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Abstract

Background: Dystonia constitutes a heterogeneous group of movement abnormalities, characterized by sustained or intermittent muscle contractions causing

abnormal postures. Overwhelming data suggest involvement of basal ganglia and dopaminergic pathways in dystonia. In this review, we critically evaluate recent

neuroimaging studies that investigate dopamine receptors, endogenous dopamine release, morphology of striatum, and structural or functional connectivity in

cortico-basal ganglia-thalamo-cortical and related cerebellar circuits in dystonia.

Method: A PubMed search was conducted in August 2014.

Results: Positron emission tomography (PET) imaging offers strong evidence for altered D2/D3 receptor binding and dopaminergic release in many forms of

idiopathic dystonia. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data reveal likely involvement of related cerebello-thalamo-

cortical and sensory-motor networks in addition to basal ganglia.

Discussion: PET imaging of dopamine receptors or transmitter release remains an effective means to investigate dopaminergic pathways, yet may miss factors

affecting dopamine homeostasis and related subcellular signaling cascades that could alter the function of these pathways. fMRI and DTI methods may reveal

functional or anatomical changes associated with dysfunction of dopamine-mediated pathways. Each of these methods can be used to monitor target engagement for

potential new treatments. PET imaging of striatal phosphodiesterase and development of new selective PET radiotracers for dopamine D3-specific receptors and

Mechanistic target of rampamycin (mTOR) are crucial to further investigate dopaminergic pathways. A multimodal approach may have the greatest potential, using

PET to identify the sites of molecular pathology and magnetic resonance methods to determine their downstream effects.
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Introduction

Dystonia is the third most prevalent movement disorder and afflicts

about 250,000 people in the United States.1 It comprises a highly

heterogeneous group of movement abnormalities, characterized by

sustained or intermittent muscle contractions causing abnormal,

repetitive movements and postures, or both.2 Symptoms can develop

in children or adults. They can affect a single body part, multiple

segments or be generalized. This phenotypical heterogeneity may or

may not reflect diverse etiology. Indeed, well-defined monogenic

hereditary dystonias have variable age of onset, affected body parts,

and rate of progression.3 A new categorization of dystonia distin-

guishes those with only dystonia as isolated dystonia. This review

focuses primarily on those with isolated dystonia that is either caused

by a known genetic mutation or is idiopathic (formerly called primary

dystonias).2 Poor understanding of underlying pathophysiology,

inadequate animal models and absence of biomarkers have limited
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development of adequate therapeutics for isolated idiopathic or genetic

dystonias.

Historically dystonia has been considered a basal ganglia disorder,

with numerous lines of evidence suggesting involvement of the

dopaminergic system. However, dysfunction of other brain regions

and circuits has become increasingly evident. Focal dystonias have been

associated with impaired inhibition in the somatosensory cortex and

abnormal sensorimotor processing beyond those parts of the brain that

represent the symptomatic body part.4–8 Structural and functional

imaging studies show dysfunction of the cerebellum or defects in its

connections in isolated idiopathic dystonias.9–15 Indeed, most research-

ers agree that dystonia is associated with physiologic abnormalities at

multiple levels involving cortico-ponto-cerebello-thalamo-cortical and

cortico-basal ganglia-thalamo-cortical pathways.16–18 Nevertheless,

emerging evidence indicates TOR1A, GNAL and ANO3 mutations

produce functional changes that converge to affect striatal signal

transduction pathways.19–21 Such findings underscore possible com-

monalities across at least some of these heterogeneous conditions.

Neuroimaging offers a non-invasive method to examine structural

and functional changes in humans. Initially, molecular imaging studies

of dopaminergic pathways relied on 6-fluorodopa ([18F]FD), reflecting

decarboxylase activity and storage, and non-selective dopamine D2-like

receptor radioligands such as [18F]spiperone, [11C]raclopride, and

[123I]iodobenzamide. Major advances in molecular imaging, with

development of more specific radioligands along with sophisticated

analysis methods, permit greater in-depth study of dopaminergic

pathways. Similarly, positron emission tomography (PET) and func-

tional magnetic resonance imaging (fMRI)-based blood oxygen level-

dependent (BOLD) measures have been used to investigate task-related

activation of dopaminergic pathways. Resting state fMRI (rs-fMRI) and

diffusion tensor imaging (DTI) studies assess functional and structural

connectivity of cortico-basal ganglia-thalamo-cortical circuits. Stronger

magnets (3 T and higher) and more advanced data analyses have

strengthened these studies. Admittedly, each of these methods provides

only a limited indirect view of dopaminergic pathways. In this review,

we critically evaluate recent neuroimaging studies that shed light on the

involvement of dopaminergic pathways by investigating dopamine

receptors, endogenous dopamine release, morphology of striatum and

downstream targets, and structural or functional connectivity in cortico-

basal ganglia-thalamo-cortical and related cerebellar circuits.

