
RESEARCH

Automatic Transcription of Organ Tablature Music
Notation with Deep Neural Networks
Daniel Schneider, Nikolaus Korfhage, Markus Mühling, Peter Lüttig and Bernd Freisleben

Organ tablature music notation differs considerably in structure and form from the music notation used
today. The manual transcription of organ tablature compositions to modern music notation is time-
consuming and often prone to errors. In this paper, we present a deep learning approach to automatically
recognize organ tablature notation in scanned documents and transcribe it to modern music notation. Our
approach is aimed at generating a uniform transcription that remains as close as possible to the original
sheet music and therefore does not perform automatic error correction or musical interpretation. The
artificial neural network model developed for the recognition of tablature characters is trained using a
combination of real annotated tablature staves and tablatures produced by a synthetic data generator.
The results of our experiments are evaluated on tablatures taken from two tablature books. We identify
several types of error and validate that these are primarily caused by the poor legibility of relevant
parts of some tablature scans. Overall, our approach achieves an accuracy of 97.2% and 99.3% correctly
recognized bars, depending on whether note pitch and rest characters or note duration and special
characters are considered, respectively.

Keywords: Organ Tablature; Automatic Transcription; Deep Learning; OCR; OMR

1. Introduction
The analysis of historical music notation is a major
research topic in the field of musicology. Often, a manual
transcription of the source material into modern music
notation is required to make the material accessible to
a wider audience and facilitate musicological analyses.
Manual transcription, however, is a time-consuming and
error-prone process.

The New German Organ Tablature is one such old
music notation. It is studied by musicologists and is
important to improve our knowledge about renaissance
music. Several archives contain large numbers of organ
tablatures, some of which have neither been digitized
nor been transcribed to modern notation yet (Motnik,
2011; Wojnowska, 2016).

In this paper, we present a deep learning approach that
automatically transcribes scanned organ tablature pages
to modern music notation. First, our method segments
each input image into the corresponding tablature staves
and recognizes tablature characters in the resulting partial
images using a deep neural network. Then, the results of this
process are converted to the format of Lilypond,1 an open-
source music notation program that can be used to generate
a graphical output in modern notation. An example of such
an automatic transcription is shown in Figure 1.

We utilize two scanned organ tablature books as data
sources for training our deep neural network. Using data
augmentation and a synthetic data generator that we
developed as part of our work, we generated a data set of
sufficient size to perform the training. This data set and
the tools to create it are available online.2

We present the results of an experimental evaluation
of the performance of the proposed approach. The neural
network achieves an accuracy of 97.2% and 99.3% correctly

Schneider, D., et al. (2021). Automatic Transcription of Organ Tablature Music Notation
with Deep Neural Networks. Transactions of the International Society for Music
Information Retrieval, 4(1), pp. 14–28. DOI: https://doi.org/10.5334/tismir.77

Department of Mathematics and Computer Science,
University of Marburg, Marburg, DE
Corresponding author: Daniel Schneider
(schneider@informatik.uni-marburg.de)

Figure 1: Transcription of a tablature row into modern
music notation. The transcribed row consists of four
tablature staves that are converted into a four-part score
in modern notation.

https://doi.org/10.5334/tismir.77
mailto:schneider@informatik.uni-marburg.de

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks 15

recognized bars, depending on whether note pitch and
rest characters or note duration and special characters
are considered, respectively. On the average, an error
occurs every 220th pitch/rest character and every 833rd
duration/special character.

The contributions of this paper are as follows:

•	 We apply, for the first time, a deep learning method to
automatically transcribe organ tablatures into mod-
ern music notation.

•	 We present a deep neural network architecture called
Character Sequence Pair (CSP) network that is trained
to recognize character sequences arranged on two
lines without requiring bounding box annotations.

•	 We present synthetic data generation and augmen-
tation tools for organ tablature music that could be
adapted for other tasks in musicology.

•	 We provide a data set with ground-truth label se-
quences for training a neural network to recognize
sequences of tablature characters.

The paper is organized as follows. Section 2 gives an
introduction to organ tablature notation. Section 3 reviews
related work. Section 4 presents our deep learning approach
to recognize tablature notation. Section 5 explains our data
generation and augmentation process. Section 6 presents
experimental results. Section 7 concludes the paper and
outlines areas for future work.

2. Organ Tablature Notation
Organ tablature music notation originates from the mid-
14th century as a representation of multipart vocal music for
keyboard or string instruments (Wolf, 1919). It differs from
modern musical notation with 5 staves. There is a Spanish
and a German form of organ tablature letter notation. The
German form can be further divided into an older and a
newer one. The New German Organ Tablature notation
was not only used to spread free popular compositions,
but also in the guild-based education of organists in the
17th and 18th centuries. The most prominent example is
Johann Sebastian Bach, who used organ tablature notation
for transcriptions of works of Dietrich Buxtehude and
Johann Pachelbel during his lessons with Georg Böhm
(Maul and Wollny, 2007). Organ tablature notation, which
saved space and paper when writing down compositions,
disappeared from the organists’ horizon with the decline
of church music in the 18th century.

2.1 Musicological Background
It was only with the rediscovery of early music, especially
vocal music in mensural notation (which began in the
second half of the 19th century (Bellermann, 1858))
that musicological interest in organ tablature notation
was reestablished. Since then, transcriptions of organ
tablatures into modern music notation have formed the
basis for the music-making patterns required to perform
this music (Apel, 1967, 2006). In the contemporary
training of organists, however, organ tablature is found
only in a few exceptional cases.

On December 6, 2017, UNESCO has included organ
manufacturing and organ music in Germany in the list
of the intangible cultural heritage of mankind (German
UNESCO Commission, 2018). Therefore, the identification
and philologically correct transcription of organ tablatures
is becoming an important topic.

Due to the different nature of their notation and a
dwindling knowledge of organ tablatures in general, some
tablatures have not even been recognized as pieces of music.
For example, Johann Sebastian Bach’s oldest manuscript, the
Weimar organ tablature (Maul and Wollny, 2007), was for a
long time considered a cabalistic work and was therefore
assigned to the field of theology. For the scientifically
unambiguously identified tablature sources, transcriptions
to modern notation do not always exist. For example, a
significant part of the organ tablatures with intabulations of
vocal music have not (or have only partially) been transcribed
(Motnik, 2011). This includes works that explore previously
unknown collections, but do so without a complete
source-critical transfer (Wojnowska, 2016). Furthermore,
the problems of transcription and reconstruction of music
manuscripts preserved in the New German Organ Tablature
notation have only been examined more closely in individual
cases, as in Warsaw (Hulková, 2015) or Prague (Horyna, 2018).

But even when transcriptions into modern notation
exist, they are not always uniform, transparent, and philo-
logically accurate. Figure 2 shows an example of two
transcriptions of a few bars of the “Orgel oder Instrument
Tabulaturbuch” (“Organ or instrument tablature book”)
by Elias Nikolaus Ammerbach (Ammerbach, 1583), one
of the first printed books containing New German Organ
Tablature. The differences in the transcriptions of Cecil
Warren Becker (Becker, 1963) and Hans-Thomas Müller-
Schmidt (Müller-Schmidt, 2017) are apparent. Müller-
Schmidt octaves the alto voice in bars two and three,
while in Becker’s transcription it is in the position that
the original dictates. In the bass voice, too, the second
note in bar two is transcribed once as ‘A’ (incorrect), the
other time as ‘B’ (correct). These differences demonstrate
that the results depend on the particular transcription
approach and the individual knowledge of the two
authors. This example indicates that uniform methods of
transcription, as currently used in the field of music of
the 15th and 16th centuries (Huang et al., 2015; Calvo-
Zaragoza et al., 2016, 2019), are indispensable.

