial tablature 
book”) (Ammerbach, 1575) is used; it has 170 printed 
tablature pages. Both works contain printed tablatures 
and share the same font style, but differ slightly in layout.

To create our data set, we manually annotated 1,200 
staves from each book with label sequences. However, 
this number of tablature staves is not sufficient to train 
a neural network to deliver highly accurate results, as we 
will show in Section 6.4.3. Thus, we increased the amount 
of available data by employing data augmentation 
and artificially generating tablature rows using a data 
generator that we developed for this purpose.

The generator produces images of organ tablature 
rows similar to those in Ammerbach’s tablature books by 
randomly arranging images of single tablature characters. 
When placing the characters, the generator ensures that 
duration and pitch characters are combined appropriately, 
but no semantic relationships are considered, neither in 
the same voice nor between voices. Instead, the selection of 

a character from a category is purely random, which is why 
no logical melody progressions are created, no rhythmic 
structure is observed, and no harmonic rules between the 
voices are followed. Thus, the neural network is trained to 
recognize sequences of independent characters.

We use the generated images to focus on cases where 
characters are poorly printed or appear distorted to make 
the network more robust to these challenges. Furthermore, 
in the original images, some characters appear very 
frequently, while others are severely underrepresented. 
This imbalance is mitigated by the generator as well.

Figure 7 shows a comparison between a real tablature 
row, an augmented tablature, and two generated tablatures. 
While font style and basic layout are identical, the original 
image is more clearly structured and has higher contrast 
than the generated ones. Augmentation introduces 
variation by making rather small changes to the original 
image. The artificially generated images provide an even 
higher variability and thus allow a better generalization of 
the model to more diverse data. The data set with annotated 
staves and the open-source code of our data generation and 
augmentation tools are available for download.2

5.1 Data Generator
The generator receives a set of images of all tablature 
characters from Ammerbach’s tablature books as its input. 
Several variations of each character are needed to ensure 
that the generated results are as diverse as possible. We use 
20 to 30 sample images of each character. The individual 
characters had to be selected manually from the original 
documents and then had to be cropped using an image 
processing program. This tedious process was necessary to 
ensure that the generated images could be blended well 
and the results appear as similar as possible to the originals. 
In addition to the tablature characters, some examples of 
bar lines, page borders, and text segments were extracted 
to represent these elements in the generated data.

To help the network to separate background and content 
during training, a number of areas without characters 
were taken from the tablature books as backgrounds for 
the generated images. The probabilities for the random 
selection of each type of tablature character and minimum 
distances to neighboring characters can be specified by 
additional metadata.

The generation process starts with an empty image 
of the desired size. First, a random background image is 
selected and randomly positioned in the image section. 
Then, the image is filled with tablature characters in 
bars. Each bar is framed by randomly selected bar lines 
or special characters on both sides. Within a bar, random 
sequences of tablature characters are generated one after 
the other for each voice. Note duration and note pitch 
characters are always generated together to ensure that 
these characters only occur in combination. The symbols 
are placed on the duration/special line or the pitch/rest 
line of the corresponding voice according to their type.

After all staves within a bar have been filled in this 
way, the bar is completed and the next bar is started. This 
procedure is repeated until the entire width of the image 
has been filled in.
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Finally, the generated image, which contains several 
staves, is split into partial images for the individual staves. 
For each of these images, an additional text file containing 
the ground truth label sequences (one with duration 
and special characters and the other with pitch and rest 
characters) is created.

5.2 Data Augmentation
To increase the variety of the images in the data set, we 
utilize data augmentation to create several slightly modified 
variations of each image (both real and generated images).

During the artificial data generation, data augmentation 
is also performed at several points, e.g., to slightly modify 
the individual images of the randomly selected characters.

The augmentation operations include random changes 
of image parameters such as color, brightness, and 

contrast. Furthermore, the images are randomly scaled, 
rotated, and distorted. By setting some pixels to random 
color values, some noise is added as well. In addition, the 
entire image content can be shifted slightly in a random 
direction.

The probability and magnitude of each augmentation 
operation was determined experimentally and can be 
adjusted by the program parameters.