Methods

A PubMed search in August 2014 with keyword combinations

dystonia, PET, dopamine; dystonia MRI, dopamine; and dystonia,

SPECT, dopamine yielded 141, eight, and 58 entries, respectively. We

considered only studies pertaining to the dopaminergic system or

relevant pathways in idiopathic or hereditary dystonias.

Dopaminergic pathways

A model of basal ganglia circuitry includes cortical-striato-pallido-

thalamic-cortical loops with primary input into striatum (putamen and

caudate) from cortical glutamatergic, thalamostriatal glutamatergic,

and nigral dopaminergic projections.22–24 Two major pathways lead

from the striatum to the main output nucleus in the basal ganglia

internal segment of the pallidum (GPi) and substantia nigra pars

reticulate (SNpr): 1) the direct pathway via inhibitory GABAergic

fibers, and 2) the indirect pathway, including inhibitory GABAergic

neurons to GPe (external segment of GP), inhibitory neurons

projecting from GPe to subthalamic nucleus (STN), and excitatory

glutamatergic neurons projecting from STN to GPi/SNr. GPi/SNr

send inhibitory GABAergic neurons to the ventral anterior thalamus

that project via excitatory neurons to cortical areas, including the

premotor and motor regions. Multiple studies suggest that the direct

pathway selects the desired movement (facilitation), while the indirect

pathway suppresses unwanted surrounding movement (inhibition).25

Dystonia could represent a defect in surround inhibition (abnormal

function of the indirect pathway) perhaps coupled with excessive

facilitation of the intended movement (overactivation of the direct

pathway).26

Dopaminergic nigrostriatal input regulates the activity in direct and

indirect pathways. Indeed, the nigrostriatal dopaminergic fibers

terminate on the shafts of the dendritic spines of the medium spiny

neurons (MSNs)27 and the cortical afferents terminate on the heads of

spines, enabling dopamine modulation of the corticostriatal input.

Dopamine receptors are G-coupled proteins that divide into D1-like and

D2-like families. D1-like (D1, D5) receptors activate and D2-like (D2,

D3, D4) receptors inhibit adenylate cyclase.28,29 Phosphodiesterases are

highly expressed in the striatum and control this signaling cascade by

regulating the level of cyclic adenosine monophosphate (cAMP).30

Excitatory D1-like receptors are located exclusively post-synaptically on

medium spiny neurons that project to the Gpi/SNpr (direct pathway),

while inhibitory D2 receptors (D2R) are located post-synaptically on

neurons that project to GPe (indirect pathway). This concept is

supported by measurements of D1 receptor (D1R) and D2R mRNA31

and transgenic mice models with near-complete segregation of D1R and

D2R expression.32,33 D3 receptors (D3R) are expressed in striatum as

well. Most data suggest that D3R is predominantly in ventral (limbic)

and to a far lesser degree in dorsal (motor) striatum. However, recent

autoradiographic studies with a highly D3-selective radioligand have

demonstrated a substantial amount of D3R in human dorsal striatum.34

A small subpopulation of striatal MSN contains both D1R and D2-like

receptors,35,36 and emerging evidence indicates that D1R and D3R can

form heterodimers capable of enhancing D1R-mediated activity.37,38

Nigrostriatal fibers express presynaptic D2R and D3R (autoreceptors) as

well, which are inhibitory and their activation reduces the dopamine

release at the synaptic cleft between nigrostriatal fibers and medium

spiny neurons.

Molecular imaging and dopamine receptors

Many observations suggest that dysfunction of D2-like receptors

underlies the pathophysiology of idiopathic and some acquired forms of

dystonia. Exposure to drugs that block D2-like receptors can cause acute

dystonia.39–41 Non-human primates treated with intracartoid MPTP

(1-methyl-4-phenyl-1,2 3,6-tetrahydropyridine) develop transient dystonia.
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The dystonic phase corresponds with a decrease in D2-like striatal