Figure 2: Deviations in transcriptions of Ammerbach’s
“Orgel oder Instrument Tabulaturbuch” by (1) Becker
(1963) and (2) Müller-Schmidt (2017).

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks16

2.2 Automatic Organ Tablature Transcription
The use of automated methods for the transcription of
organ tablatures promises both to simplify the time-
consuming task of manual transcription and to guarantee
a standardized transcription. Automated methods can also
increase the number of available notation examples for the
analysis of musical semantics, for instance with regard to
harmonic features or contrapuntal processes. This would
greatly support musicological research in this area.

However, a method applicable to all kinds of organ
tablature seems quite difficult to develop, due to the
large variation. Organ tablatures are mostly preserved
as handwritten manuscripts and rarely exist as printed
versions. In general, tablatures from different sources can
vary considerably in layout and font style.

In the context of this work, we focus on two publications of
printed tablature music by the German organist and arranger
Elias Nikolaus Ammerbach: the “Orgel oder Instrument
Tabulaturbuch” (“Organ or instrument tablature book”)
(Ammerbach, 1583) and “Ein new künstlich Tabulaturbuch”
(“A new artificial tablature book”) (Ammerbach, 1575).

Using Ammerbach as an example for developing an
automatic organ tablature transcription is justified by the
fact that his tablature books are among the first printed
works on this subject. In addition, Ammerbach offers a
complete basic course for organists: up to the fingering,
all topics are covered in his books. Last but not least,
Ammerbach’s books have been a formative influence
for many organists due to their wide distribution in the
German-speaking world.

2.3 Character Set
Unlike modern musical notation, the New German Organ
Tablature does not use staff lines, and the pitch is not
indicated by the positioning of note marks. Instead, a
letter notation is used, in which the pitches are specified
as a sequence of note names. The octave position of the
notes is indicated by upper and lower case letters and
additional horizontal strokes above the characters. The
note duration is indicated by rhythmic symbols placed
above the pitch symbols, whose appearance is similar to
the note stems and bars of modern music notation. For
pause signs and special characters, additional symbols
exist, which also resemble symbols of modern music
notation.

Figure 3 shows examples of the different types of
tablature characters taken from Ammerbach’s tablature
books (labeling from left to right):

1. Note duration symbols: whole note, half note, two
quarter notes, four quavers

2. Note pitch symbols for the note g (from high to low):
two-line octave position, one-line octave position,
small octave position (without strokes), great octave
position (in capital letters)

3. Pause signs: whole rest, half rest, quarter rest, eighth
rest

4. Special characters: repetition mark, time change
(three-four time)

2.4 Page Layout
An organ tablature page consists of several rows separated
by horizontal lines. Some editors additionally divide their
tablatures into bars by vertical lines. Each row consists
of staves arranged one below the other, separated only
by a small distance, with one staff for each voice of the
composition.

The tablature characters of a voice are arranged in two
lines, as shown in Figure 4. The upper line contains note
duration symbols, while the lower line contains note pitch
symbols and pause signs. The position of special characters
may vary from editor to editor, but they are usually located
in the upper line. We therefore refer to the upper line as
duration/special line and to the lower line as pitch/rest line.

3. Related Work
The analysis and transcription of organ tablature music
notation has not been a research topic outside the field
of musicology and thus no research on this particular
topic exists in the field of computer science. However, the
research areas Optical Character Recognition (OCR) and
Optical Music Recognition (OMR) deal with the automatic
recognition of handwritten or printed text and notes on
images, respectively, and are thus related to the topic of
organ tablature character recognition.

Figure 3: Examples of the different types of organ tabla-
ture symbols taken from Ammerbach (1583): (1) Note
duration symbols; (2) Note pitch symbols; (3) Pause
signs; (4) Special characters.

Figure 4: The layout of printed tablature characters using
the example of Ammerbach (1583). Each staff (S1, S2)
inside the row consists of two lines (duration/special
(d/s) and pitch/rest (p/r) line) in which the tablature
characters are arranged.

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks 17

In all of these tasks, the goal of the analysis is to
recognize characters of a given alphabet in an input
image. In OMR, however, the positioning of the characters
in relation to each other also plays an important role. The
pitch, for example, cannot be derived from the symbols
alone, but is determined by the position of the note head
on the staff. The necessity of analyzing these semantic
relationships makes note recognition more complex than
text recognition, in which individual characters can be
recognized and transcribed independently of each other
(Calvo-Zaragoza et al., 2020; Bainbridge and Bell, 2001).

The automated analysis of organ tablatures poses similar
challenges. Here, the alphabet consists of a comparatively
large number of characters, many of which are quite
similar. The relative position of the characters to each other
plays a role as well, in particular for note duration and note
pitch characters that together represent one note.

In OCR and OMR, the recognition process is usually carried
out in several stages that commonly pass through the same
basic steps (Pansare and Joshi, 2012; Awel and Abidi, 2019;
Patel and Thakkar, 2015; Rebelo et al., 2012; Calvo-Zaragoza
et al., 2020). First, the input images are pre-processed to
better discriminate the foreground and background from
each other. Commonly performed steps are noise removal
(application of a smoothing filter), binarization (conversion
to grayscale with thresholding), and deskewing (correction
of image orientation and reduction of distortions) (Awel
and Abidi, 2019; Patel and Thakkar, 2015; Rebelo et al.,
2012; Calvo-Zaragoza et al., 2020).

After pre-processing, the actual character analysis is
performed. In the past, several methods have been used
to perform OCR, such as pattern matching (e.g., Chain
Code Histogram (CCH)), statistical models (e.g., Hidden
Markov Model (HMM)), k Nearest Neighbor (kNN) and
kernel-based machine learning methods (e.g., Support
Vector Machine (SVM)) (Purohit and Chauhan, 2016). In
recent years, however, deep neural networks, in particular
Convolutional Neural Networks (CNNs), have increasingly
become the standard for image analysis tasks and often
provide the best results in this area. Almost all current
approaches for text or note recognition use artificial
neural networks, but in some cases they are combined with
other machine learning methods such as HMMs or SVMs
(Patel and Thakkar, 2015; Purohit and Chauhan, 2016;
Rebelo et al., 2012).

A common approach to automatically process printed
documents is to first segment the input images into
individual objects (e.g., single letters or musical symbols)
to be analyzed further by a neural network. In this case,
bounding boxes indicating the position of the individual
characters are required for labeling the training data for the
neural network. When an input is analyzed, the characters
are recognized individually and are not combined into a
single output as part of the recognition task. However,
semantic information such as the coherence of characters
(e.g., the position of note heads on staves) is lost when
characters are recognized independently. This information
has to be restored for merging the results, which requires
additional effort. Examples of this approach can be found
in the works of Feng et al. (2017) for handwritten text and
Tuggener et al. (2018) for scanned sheet music.

Instead, so-called sequence-to-sequence approaches,
in which larger units (e.g., entire rows) are recognized
at once, can be used. For this purpose, Recurrent Neural
Networks (RNNs) are usually employed in combination
with CNNs. When recognizing larger sequences, semantic
relationships between characters in the sequence are
preserved, which simplifies the combination of results
considerably. In addition, the creation of ground truth data
required for training a neural network is less expensive,
since bounding boxes for each character are usually not
required. Examples of this approach can be found by Su
and Lu (2017) or Dutta et al. (2018) for handwritten texts,
and Calvo-Zaragoza et al. (2017); Calvo-Zaragoza and Rizo
(2018) or Alfaro-Contreras et al. (2019) for sheet music.