6. Experiments
We have conducted a series of experiments to evaluate 
the quality of the transcriptions created by the presented 
approach. The correctness of the results primarily depends 
on the accuracy of the outputs of the recognition network, 
which is why the experiments focus on the evaluation of 
metrics for the network outputs.

Figure 7: Comparison of (1) a real tablature row from Ammerbach’s tablature books; (2) an augmented version of the 
same tablature row; (3,4) two tablature rows artificially created by the data generator.
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In our experiments, we compare the performance of 
different variations of the CSP network and different training 
setups and analyze the errors made on the test data set.

6.1 Data Sets
The data sets we created consist of labeled organ tablature 
staves, grouped into the three subsets: training, validation, 
and test data. We combine real tablature staves extracted 
from the scans of two tablature books with artificially 
composed tablatures generated with the synthetic data 
generator described above. To increase the number of images 
in the data sets, we use data augmentation to create several 
slightly modified variations of each image. We investigate the 
influence of augmentation and the use of randomly generated 
data on network training by comparing training runs with 
different partial data sets in Section 6.4.3. We started our 
experiments using a large training set with a high number 
of generated images (trainSetL). During our experiments, 
we found that the results are slightly better using a smaller 
number of generated training images (trainSetS). Therefore, 
we use this data set for the final evaluation. Table 1 shows 
the composition of the data subsets.

6.2 Metrics
For a quantitative evaluation of the trained neural 
networks we calculate the following metrics on the test 
set of 1,000 tablature staves:

•	 Top-k accuracy:

 
Top-

# images with correct Top-  recognition
# analyzed imagesk

k
acc =

•	 Bar accuracy:

 bar

# correctly recognized bars
# analyzed bars

acc =

•	 Levenshtein distance:

 staff

# editing steps per image
# analyzed images

edist =

•	 Normalized Levenshtein distance:

 char

# editing steps per image
# characters on analyzed images

edist =

A challenge in the automated quantitative evaluation of 
organ tablature transcriptions is that comparatively long 
character sequences are considered. Here, single errors 
can heavily bias metrics such as Top-1 accuracy. To address 
this problem, we additionally consider the Top-10 and 
Top-5 accuracy, but especially the accuracy per bar, since 
single errors have a smaller impact here.

An even better evaluation criterion is the Levenshtein 
edit distance. It expresses the degree of difference 
between two strings as the average number of editing 
steps required to transform one string into the other 
string. This indicates the degree to which two sequences 
match. To be able to compare sequences of different 
lengths on different images, we additionally normalize the 
edit distance to an average number of editing operations 
per character.

6.3 Network Architectures
As described in Section 4.2.1, the presented CSP recognition 
network is divided into two paths that are trained to 
recognize characters using the duration/special head and 
the pitch/rest head, respectively. During training, both 
paths are trained together, and outputs for an input image 
are also produced simultaneously by both heads.

An alternative to this approach is to use two inde-
pendent networks, each containing only one of these 
paths. Each of these networks has significantly less 
parameters, which simplifies training. The two networks 
can be trained independently of each other and only learn 
to recognize the characters of one line of characters. To 
compare the performance of these two approaches, we 
trained both a CSP network and two partial networks, 
one for each path, with identical parameters on the same 
training data set. The results of this evaluation can be 
found in Section 6.4.1.

To verify that the chosen network configuration is 
appropriate for this problem, we compare the results of 
various simplifications of the CSP network in Section 6.4.2.

We trained each network over a period of 40 epochs. 
The learning rate was initially set to 0.015 and reduced to 
0.00001 over the training period using a cosine function 
(i.e., cosine learning rate decay).

6.4 Results
In our experiments, the networks were trained on an 
Nvidia GeForce GTX TITAN X installed in an Intel Core 
i7-5930K having 12 cores at 3.50 GHz and 64 GB of 

Table 1: The data set, consisting of training, evaluation, and test sets. The values indicate the number of images taken 
from each source. The numbers in parentheses indicate the factor by which this number has been enlarged by data 
augmentation.

Subset
Staves taken from “Orgel oder 

Instrument Tabulaturbuch”
Staves taken from “Ein new 
künstlich Tabulaturbuch”

Generated 
Staves

Sum

trainSetL 500 (*100) 500 (*100) 140,000 (*5) 800,000

trainSetS 500 (*100) 500 (*100) 20,000 (*5) 200,000

valSet 200 (*25) 200 (*25) 8,000 (*5) 50,000

testSet 500 500 0 1,000
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RAM. After completing the training of the networks, we 
evaluated the metrics described above on the test data.

6.4.1 Experiment 1: Partial Networks
In this experiment, we compare the CSP network, in which 
the paths for the duration/special head and the pitch/rest 
head are trained together, with two partial networks, 
each consisting of only one of these paths. All networks 
were trained on the trainSetL data set. Table 2 shows the 
results.

It is evident that the difference in the quality of the 
results between the CSP network and the two partial 
networks is quite small. For pitch/rest, the partial network 
delivers slightly better results (difference in edit distance 
relative to CSP: –0.070), but for duration/special, the CSP 
network is slightly better (edit distance difference +0.016).

Since the CNN part of the CSP network is traversed for 
both output paths, this network has a smaller number 
of parameters to be trained than two independent 
partial networks, which results in lower computational 
requirements. The number of floating point operations 
(FLOPs) required for the combined network is 27.93 M as 
opposed to a sum of 36.83 M of both partial networks. This 
is reflected in a shorter computing time for CSP network 
training. On the Nvidia/Intel platform mentioned above, 
the 40 training epochs for the CSP network lasted 47 
hours and 34 minutes, whereas the training of the two 
partial networks, one after the other, lasted 60 hours and 
45 minutes in total.

The CSP network thus offers approximately the same 
quality of the results with reduced computational requi-
rements and thus shorter training times.

6.4.2 Experiment 2: Simplified Networks
In this experiment, we compare the CSP network with several 
simplified network architectures to investigate whether 
a simpler architecture exists that provides equivalent or 
better results. The networks were again trained on the 
trainSetL data set. The results are presented in Table 3.

All three simplified architectures perform worse than 
the full CSP network for each of the calculated metrics. The 
use of unidirectional GRUs provides the least degradation 
(edit distance difference +0.009 for duration/special or 
+0.092 for pitch/rest), while the reduction to one CNN 
block leads to a much larger deterioration (+0.025 resp. 
+0.181). The use of only one GRU (+0.028 resp. +0.196) is 
even worse. We conclude that all components of the CSP 
network architecture are necessary for this problem, and 
the use of a smaller architecture is likely to decrease the 
performance.

6.4.3 Experiment 3: Training Data
In this experiment, we compare the training of the CSP 
network on different data sets to examine the influence of 
data augmentation and synthetic data generation on the 
quality of the results. The results are shown in Table 4.

The use of data augmentation (Aug) greatly improves 
the metrics compared to training with unaugmented 

Table 2: Comparison of the CSP network with two partial networks, one for each path. The table shows the metrics 
evaluated on the test data set, the number of floating point operations (FLOPs), and the training time required for 
40 epochs.

Network Characters
Accuracy Edit Distance Computation Time

Top-10 Top-5 Top-1 Bar Staff Char FLOPs Training

CSP
Duration/Special 0.994 0.992 0.970 0.989 0.070 0.00162

27,925,688 47h34m
Pitch/Rest 0.944 0.943 0.876 0.971 0.320 0.00515

Partial 1 Duration/Special 0.991 0.990 0.963 0.988 0.086 0.00192 18,377,884 28h12m

Partial 2 Pitch/Rest 0.963 0.960 0.896 0.972 0.250 0.00423 18,453,660 32h33m

Table 3: Comparison of the CSP network with three simpler variations of the network. The table shows the differences 
in the network configurations, the metrics evaluated on the test set, as well as the number of FLOPs for each network.