Typically, a post-processing step follows after the
recognition step is finished. If the recognition was performed
on smaller units, the individual results are now combined.
When recognizing notes, the semantic relationships of the
detected characters must be determined (for example, the
position of a note on the staff) and transferred to a data
structure in which these relationships are modeled. After
the results have been merged, an automatic error correction
can be performed, in which the syntax and semantics of
the analysis results are examined using dictionaries, and
identified analysis errors are corrected. In OMR, the results
are finally encoded in the desired output format (e.g.,
MusicXML or MIDI) (Patel and Thakkar, 2015; Rebelo et al.,
2012; Calvo-Zaragoza et al., 2020).

4. Deep Tablature Transcription
Our deep learning approach for organ tablature transcri ption
receives scanned documents in organ tablature notation as
its input and outputs a corresponding transcription of the
musical score in modern notation (i.e., Lilypond1 format).

For multi-page documents, the individual scanned
pages are first extracted from the input document and
processed sequentially. The transcription process consists
of three successive steps with several sub-steps:

1. Pre-processing: deskewing and segmentation of the
input images into tablature rows and staves

2. Recognition: recognition of tablature characters in
the individual staves

3. Post-processing: merging of the recognition results
into a combined result and generation of output files

4.1 Pre-processing
In this first step, the input data is prepared so that OCR
can be performed. This includes image deskewing and
segmentation into rows and individual staves.

4.1.1 Deskewing
The quality of scans of old documents can vary significantly.
Many documents are marked by age and signs of use,
which limits readability. Often, the paper is yellowed and
in some places the print has faded. Moreover, due to the
woodcut printing technique of the 16th century, the print
is often irregular and many pages are printed skewed or
appear distorted due to the age of the paper.

This is a challenge not only for recognition, but also for
segmentation. If the tablature rows run at an angle due to

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks18

distortions, it is possible that characters are cut off when
the input images are divided into partial images for the
individual tablature staves. At the same time, however, no
unnecessary margins should be added.

To meet these challenges, the first pre-processing step
is to correct distortion and rotation of the image. The
algorithm used for deskewing first performs a horizontal
line detection on the input image by applying the
morphological opening operation with a gain in x-direction
to the binarized input. The resulting connected areas
represent the lines. On these lines, points are sampled at
regular x-intervals. For each of these points, the amount
of offset required to align the sample points horizontally
is calculated. Based on these offsets, a transformation
matrix is created to align the lines horizontally.

4.1.2 Segmentation
The pages of Ammerbach’s tablature books contain
multiple rows of tablature separated by horizontal dividing
lines. Each row consists of a number of staves, one for each
voice of the piece of music. Since tablature recognition can
only be performed for individual staves, the input must be
segmented accordingly.

While the number of rows on each page can be
determined by detecting the horizontal dividing lines, the
number of voices within a row is difficult for an algorithm
to determine, since there are rarely clear boundaries
between the staves. Since an incorrect assumption of the
number of voices would lead to major errors in character
recognition, the number of voices in each row is not
automatically determined by the program, but must be
specified by the user.

The dewarped input image is first split into partial images
for rows. For this purpose, line detection is performed to
find all horizontal dividing lines. The detected middle y
positions of each line serve as separation edges. The row
images are then divided into images of individual staves.
Since no further dividing lines exist between the different
voices and since it is not always possible to draw clear
cutting edges due to overlaps, the voices’ positions are
estimated by dividing the image pitch by the given number
of voices. The pitch and width of the partial images to be
generated are set according to the size of the input layer
of the neural network. The row image is then cropped so
that the estimated middle position of the staff is located at
the center of the resulting partial image. The segmentation
process is illustrated by an example in Figure 5.

4.2 Recognition
We use an RNN architecture that contains CNN components
for recognizing tablature staves. The network is trained
on a large and diverse data set of annotated images of
tablature staves and learns to recognize tablature character
sequences. After training, the network can recognize
tablature characters displayed on previously unseen
images. The proposed Character Sequence Pair (CSP)
network is implemented in Keras.3

4.2.1 Character Sequence Pair Network
The biggest difference between the recognition of
arbitrary text lines and organ tablature staves in images is
that tablature staves each consist of two lines on which the
tablature characters are arranged. The upper line contains
note duration symbols and special characters, while the
lower line contains note pitch symbols and pause signs
(see Figure 4). To consider this two-line arrangement, we
present the Character Sequence Pair (CSP) recognition
network. It has two output heads (called duration/special
head and pitch/rest head) that are trained to predict
the upper and lower line characters, respectively. This
follows the basic idea of multitask learning as originally
introduced by Caruana (1997), where the tasks in this case
are to recognize the two different character sets.

Splitting the output is necessary because the recognition
network is not built to recognize individual characters at
specific positions, since this would require tedious labeling
with bounding boxes. Instead, for each x coordinate
of the input image, a probability distribution over all
possible labels at this position is produced. From these
probability distributions, the label sequence maximizing
the probabilities for each coordinate is determined.

With only one output head, all combinations of
duration/special and pitch/rest line characters that
could occur at the same x position would have to be
encoded by different labels. This would increase the
number of labels immensely, which in turn would lead
to a significantly higher training duration and a larger
number of required training samples. By using two output
heads, the characters of the two lines can be recognized
independently of each other, which reduces the training
effort significantly.

The CSP network consists of a CNN part, followed
by an RNN part. Figure 6 shows the architecture of
the network. The input layer has a size of 2000 × 128
neurons corresponding to the pixels of the input image.
This size provides space for one tablature staff and leaves
sufficient room for rows that are not aligned perfectly
horizontally.

We utilize two blocks of convolutional layers that first
detect simple and then more complex shapes in the input
image. In the first convolutional block, we use two sets
of 64 filters, and in the second block we use two sets of
128 filters (due to the increased complexity level). After
each block, we use max-pooling that cuts the size of the
input down to half of its size. This results in a reduction of
the weights to be trained and thus in a faster convergence
of the training, but additionally increases the invariance
of the network with respect to small displacements
(Goodfellow et al., 2016).

Figure 5: Segmentation of the input image. The input
image is split into separate images for each row on
the displayed horizontal dividing lines. Afterwards, the
results are split into images for each staff using the esti-
mated voice positions.

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks 19

The processing of the input by the CNN part yields 128
activation maps with a size of 500 × 32 neurons each,
thus a three-dimensional output. To further process this
information in the RNN part, it has to be condensed into a
two-dimensional form. For this purpose, we use a reshape
layer that arranges the activations of the individual
filters vertically one below the other, thereby creating
an activation map of 500 × 4096 neurons. To reduce the
number of parameters of the subsequent recurrent layers
and thus speed up training, we insert a fully-connected
layer with a smaller number of neurons (500 × 1024) after
the reshape layer.

After the fully-connected layer, the path through the
network, which has been shared so far, splits into two paths
for the recognition of the duration/special characters
and the pitch/rest characters of a staff. The recurrent
networks we use are bidirectional Gated Recurrent Units
(GRUs) with a size of 500 × 512 neurons. GRUs (Cho et al.,
2014) are designed for processing sequential data (such as
sequences of organ tablature characters).

On each of the two paths of the CSP network, we use
two bidirectional GRUs, followed by a fully connected
layer with softmax activation function. The softmax
layers serve as output heads of the network for the
characters of the upper (duration/special head) and
lower (pitch/rest head) lines. These layers differ in size
due to the different character sets to be recognized.
There are 15 different characters to be recognized by
the duration/special head, and there are 52 characters
for the pitch/rest head (each plus two reserved labels:
blank and no output).

4.2.2 Training and Recognition
The neural network is trained with Stochastic Gradient
Descent (SGD). The cost function used is the Connectionist
Temporal Classification (CTC) loss (Graves et al., 2006;
Hannun, 2017). This makes it possible to train the network
using training data without bounding boxes. The loss values
are calculated independently for the duration/special head
and the pitch/rest head. The total loss optimized during the
training is calculated as the sum of the duration/special and
the pitch/rest loss. Details of the training and validation
process are explained in Section 6.

When performing a prediction on a tablature staff,
the neural network outputs probability distributions
for the duration/special and the pitch/rest line for
each x coordinate of the input image, representing the
occurrence of all possible labels at that position. From
these, we use an adapted version of beam search (Hannun,
2017) to determine the label sequences with the highest
overall probabilities independently of each other for the
two lines of the staff.

4.3 Post-processing
In this step, the results of the recognition network for
each staff are combined into an overall result, from which
a Lilypond file is generated. This file is subsequently used
to generate a graphical output in modern music notation.

4.3.1 Result Combination
The label sequences for duration/special head and
pitch/rest head determined independently for each
given staff are now merged into a single sequence. This
is achieved by repeatedly combining one note duration
symbol with one note pitch symbol, since these together
represent a single note in modern notation. Pause signs
and special characters can be transferred directly to
the result sequence during this process. If a complete
matching is not possible due to analysis errors, the
remaining characters are added individually to the result,
but formatted with an x as note head (if no pitch sign
was found) or without note stem (if no duration sign was
found) to indicate that a matching error occurred for this
character.

When analyzing a sequence of tablature staves, the result
sequences for each staff are combined into a single overall
result. Thereby, the character sequences of all staves that
are assigned to the same voice are concatenated to a single
long sequence. Thus, the analysis of a four-voice organ
tablature piece, for example, will result in four character
sequences, regardless of the number of pages analyzed.

4.3.2 Output Generation
The results are saved in a Lilypond file to be able to
generate a graphical output in modern music notation.
The Lilypond file format is a LaTex-like structured format

Figure 6: Architecture of the CSP tablature recognition network. The different layer types are color-coded and the size
is indicated below each layer. This image was generated with PlotNeuralNet (Iqbal, 2018).

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks20

in which each voice of a polyphonic composition is
recorded as a separate string. In these, letters of the note
names indicate note pitch (with commas and quotation
marks for the octave position) and numbers indicate note
duration. Owing to its simple but clear structure, this file
format is well suited for musicological analyses, especially
statistical studies.

The labeling of the training data for the network has been
largely adapted to Lilypond’s notation scheme, making
it very easy to transfer network outputs to Lilypond. For
example, the note duration symbols are labeled with the
corresponding numbers (e.g., 4 for a quarter note) and
the note pitch labels each consist of a note name letter
followed by quotation marks or commas to indicate the
octave position (e.g., d” for the note d in the two-line
octave, the second octave above middle c).

We only use abbreviations for special characters and a few
other exceptions that require a more complex command
in Lilypond. These abbreviations are replaced by their
corresponding Lilypond commands during the combination
step. The result for each voice is therefore a string with the
recognized character sequence in Lilypond format.

To generate a Lilypond file from the result sequences, a
template is used containing all necessary commands for
the desired layout. The strings for the individual voices
are inserted into this template at the appropriate places.
Further down the file, the voices are then assigned to
corresponding staves, for example, to create a four-part
composition. Finally, the Lilypond file is used to generate
graphical sheet music output in the desired format (pdf,
png) or digital music output (MIDI).

5. Tablature Data Set
Since no data sets for training a neural network for organ
tablature recognition existed until now, we created such a
data set in the context of our work.

Two organ tablature books by Elias Nikolaus Ammer-
bach are the basis of our data set. First, the “Orgel oder
Instrument Tabulaturbuch” (“Organ or Instrument
Tablature Book”) (Ammerbach, 1583) is used; it consists
of 213 pages in tablature notation. Second, “Ein new
künstlich Tabulaturbuch” (“A new artificial tablature
book”) (Ammerbach, 1575) is used; it has 170 printed
tablature pages. Both works contain printed tablatures
and share the same font style, but differ slightly in layout.

To create our data set, we manually annotated 1,200
staves from each book with label sequences. However,
this number of tablature staves is not sufficient to train
a neural network to deliver highly accurate results, as we
will show in Section 6.4.3. Thus, we increased the amount
of available data by employing data augmentation
and artificially generating tablature rows using a data
generator that we developed for this purpose.

The generator produces images of organ tablature
rows similar to those in Ammerbach’s tablature books by
randomly arranging images of single tablature characters.
When placing the characters, the generator ensures that
duration and pitch characters are combined appropriately,
but no semantic relationships are considered, neither in
the same voice nor between voices. Instead, the selection of

a character from a category is purely random, which is why
no logical melody progressions are created, no rhythmic
structure is observed, and no harmonic rules between the
voices are followed. Thus, the neural network is trained to
recognize sequences of independent characters.

We use the generated images to focus on cases where
characters are poorly printed or appear distorted to make
the network more robust to these challenges. Furthermore,
in the original images, some characters appear very
frequently, while others are severely underrepresented.
This imbalance is mitigated by the generator as well.

Figure 7 shows a comparison between a real tablature
row, an augmented tablature, and two generated tablatures.
While font style and basic layout are identical, the original
image is more clearly structured and has higher contrast
than the generated ones. Augmentation introduces
variation by making rather small changes to the original
image. The artificially generated images provide an even
higher variability and thus allow a better generalization of
the model to more diverse data. The data set with annotated
staves and the open-source code of our data generation and
augmentation tools are available for download.2

5.1 Data Generator
The generator receives a set of images of all tablature
characters from Ammerbach’s tablature books as its input.
Several variations of each character are needed to ensure
that the generated results are as diverse as possible. We use
20 to 30 sample images of each character. The individual
characters had to be selected manually from the original
documents and then had to be cropped using an image
processing program. This tedious process was necessary to
ensure that the generated images could be blended well
and the results appear as similar as possible to the originals.
In addition to the tablature characters, some examples of
bar lines, page borders, and text segments were extracted
to represent these elements in the generated data.

To help the network to separate background and content
during training, a number of areas without characters
were taken from the tablature books as backgrounds for
the generated images. The probabilities for the random
selection of each type of tablature character and minimum
distances to neighboring characters can be specified by
additional metadata.

The generation process starts with an empty image
of the desired size. First, a random background image is
selected and randomly positioned in the image section.
Then, the image is filled with tablature characters in
bars. Each bar is framed by randomly selected bar lines
or special characters on both sides. Within a bar, random
sequences of tablature characters are generated one after
the other for each voice. Note duration and note pitch
characters are always generated together to ensure that
these characters only occur in combination. The symbols
are placed on the duration/special line or the pitch/rest
line of the corresponding voice according to their type.

After all staves within a bar have been filled in this
way, the bar is completed and the next bar is started. This
procedure is repeated until the entire width of the image
has been filled in.

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks 21

Finally, the generated image, which contains several
staves, is split into partial images for the individual staves.
For each of these images, an additional text file containing
the ground truth label sequences (one with duration
and special characters and the other with pitch and rest
characters) is created.

5.2 Data Augmentation
To increase the variety of the images in the data set, we
utilize data augmentation to create several slightly modified
variations of each image (both real and generated images).

During the artificial data generation, data augmentation
is also performed at several points, e.g., to slightly modify
the individual images of the randomly selected characters.

The augmentation operations include random changes
of image parameters such as color, brightness, and

contrast. Furthermore, the images are randomly scaled,
rotated, and distorted. By setting some pixels to random
color values, some noise is added as well. In addition, the
entire image content can be shifted slightly in a random
direction.

The probability and magnitude of each augmentation
operation was determined experimentally and can be
adjusted by the program parameters.

6. Experiments
We have conducted a series of experiments to evaluate
the quality of the transcriptions created by the presented
approach. The correctness of the results primarily depends
on the accuracy of the outputs of the recognition network,
which is why the experiments focus on the evaluation of
metrics for the network outputs.