Network
Configuration

Characters
Accuracy Edit Distance

FLOPs
CNNs GRUs Top-1 Bar Staff Char

Full CSP 2 blocks
2 bidir. Duration/Special 0.970 0.989 0.070 0.00162

27,925,688
2 bidir. Pitch/Rest 0.876 0.971 0.320 0.00515

1 CNN 1 block
2 bidir. Duration/Special 0.954 0.989 0.095 0.00218

27,483,320
2 bidir. Pitch/Rest 0.840 0.958 0.501 0.00835

unidir. GRUs 2 blocks
2 unidir. Duration/Special 0.962 0.988 0.079 0.00190

18,415,780
2 unidir. Pitch/Rest 0.835 0.960 0.412 0.00690

1 GRU 2 blocks
1 bidir. Duration/Special 0.950 0.984 0.098 0.00207

21,634,212
1 bidir. Pitch/Rest 0.818 0.949 0.516 0.00859
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data (noAug) (edit distance difference –0.285 for 
dura tion/special or –0.876 for pitch/rest). If we extend the 
100,000 augmented real images by the same number of 
synthetically arranged tablatures (Aug1Gen1), we achieve 
the best results in our tests (difference further –0.008 
resp. –0.108). For tests with larger data sets, we did not 
achieve any further improvements, neither by adding 
more generated data (Aug1Gen2) (difference +0.013 resp. 
+0.021) nor by increasing the number of augmentations 
(Aug2Gen2) (difference +0.004 resp. +0.006). We conclude 
that with larger amounts of generated data, the effect of 
overfitting the images of individual characters that serve 
as the basis for the generator is observable. The same is 
true for frequent augmentation of a small number of real 
tablature staves. Thus, further improvements of the results 
require either additional annotated real tablatures or more 
samples of each character as inputs for the data generator.

Furthermore, we compared two test runs in which 
we only used a small number of real training images, 
(a) without generated data (PtAug), (b) with augmented 
and generated data (PtAugGen). The addition of generated 
data leads to a significant improvement of the results (edit 
distance difference –0.516 resp. –1.141). We conclude that 

the use of our data generator is very helpful for smaller 
data sets where many characters are underrepresented. 
With an increasing amount of real data available, the 
positive influence of generated data on accuracy decreases. 
A greater improvement in the results is then achieved by 
using data augmentation on the real data.

Finally, we investigated the benefits of the different 
augmentation operations. We trained our network with 
real training images augmented in different ways, with 
only one type of augmentation performed at a time, and 
compared the results with a training run on the same 
images without augmentation. We found that changes in 
image parameters and the addition of noise leads to small 
improvements of the results. However, shifting the image 
and applying scaling and distortion significantly improves 
the results.

6.4.4 Evaluation of the CSP Network
After having compared various network configurations 
and training with different data sets, we now present 
the results of the final configuration in detail. For this 
purpose, the CSP network was trained on the trainSetS 
data set. The results are summarized in Table 5.

Table 4: Comparison of training the CSP network with different data sets. The table shows the differences in the 
number of real and generated tablature images (as well as the factor by which this amount was increased by aug-
mentation) for each training set and the metrics evaluated on the test data.

Train Data
Number of Tablature Staves

Characters
Accuracy Edit Distance

Real Generated Sum Top-1 Bar Staff Char

noAug 1000 0 1000
Duration/Special 0.844 0.952 0.348 0.00746

Pitch/Rest 0.641 0.895 1.270 0.02258

Aug 1000 (*100) 0 100,000
Duration/Special 0.966 0.995 0.063 0.00134

Pitch/Rest 0.851 0.967 0.394 0.00645

Aug1Gen1 1000 (*100) 20,000 (*5) 200,000
Duration/Special 0.970 0.993 0.055 0.00120

Pitch/Rest 0.875 0.972 0.286 0.00455

Aug1Gen2 1000 (*100) 40,000 (*5) 300,000
Duration/Special 0.967 0.990 0.068 0.00143

Pitch/Rest 0.873 0.970 0.307 0.00510

Aug2Gen2 1000 (*200) 40,000 (*5) 400,000
Duration/Special 0.971 0.990 0.059 0.00128

Pitch/Rest 0.870 0.972 0.292 0.00475

PtAug 100 (*100) 0 10,000
Duration/Special 0.725 0.919 0.782 0.01608

Pitch/Rest 0.527 0.849 2.005 0.03460

PtAugGen 100 (*100) 50,000 (*5) 260,000
Duration/Special 0.871 0.952 0.266 0.00583

Pitch/Rest 0.709 0.906 0.864 0.01539

Table 5: Evaluation of the CSP network trained on the trainSetS data set. The table shows the metrics calculated on the 
test data set.