Figure 7: Comparison of (1) a real tablature row from Ammerbach’s tablature books; (2) an augmented version of the
same tablature row; (3,4) two tablature rows artificially created by the data generator.

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks22

In our experiments, we compare the performance of
different variations of the CSP network and different training
setups and analyze the errors made on the test data set.

6.1 Data Sets
The data sets we created consist of labeled organ tablature
staves, grouped into the three subsets: training, validation,
and test data. We combine real tablature staves extracted
from the scans of two tablature books with artificially
composed tablatures generated with the synthetic data
generator described above. To increase the number of images
in the data sets, we use data augmentation to create several
slightly modified variations of each image. We investigate the
influence of augmentation and the use of randomly generated
data on network training by comparing training runs with
different partial data sets in Section 6.4.3. We started our
experiments using a large training set with a high number
of generated images (trainSetL). During our experiments,
we found that the results are slightly better using a smaller
number of generated training images (trainSetS). Therefore,
we use this data set for the final evaluation. Table 1 shows
the composition of the data subsets.

6.2 Metrics
For a quantitative evaluation of the trained neural
networks we calculate the following metrics on the test
set of 1,000 tablature staves:

•	 Top-k accuracy:

Top-

images with correct Top- recognition
analyzed imagesk

k
acc =

•	 Bar accuracy:

 bar

correctly recognized bars
analyzed bars

acc =

•	 Levenshtein distance:

 staff

editing steps per image
analyzed images

edist =

•	 Normalized Levenshtein distance:

 char

editing steps per image
characters on analyzed images

edist =

A challenge in the automated quantitative evaluation of
organ tablature transcriptions is that comparatively long
character sequences are considered. Here, single errors
can heavily bias metrics such as Top-1 accuracy. To address
this problem, we additionally consider the Top-10 and
Top-5 accuracy, but especially the accuracy per bar, since
single errors have a smaller impact here.

An even better evaluation criterion is the Levenshtein
edit distance. It expresses the degree of difference
between two strings as the average number of editing
steps required to transform one string into the other
string. This indicates the degree to which two sequences
match. To be able to compare sequences of different
lengths on different images, we additionally normalize the
edit distance to an average number of editing operations
per character.

6.3 Network Architectures
As described in Section 4.2.1, the presented CSP recognition
network is divided into two paths that are trained to
recognize characters using the duration/special head and
the pitch/rest head, respectively. During training, both
paths are trained together, and outputs for an input image
are also produced simultaneously by both heads.

An alternative to this approach is to use two inde-
pendent networks, each containing only one of these
paths. Each of these networks has significantly less
parameters, which simplifies training. The two networks
can be trained independently of each other and only learn
to recognize the characters of one line of characters. To
compare the performance of these two approaches, we
trained both a CSP network and two partial networks,
one for each path, with identical parameters on the same
training data set. The results of this evaluation can be
found in Section 6.4.1.

To verify that the chosen network configuration is
appropriate for this problem, we compare the results of
various simplifications of the CSP network in Section 6.4.2.

We trained each network over a period of 40 epochs.
The learning rate was initially set to 0.015 and reduced to
0.00001 over the training period using a cosine function
(i.e., cosine learning rate decay).

6.4 Results
In our experiments, the networks were trained on an
Nvidia GeForce GTX TITAN X installed in an Intel Core
i7-5930K having 12 cores at 3.50 GHz and 64 GB of

Table 1: The data set, consisting of training, evaluation, and test sets. The values indicate the number of images taken
from each source. The numbers in parentheses indicate the factor by which this number has been enlarged by data
augmentation.

Subset
Staves taken from “Orgel oder

Instrument Tabulaturbuch”
Staves taken from “Ein new
künstlich Tabulaturbuch”

Generated
Staves

Sum

trainSetL 500 (*100) 500 (*100) 140,000 (*5) 800,000

trainSetS 500 (*100) 500 (*100) 20,000 (*5) 200,000

valSet 200 (*25) 200 (*25) 8,000 (*5) 50,000

testSet 500 500 0 1,000

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks 23

RAM. After completing the training of the networks, we
evaluated the metrics described above on the test data.

6.4.1 Experiment 1: Partial Networks
In this experiment, we compare the CSP network, in which
the paths for the duration/special head and the pitch/rest
head are trained together, with two partial networks,
each consisting of only one of these paths. All networks
were trained on the trainSetL data set. Table 2 shows the
results.

It is evident that the difference in the quality of the
results between the CSP network and the two partial
networks is quite small. For pitch/rest, the partial network
delivers slightly better results (difference in edit distance
relative to CSP: –0.070), but for duration/special, the CSP
network is slightly better (edit distance difference +0.016).

Since the CNN part of the CSP network is traversed for
both output paths, this network has a smaller number
of parameters to be trained than two independent
partial networks, which results in lower computational
requirements. The number of floating point operations
(FLOPs) required for the combined network is 27.93 M as
opposed to a sum of 36.83 M of both partial networks. This
is reflected in a shorter computing time for CSP network
training. On the Nvidia/Intel platform mentioned above,
the 40 training epochs for the CSP network lasted 47
hours and 34 minutes, whereas the training of the two
partial networks, one after the other, lasted 60 hours and
45 minutes in total.

The CSP network thus offers approximately the same
quality of the results with reduced computational requi-
rements and thus shorter training times.

6.4.2 Experiment 2: Simplified Networks
In this experiment, we compare the CSP network with several
simplified network architectures to investigate whether
a simpler architecture exists that provides equivalent or
better results. The networks were again trained on the
trainSetL data set. The results are presented in Table 3.

All three simplified architectures perform worse than
the full CSP network for each of the calculated metrics. The
use of unidirectional GRUs provides the least degradation
(edit distance difference +0.009 for duration/special or
+0.092 for pitch/rest), while the reduction to one CNN
block leads to a much larger deterioration (+0.025 resp.
+0.181). The use of only one GRU (+0.028 resp. +0.196) is
even worse. We conclude that all components of the CSP
network architecture are necessary for this problem, and
the use of a smaller architecture is likely to decrease the
performance.

6.4.3 Experiment 3: Training Data
In this experiment, we compare the training of the CSP
network on different data sets to examine the influence of
data augmentation and synthetic data generation on the
quality of the results. The results are shown in Table 4.

The use of data augmentation (Aug) greatly improves
the metrics compared to training with unaugmented

Table 2: Comparison of the CSP network with two partial networks, one for each path. The table shows the metrics
evaluated on the test data set, the number of floating point operations (FLOPs), and the training time required for
40 epochs.

Network Characters
Accuracy Edit Distance Computation Time

Top-10 Top-5 Top-1 Bar Staff Char FLOPs Training

CSP
Duration/Special 0.994 0.992 0.970 0.989 0.070 0.00162

27,925,688 47h34m
Pitch/Rest 0.944 0.943 0.876 0.971 0.320 0.00515

Partial 1 Duration/Special 0.991 0.990 0.963 0.988 0.086 0.00192 18,377,884 28h12m

Partial 2 Pitch/Rest 0.963 0.960 0.896 0.972 0.250 0.00423 18,453,660 32h33m

Table 3: Comparison of the CSP network with three simpler variations of the network. The table shows the differences
in the network configurations, the metrics evaluated on the test set, as well as the number of FLOPs for each network.