Characters
Accuracy Edit Distance

Top-10 Top-5 Top-1 Bar Staff Char

Duration/Special 0.996 0.996 0.970 0.993 0.055 0.00120

Pitch/Rest 0.951 0.947 0.875 0.972 0.286 0.00455
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The network achieves high accuracy values on the test 
data. The correct result is found in the Top-5 outputs of 
the network in 94.7% of the analyzed tablature staves for 
pitch/rest and in 99.6% for duration/special. When only 
the output with the highest probability is considered, the 
Top-1 accuracy for pitch/rest drops to 87.5%, while that 
of duration/special decreases to 97.0%. This imbalance 
can be explained by the larger alphabet of the pitch/rest 
characters and in particular by a larger number of highly 
similar symbols than in the duration/special symbols.

Looking at the percentage of correctly analyzed bars, 
the network reaches 97.2% for pitch/rest and 99.3% for 
duration/special. Here, the accuracy values are much 
closer, which shows that the errors mainly affect single 
characters and not larger areas. In most cases, only one bar 
of a staff is affected by an incorrect recognition, while the 
remaining bars are correctly recognized. This causes the 
staff accuracy to drop more strongly than the bar accuracy.

This observation is also evident when evaluating the 
Levenshtein edit distance metric. The average number of 
editing steps per staff is 0.286 for pitch/rest. Normalizing 
these results to the number of edits per character yields a 
value of 0.00455. This means that, on the average, an error 
occurs every 220th character. For duration/special, the 
edit distance is 0.055 per staff and 0.00120 per character. 
This means that an error occurs, on the average, at every 
833rd character.

6.5 Error Analysis
In this section, we take a closer look at the detected errors 
and examine their causes.

The 1000 images of the test data set contain 105,117 
characters – 51,367 for duration/special and 53,750 for 
pitch/rest. Our analysis revealed 258 wrongly recognized 
characters, 35 for duration/special and 223 for pitch/rest. 
Wrongly recognized spaces were not counted, because 
the characters of a label sequence are always separated by 
spaces. As a result, the network output always inserts or 
omits a space if a character is added or missed. The errors 
can be broken down into the four categories shown in 
Table 6.

In many cases, the errors can be traced back to the 
quality of the tablature sources. The print is uneven or 
incomplete in some places, or the color has faded due 
to the age of the document. This makes some characters 
unclear and difficult to distinguish. The neural network 
already finds the correct result in many of such unclear 

places, but in other places it fails. Figure 8 shows some 
examples of such areas where the recognition of the test 
data is a challenge.

The error category ‘Missed Symbol’ lists 68 cases in which 
characters could not be recognized by the CSP network. 
The most frequently affected characters are bar lines (29 
times), the note pitch sign e’ (5 times) and semiquaver 
notes (3 times). This type of error occurs especially in 
places where many characters appear in a small space (see 
Figure 8 images 1 (incorrect) and 7 (correct)) or characters 
are poorly readable (see Figure 8 images 2 (incorrect) and 
8 (correct)). For example, the missed bar lines are nearly 
always caused by the fact that these bar lines are barely 
visible on the scans (see Figure 8 image 3 (incorrect)).

The ‘Added Symbol’ category contains 21 cases in which 
background elements or text blocks are incorrectly 
detected as tablature characters.

The most common analysis error is the confusion of 
similarly appearing characters. Here, a distinction is again 
made between two types of false analyses.

In the category ‘Wrong Symbol’, 84 cases are marked in 
which a completely different character was predicted than 
the one given in the ground truth data. Here, the note 
pitch symbols for c and e (7 times), g and a (6 times) as 
well as b and bb (also 6 times) were most often mistaken 
for each other. A confusion of these characters can be 
explained in many cases by an unclear print, because the 
appearance of the characters is quite similar (see Figure 8 
images 4, 5 (incorrect) and 8, 9 (correct)).