Network
Configuration

Characters
Accuracy Edit Distance

FLOPs
CNNs GRUs Top-1 Bar Staff Char

Full CSP 2 blocks
2 bidir. Duration/Special 0.970 0.989 0.070 0.00162

27,925,688
2 bidir. Pitch/Rest 0.876 0.971 0.320 0.00515

1 CNN 1 block
2 bidir. Duration/Special 0.954 0.989 0.095 0.00218

27,483,320
2 bidir. Pitch/Rest 0.840 0.958 0.501 0.00835

unidir. GRUs 2 blocks
2 unidir. Duration/Special 0.962 0.988 0.079 0.00190

18,415,780
2 unidir. Pitch/Rest 0.835 0.960 0.412 0.00690

1 GRU 2 blocks
1 bidir. Duration/Special 0.950 0.984 0.098 0.00207

21,634,212
1 bidir. Pitch/Rest 0.818 0.949 0.516 0.00859

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks24

data (noAug) (edit distance difference –0.285 for
dura tion/special or –0.876 for pitch/rest). If we extend the
100,000 augmented real images by the same number of
synthetically arranged tablatures (Aug1Gen1), we achieve
the best results in our tests (difference further –0.008
resp. –0.108). For tests with larger data sets, we did not
achieve any further improvements, neither by adding
more generated data (Aug1Gen2) (difference +0.013 resp.
+0.021) nor by increasing the number of augmentations
(Aug2Gen2) (difference +0.004 resp. +0.006). We conclude
that with larger amounts of generated data, the effect of
overfitting the images of individual characters that serve
as the basis for the generator is observable. The same is
true for frequent augmentation of a small number of real
tablature staves. Thus, further improvements of the results
require either additional annotated real tablatures or more
samples of each character as inputs for the data generator.

Furthermore, we compared two test runs in which
we only used a small number of real training images,
(a) without generated data (PtAug), (b) with augmented
and generated data (PtAugGen). The addition of generated
data leads to a significant improvement of the results (edit
distance difference –0.516 resp. –1.141). We conclude that

the use of our data generator is very helpful for smaller
data sets where many characters are underrepresented.
With an increasing amount of real data available, the
positive influence of generated data on accuracy decreases.
A greater improvement in the results is then achieved by
using data augmentation on the real data.

Finally, we investigated the benefits of the different
augmentation operations. We trained our network with
real training images augmented in different ways, with
only one type of augmentation performed at a time, and
compared the results with a training run on the same
images without augmentation. We found that changes in
image parameters and the addition of noise leads to small
improvements of the results. However, shifting the image
and applying scaling and distortion significantly improves
the results.

6.4.4 Evaluation of the CSP Network
After having compared various network configurations
and training with different data sets, we now present
the results of the final configuration in detail. For this
purpose, the CSP network was trained on the trainSetS
data set. The results are summarized in Table 5.

Table 4: Comparison of training the CSP network with different data sets. The table shows the differences in the
number of real and generated tablature images (as well as the factor by which this amount was increased by aug-
mentation) for each training set and the metrics evaluated on the test data.

Train Data
Number of Tablature Staves

Characters
Accuracy Edit Distance

Real Generated Sum Top-1 Bar Staff Char

noAug 1000 0 1000
Duration/Special 0.844 0.952 0.348 0.00746

Pitch/Rest 0.641 0.895 1.270 0.02258

Aug 1000 (*100) 0 100,000
Duration/Special 0.966 0.995 0.063 0.00134

Pitch/Rest 0.851 0.967 0.394 0.00645

Aug1Gen1 1000 (*100) 20,000 (*5) 200,000
Duration/Special 0.970 0.993 0.055 0.00120

Pitch/Rest 0.875 0.972 0.286 0.00455

Aug1Gen2 1000 (*100) 40,000 (*5) 300,000
Duration/Special 0.967 0.990 0.068 0.00143

Pitch/Rest 0.873 0.970 0.307 0.00510

Aug2Gen2 1000 (*200) 40,000 (*5) 400,000
Duration/Special 0.971 0.990 0.059 0.00128

Pitch/Rest 0.870 0.972 0.292 0.00475

PtAug 100 (*100) 0 10,000
Duration/Special 0.725 0.919 0.782 0.01608

Pitch/Rest 0.527 0.849 2.005 0.03460

PtAugGen 100 (*100) 50,000 (*5) 260,000
Duration/Special 0.871 0.952 0.266 0.00583

Pitch/Rest 0.709 0.906 0.864 0.01539

Table 5: Evaluation of the CSP network trained on the trainSetS data set. The table shows the metrics calculated on the
test data set.

Characters
Accuracy Edit Distance

Top-10 Top-5 Top-1 Bar Staff Char

Duration/Special 0.996 0.996 0.970 0.993 0.055 0.00120

Pitch/Rest 0.951 0.947 0.875 0.972 0.286 0.00455

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks 25

The network achieves high accuracy values on the test
data. The correct result is found in the Top-5 outputs of
the network in 94.7% of the analyzed tablature staves for
pitch/rest and in 99.6% for duration/special. When only
the output with the highest probability is considered, the
Top-1 accuracy for pitch/rest drops to 87.5%, while that
of duration/special decreases to 97.0%. This imbalance
can be explained by the larger alphabet of the pitch/rest
characters and in particular by a larger number of highly
similar symbols than in the duration/special symbols.

Looking at the percentage of correctly analyzed bars,
the network reaches 97.2% for pitch/rest and 99.3% for
duration/special. Here, the accuracy values are much
closer, which shows that the errors mainly affect single
characters and not larger areas. In most cases, only one bar
of a staff is affected by an incorrect recognition, while the
remaining bars are correctly recognized. This causes the
staff accuracy to drop more strongly than the bar accuracy.

This observation is also evident when evaluating the
Levenshtein edit distance metric. The average number of
editing steps per staff is 0.286 for pitch/rest. Normalizing
these results to the number of edits per character yields a
value of 0.00455. This means that, on the average, an error
occurs every 220th character. For duration/special, the
edit distance is 0.055 per staff and 0.00120 per character.
This means that an error occurs, on the average, at every
833rd character.

6.5 Error Analysis
In this section, we take a closer look at the detected errors
and examine their causes.

The 1000 images of the test data set contain 105,117
characters – 51,367 for duration/special and 53,750 for
pitch/rest. Our analysis revealed 258 wrongly recognized
characters, 35 for duration/special and 223 for pitch/rest.
Wrongly recognized spaces were not counted, because
the characters of a label sequence are always separated by
spaces. As a result, the network output always inserts or
omits a space if a character is added or missed. The errors
can be broken down into the four categories shown in
Table 6.

In many cases, the errors can be traced back to the
quality of the tablature sources. The print is uneven or
incomplete in some places, or the color has faded due
to the age of the document. This makes some characters
unclear and difficult to distinguish. The neural network
already finds the correct result in many of such unclear

places, but in other places it fails. Figure 8 shows some
examples of such areas where the recognition of the test
data is a challenge.

The error category ‘Missed Symbol’ lists 68 cases in which
characters could not be recognized by the CSP network.
The most frequently affected characters are bar lines (29
times), the note pitch sign e’ (5 times) and semiquaver
notes (3 times). This type of error occurs especially in
places where many characters appear in a small space (see
Figure 8 images 1 (incorrect) and 7 (correct)) or characters
are poorly readable (see Figure 8 images 2 (incorrect) and
8 (correct)). For example, the missed bar lines are nearly
always caused by the fact that these bar lines are barely
visible on the scans (see Figure 8 image 3 (incorrect)).

The ‘Added Symbol’ category contains 21 cases in which
background elements or text blocks are incorrectly
detected as tablature characters.

The most common analysis error is the confusion of
similarly appearing characters. Here, a distinction is again
made between two types of false analyses.

In the category ‘Wrong Symbol’, 84 cases are marked in
which a completely different character was predicted than
the one given in the ground truth data. Here, the note
pitch symbols for c and e (7 times), g and a (6 times) as
well as b and bb (also 6 times) were most often mistaken
for each other. A confusion of these characters can be
explained in many cases by an unclear print, because the
appearance of the characters is quite similar (see Figure 8
images 4, 5 (incorrect) and 8, 9 (correct)).

The errors where a correct note pitch sign was detected,
but in the wrong octave position, are listed in the category
‘Wrong Octave’. The octave strokes above the note names
are printed quite faintly in many places, so that the exact

Table 6: The errors that occurred during the analysis,
catego rized into groups with the corresponding number
of cases.

Duration/Special Errors Pitch/Rest Errors

Category Count Category Count

Missed Symbol 21 Missed Symbol 47

Added Symbol 4 Added Symbol 17

Wrong Symbol 10 Wrong Symbol 74

Wrong Octave 85

Figure 8: Examples of areas in the test data that are dif-
ficult to recognize. In images 1–6, an analysis error
occurred in the marked areas, while in images 7–9, even
in the circled areas, the poorly readable characters were
correctly recognized.

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks26

identification of the octave position is often difficult (see
Figure 8 images 6 (incorrect) and 9 (correct)). Most often,
the note pitch symbols for d (24 times), c (16 times) and g
(12 times) were assigned to a wrong octave position.

6.6 Discussion
The experiments carried out show that the proposed
CSP network is capable of recognizing scanned organ
tablatures with low error rates. We have examined different
network configurations and found that the presented CSP
architecture is a suitable architecture and that the use of two
output heads is reasonable. Training on different data sets
showed that both data augmentation and synthetic data
generation have a positive effect on network performance,
especially with small amounts of available real data.

In our work, the network has only been used to recognize
printed organ tablatures from two tablature books sharing
the same font style, although differing in page layout. The
experiments show that the CSP network generalizes well
on these tablatures, and only minor recognition errors
occur. Many of these errors can be blamed on the print
quality and the age of the analyzed organ tablature books,
which in some places make character recognition and
differentiation difficult. To obtain a network that is even
more robust to such challenges, a larger training data set
is needed that covers these ambiguities to a greater extent.

7. Conclusion
We presented a deep learning approach to automatically
transcribe scores from organ tablature music notation to
modern music notation. The proposed approach processes
scanned tablature pages by segmenting them into images
of individual staves and performing character recognition
on these sub-images using the presented Character
Sequence Pair (CSP) neural network. The network
recognizes one tablature staff at a time and provides
two outputs for the two lines on which the tablature
characters are located. In a post-processing step, these two
outputs are combined into a single output and transferred
to the desired music notation format. The transcription
is performed without automatic error correction and
interpretation and therefore delivers a result as close as
possible to the original document.

Since no data sets for training neural networks to
recognize organ tablatures existed up to now, we created
a new data set based on two organ tablature books by
Elias Nikolaus Ammerbach. We developed a synthetic data
generator that randomly assembles artificial tablature
rows from images of single characters. The network
was trained using a combination of real staves from the
tablature books and artificially composed organ tablature
staves, using data augmentation to further increase the
amount of available data.

The quality of the transcriptions generated by our
approach was examined in several experiments. On a
test data set obtained from the tablature books, the
CSP network achieved an accuracy of 97.2% and 99.3%
correctly recognized bars, depending on whether note
pitch and rest characters or note duration and special
characters are considered, respectively. On the average, an

error occurs every 220th pitch/rest character and every
833rd duration/special character.

There are several areas for future work. First, we plan to
train the CSP neural network to recognize further printed
organ tablatures with different layouts and font styles,
and possibly handwritten tablatures. Second, we intend
to investigate whether extensions or alternative neural
network architectures will be required to improve the
results. Finally, we will investigate possibilities to further
improve the data generator. Possible approaches are
increasing the source image set or extending the generator
with semantic rules. We also plan to develop a generator
that uses digitized organ pieces as source material and
transcribes them to tablature notation.

Notes
 1 https://lilypond.org.
 2 https://github.com/umr-ds/organ-tablature-ocr-

dataset.
 3 https://keras.io/.

Acknowledgements
This work is financially supported by the Deutsche
Forschungsgemeinschaft (DFG, FR 791/15-1).

Competing Interests
The authors have no competing interests to declare.

References
Alfaro-Contreras, M., Calvo-Zaragoza, J., and Iñesta,

J. M. (2019). Approaching End-to-End Optical
Music Recognition for Homophonic Scores. 9th
Iberian Conference on Pattern Recognition and Image
Analysis (IbPRIA), 11868: 147–158. DOI: https://doi.
org/10.1007/978-3-030-31321-0_13

Ammerbach, E. N. (1575). Ein new künstlich
Tabulaturbuch. Nürnberg.

Ammerbach, E. N. (1583). Orgel oder Instrument
Tabulaturbuch. Nürnberg.

Apel, W. (1967). Geschichte der Orgel- und Klaviermusik
bis 1700. Bärenreiter, Kassel.

Apel, W. (2006). Die Notation der polyphonen Musik 900–
1600. Breitkopf & Härtel, Wiesbaden, 5th edition.

Awel, M. A., and Abidi, A. I. (2019). Review on Optical
Character Recognition. International Research
Journal of Engineering and Technology (IRJET), 06(6):
3666–3669.

Bainbridge, D., and Bell, T. (2001). The Challenge
of Optical Music Recognition. Computers and the
Humanities, 35(2): 95–121. DOI: https://doi.org/10.
1023/A:1002485918032

Becker, C. W. (1963). A Transcription of Elias Nikolaus
Ammerbach’s Orgel oder Instrument Tabulaturbuch.
PhD thesis, University of Rochester.

Bellermann, H. (1858). Die Mensuralnoten und Taktzeichen
des XV. und XVI. Jahrhunderts. Georg Reimer, Berlin.

Calvo-Zaragoza, J., Hajič Jr., J., and Pacha, A. (2020).
Understanding Optical Music Recognition. ACM
Computing Surveys, 53(4). DOI: https://doi.org/10.
1145/3397499

https://lilypond.org
https://github.com/umr-ds/organ-tablature-ocr-dataset
https://github.com/umr-ds/organ-tablature-ocr-dataset
https://keras.io/
https://doi.org/10.1007/978-3-030-31321-0_13
https://doi.org/10.1007/978-3-030-31321-0_13
https://doi.org/10.1023/A:1002485918032
https://doi.org/10.1023/A:1002485918032
https://doi.org/10.1145/3397499
https://doi.org/10.1145/3397499

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks 27

Calvo-Zaragoza, J., and Rizo, D. (2018). End-to-end
Neural Optical Music Recognition of Monophonic
Scores. Applied Sciences, 8(4). DOI: https://doi.org/10.
3390/app8040606

Calvo-Zaragoza, J., Rizo, D., and Quereda, J. M. I.
(2016). Two (Note) Heads are Better Than One: Pen-
Based Multimodal Interaction with Music Scores. In
Proceedings of the 17th International Society for Music
Information Retrieval Conference, pages 509–514.

Calvo-Zaragoza, J., Toselli, A. H., and Vidal, E. (2019).
Handwritten Music Recognition for Mensural Nota-
tion with Convolutional Recurrent Neural Networks.
Pattern Recognition Letters, 128: 115–121. DOI: https://
doi.org/10.1016/j.patrec.2019.08.021

Calvo-Zaragoza, J., Valero-Mas, J. J., and Pertusa, A.
(2017). End-to-end Optical Music Recognition Using
Neural Networks. Proceedings of the 18th International
Society for Music Information Retrieval Conference,
pages 472–477.