The errors where a correct note pitch sign was detected, 
but in the wrong octave position, are listed in the category 
‘Wrong Octave’. The octave strokes above the note names 
are printed quite faintly in many places, so that the exact 

Table 6: The errors that occurred during the analysis, 
catego rized into groups with the corresponding number 
of cases.

Duration/Special Errors Pitch/Rest Errors

Category Count Category Count

Missed Symbol 21 Missed Symbol 47

Added Symbol 4 Added Symbol 17

Wrong Symbol 10 Wrong Symbol 74

Wrong Octave 85

Figure 8: Examples of areas in the test data that are dif-
ficult to recognize. In images 1–6, an analysis error 
occurred in the marked areas, while in images 7–9, even 
in the circled areas, the poorly readable characters were 
correctly recognized.
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identification of the octave position is often difficult (see 
Figure 8 images 6 (incorrect) and 9 (correct)). Most often, 
the note pitch symbols for d (24 times), c (16 times) and g 
(12 times) were assigned to a wrong octave position.

6.6 Discussion
The experiments carried out show that the proposed 
CSP network is capable of recognizing scanned organ 
tablatures with low error rates. We have examined different 
network configurations and found that the presented CSP 
architecture is a suitable architecture and that the use of two 
output heads is reasonable. Training on different data sets 
showed that both data augmentation and synthetic data 
generation have a positive effect on network performance, 
especially with small amounts of available real data.

In our work, the network has only been used to recognize 
printed organ tablatures from two tablature books sharing 
the same font style, although differing in page layout. The 
experiments show that the CSP network generalizes well 
on these tablatures, and only minor recognition errors 
occur. Many of these errors can be blamed on the print 
quality and the age of the analyzed organ tablature books, 
which in some places make character recognition and 
differentiation difficult. To obtain a network that is even 
more robust to such challenges, a larger training data set 
is needed that covers these ambiguities to a greater extent.

7. Conclusion
We presented a deep learning approach to automatically 
transcribe scores from organ tablature music notation to 
modern music notation. The proposed approach processes 
scanned tablature pages by segmenting them into images 
of individual staves and performing character recognition 
on these sub-images using the presented Character 
Sequence Pair (CSP) neural network. The network 
recognizes one tablature staff at a time and provides 
two outputs for the two lines on which the tablature 
characters are located. In a post-processing step, these two 
outputs are combined into a single output and transferred 
to the desired music notation format. The transcription 
is performed without automatic error correction and 
interpretation and therefore delivers a result as close as 
possible to the original document.

Since no data sets for training neural networks to 
recognize organ tablatures existed up to now, we created 
a new data set based on two organ tablature books by 
Elias Nikolaus Ammerbach. We developed a synthetic data 
generator that randomly assembles artificial tablature 
rows from images of single characters. The network 
was trained using a combination of real staves from the 
tablature books and artificially composed organ tablature 
staves, using data augmentation to further increase the 
amount of available data.

The quality of the transcriptions generated by our 
approach was examined in several experiments. On a 
test data set obtained from the tablature books, the 
CSP network achieved an accuracy of 97.2% and 99.3% 
correctly recognized bars, depending on whether note 
pitch and rest characters or note duration and special 
characters are considered, respectively. On the average, an 

error occurs every 220th pitch/rest character and every 
833rd duration/special character.

There are several areas for future work. First, we plan to 
train the CSP neural network to recognize further printed 
organ tablatures with different layouts and font styles, 
and possibly handwritten tablatures. Second, we intend 
to investigate whether extensions or alternative neural 
network architectures will be required to improve the 
results. Finally, we will investigate possibilities to further 
improve the data generator. Possible approaches are 
increasing the source image set or extending the generator 
with semantic rules. We also plan to develop a generator 
that uses digitized organ pieces as source material and 
transcribes them to tablature notation.

Notes
 1 https://lilypond.org.
 2 https://github.com/umr-ds/organ-tablature-ocr-

dataset.
 3 https://keras.io/.
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