Caruana, R. (1997). Multitask Learning. Machine Learn-
ing, 28(1): 41–75. DOI: https://doi.org/10.1023/A:
1007379606734

Cho, K., van Merriënboer, B., Bahdanau, D., and
Bengio, Y. (2014). On the Properties of Neural
Machine Translation: Encoder–Decoder Approaches.
In Proceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation, pages
103–111. Association for Computational Linguistics.
DOI: https://doi.org/10.3115/v1/W14-4012

Dutta, K., Krishnan, P., Mathew, M., and Jawahar,
C. V. (2018). Towards Accurate Handwritten Word
Recognition for Hindi and Bangla. Communications
in Computer and Information Science (CCIS), 841:
470–480. DOI: https://doi.org/10.1007/978-981-13-
0020-2_41

Feng, Z., Yang, Z., Jin, L., Huang, S., and Sun, J. (2017).
Robust Shared Feature Learning for Script and
Handwritten/Machine-Printed Identification. Pattern
Recognition Letters, 100: 6–13. DOI: https://doi.
org/10.1016/j.patrec.2017.09.016

German UNESCO Commission. (2018). Jahrbuch der
Deutschen UNESCO-Kommission 2017–2018.

Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep Learning. MIT Press.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber,
J. (2006). Connectionist Temporal Classification:
Labelling Unsegmented Sequence Data with
Recurrent Neural Networks. In Proceedings of the
23rd International Conference on Machine Learning,
page 369–376, New York, NY, USA. Association for
Computing Machinery. DOI: https://doi.org/10.1145/
1143844.1143891

Hannun, A. (2017). Sequence Modeling with CTC. DOI:
https://doi.org/10.23915/distill.00008

Horyna, M. (2018). Medieval Organ Tablature on a
Manuscript Fragment from the National Museum
Library. Musicalia, 10(1–2): 6–42. DOI: https://doi.
org/10.1515/muscz-2018-0001

Huang, Y.-H., Chen, X., Beck, S., Burn, D., and Van Gool,
L. (2015). Automatic Handwritten Mensural Notation
Interpreter: From Manuscript to MIDI Performance. In
Proceedings of the 16th International Society for Music
Information Retrieval Conference, pages 79–85.

Hulková, M. (2015). Central European Connections
of Six Manuscript Organ Tablature Books of the
Reformation Era from the Region of Zips (Szepes,
Spiš). Studia Musicologica, 56(1): 3–37. DOI: https://
doi.org/10.1556/6.2015.56.1.1

Iqbal, H. (2018). PlotNeuralNet. DOI: https://doi.org/10.
5281/zenodo.2526396

Maul, M., and Wollny, P., editors (2007). Weimarer
Orgeltabulatur: die frühesten Notenhandschriften
Johann Sebastian Bachs sowie Abschriften seines
Schülers Johann Martin Schubart. Bärenreiter, Kassel,
New York.

Motnik, M. (2011). Deutsche Tabulatur: Gebreuchlich
oder verdrießlich? Musicological Annual, 47(2): 125–
137. DOI: https://doi.org/10.4312/mz.47.2.125-137

Müller-Schmidt, H.-T. (2017). Orgel oder Instru-
menttabulaturbuch 1583 von Elias Nikolaus Ammerbach.
https://imslp.org/wiki/Special:ReverseLookup/
505757.

Pansare, S., and Joshi, D. (2012). A Survey on Optical
Character Recognition Techniques. International Jour-
nal of Science and Research (IJSR), 3(12): 1247–1249.

Patel, M., and Thakkar, S. P. (2015). Handwritten
Character Recognition in English: A Survey. Interna-
tional Journal of Advanced Research in Computer
and Communication Engineering (IJARCCE), 4(2):
345–350. DOI: https://doi.org/10.17148/IJARCCE.
2015.4278

Purohit, A., and Chauhan, S. S. (2016). A Literature
Survey on Handwritten Character Recognition.
International Journal of Computer Science and
Information Technologies (IJCSIT), 7(1): 1–5.

Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A.
R., Guedes, C., and Cardoso, J. S. (2012). Optical
Music Recognition: State-of-the-art and Open Issues.
International Journal of Multimedia Information
Retrieval (IJMIR), 1(3): 173–190. DOI: https://doi.org/
10.1007/s13735-012-0004-6

Su, B., and Lu, S. (2017). Accurate Recognition of Words
in Scenes without Character Segmentation Using
Recurrent Neural Network. Pattern Recognition, 63:
397–405. DOI: https://doi.org/10.1016/j.patcog.2016.
10.016

Tuggener, L., Elezi, I., Schmidhuber, J., and Stadelmann,
T. (2018). Deep Watershed Detector for Music Object
Recognition. Proceedings of the 19th International
Society for Music Information Retrieval Conference,
pages 271–278.

Wojnowska, E. (2016). Thematic Catalogue of 17th-Century
Organ Tablatures from the Liegnitz Bibliotheca
Rudolphina. Warschau: Biblioteka Narodowa.

Wolf, J. (1919). Handbuch der Notationskunde Teil 2.
Breitkopf und Härtel.

https://doi.org/10.3390/app8040606
https://doi.org/10.3390/app8040606
https://doi.org/10.1016/j.patrec.2019.08.021
https://doi.org/10.1016/j.patrec.2019.08.021
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.1007/978-981-13-0020-2_41
https://doi.org/10.1007/978-981-13-0020-2_41
https://doi.org/10.1016/j.patrec.2017.09.016
https://doi.org/10.1016/j.patrec.2017.09.016
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.23915/distill.00008
https://doi.org/10.1515/muscz-2018-0001
https://doi.org/10.1515/muscz-2018-0001
https://doi.org/10.1556/6.2015.56.1.1
https://doi.org/10.1556/6.2015.56.1.1
https://doi.org/10.5281/zenodo.2526396
https://doi.org/10.5281/zenodo.2526396
https://doi.org/10.4312/mz.47.2.125-137
https://imslp.org/wiki/Special:ReverseLookup/505757
https://imslp.org/wiki/Special:ReverseLookup/505757
https://doi.org/10.17148/IJARCCE.2015.4278
https://doi.org/10.17148/IJARCCE.2015.4278
https://doi.org/10.1007/s13735-012-0004-6
https://doi.org/10.1007/s13735-012-0004-6
https://doi.org/10.1016/j.patcog.2016.10.016
https://doi.org/10.1016/j.patcog.2016.10.016

Schneider et al: Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks28

How to cite this article: Schneider, D., Korfhage, N., Mühling, M., Lüttig, P., & Freisleben, B. (2021). Automatic Transcription of Organ
Tablature Music Notation with Deep Neural Networks. Transactions of the International Society for Music Information Retrieval,
4(1), pp. 14–28. DOI: https://doi.org/10.5334/tismir.77

Submitted: 23 September 2020 Accepted: 28 December 2020 Published: 24 February 2021

Copyright: © 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Transactions of the International Society for Music Information Retrieval is a peer-reviewed
open access journal published by Ubiquity Press. OPEN ACCESS

https://doi.org/10.5334/tismir.77
http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. Organ Tablature Notation
	2.1 Musicological Background
	2.2 Automatic Organ Tablature Transcription
	2.3 Character Set
	2.4 Page Layout

	3. Related Work
	4. Deep Tablature Transcription
	4.1 Pre-processing
	4.1.1 Deskewing
	4.1.2 Segmentation

	4.2 Recognition
	4.2.1 Character Sequence Pair Network
	4.2.2 Training and Recognition

	4.3 Post-processing
	4.3.1 Result Combination
	4.3.2 Output Generation

	5. Tablature Data Set
	5.1 Data Generator
	5.2 Data Augmentation

	6. Experiments
	6.1 Data Sets
	6.2 Metrics
	6.3 Network Architectures
	6.4 Results
	6.4.1 Experiment 1: Partial Networks
	6.4.2 Experiment 2: Simplified Networks
	6.4.3 Experiment 3: Training Data
	6.4.4 Evaluation of the CSP Network

	6.5 Error Analysis
	6.6 Discussion

	7. Conclusion
	Notes
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