receptors as measured ex vivo in striatal brain tissue. MPTP selectively

destroys dopaminergic neurons, possibly reducing dopamine autorecep-

tors. The transient nature of this drop in D2-like receptors could either

indicate reconstitution of these neurons, which did not occur, or that the

D2-like effect was not due to a change in autoreceptors but rather a

transient change in post-synaptic receptors.42 Numerous molecular

imaging studies with PET or single-photon emission computed tomo-

graphy (SPECT) with D2-like radioligands report decreased striatal uptake

in various forms of isolated idiopathic dystonias. These include isolated

idiopathic hand dystonia, cranial dystonia,43–45 and cervical dystonia46 as

well as the inherited dystonias caused by mutations in TOR1A/DYT1,47

THAP1/DYT6,48 and e-sarcoglycan/DYT11.49 However, almost all D2-

like radioligands have numerous limitations. They do not distinguish

between pre- and post-synaptic dopaminergic receptors and can be

displaced by endogenous dopamine. We found reduced striatal

[18F]spiperone binding in idiopathic focal dystonia,44 but this non-specific

radioligand also binds to 5-hydroxytryptamine (5-HT) (2A) receptors in

primate striatum.50 Other studies report reduced striatal [11C]raclopride

uptake, which has a low selectivity for 5-HT(2A) but near equal selectivity

for D2R and D3R48,51 and can be displaced by endogenous dopamine.52

Such displacement can confound interpretation of reduced raclopride

uptake, which can indicate either reduced D2-like binding sites or

increased competition with elevated striatal dopamine. However,

subsequent studies with the highly selective D2R radioligand N-methyl-

benperidol (NMB) did not identify reduced striatal uptake in isolated

idiopathic hand or cranial dystonia. Since NMB is 200-fold more selective

for D2R than D3R and is not displaced by endogenous dopamine, these

findings suggest that previously reported reduced striatal D2-like binding

may reflect a reduction in striatal D3R rather than a change in D2R.53

D3R could play a role in pathophysiology of dystonia through presynaptic

autoregulatory receptor sites, a regulatory effect on dopamine transporter,

or interaction with D1-like receptors.54–56 Proof of this hypothesis requires

PET studies with D3R-selective radioligands. Such radioligands have been

developed and successfully used in non-human primate studies51 but no

studies in humans have yet been reported.

Alternatively, if changes in endogenous dopamine affect dopamine-

selective radioligands, an alteration of striatal dopamine concentration

could explain apparent differences in striatal radioligand uptake.

Reports of post-mortem striatal dopamine levels reveal contradictory

results.57,58 Voxel-wise analysis of task-induced striatal dopamine

release revealed decreased [11C]raclopride displacement with a motor

task involving the affected body part in patients with laryngeal dystonia

compared with healthy controls. In contrast, a motor task of an

uninvolved body part elicited an increased striatal [11C]raclopride

displacement in the same patients compared with healthy controls.59

These findings suggest altered striatal dopamine release compared with

healthy controls. An analogous study in patients with writer’s cramp

(another isolated idiopathic dystonia) yielded similar findings, con-

firming common dopaminergic pathway changes across these two

focal isolated idiopathic dystonia subtypes.59,60 It remains to be

determined whether this occurs in other forms of isolated idiopathic

dystonia. These studies further suggest somatotopical reduction of

striatal dopamine release, as long as the clusters of reduced dopamine

release associated with different affected body parts were distinct from

each other without any overlap. Interestingly, a [18F]spiperone PET

study revealed that changes in striatal D2-like receptors may be

somatotopically organized in hand and cranial dystonias.61

D1-like receptors primarily influence the direct pathway.62 Resting

metabolic PET studies showing overactivity in the putamen and globus

pallidus have been used to support the idea that dystonia may be

associated with increased activity in the direct pathway causing

excessive disinhibition of motor cortical areas. However, PET studies

with [11C]NNC-112, a selective D1-like ligand without displacement

by internal dopamine, did not reveal a significant alteration in striatal

binding in dopa-responsive dystonia (DRD),63 or isolated idiopathic

focal dystonia (cranial, cervical, arm).64 Certainly, these findings do

not exclude involvement of the direct pathway mediated by changes

other than in D1-like receptors.

Molecular imaging and dopaminergic presynaptic integrity

[11C]DTBZ (dihydrotetrabenazine; reflecting vesicular monoamine

transporter type 2 [VMAT2]), [11C]MP (methyl-phenidate or other

similar radioligands; reflecting dopamine membranous transporter

[DAT]) and [18F]FD ([6-fluorodopa; reflecting primarily dopa

decarboxylase activity and trapping) provide insight into nigrostriatal

fiber and nigral cell integrity (Figure 1).65 Striatal [11C]DTBZ uptake

was increased in L-dopa naive dopa-responsive dystonia (DRD) while

[11C]MP and [18F]FD uptake were unchanged, suggesting likely

compensatory increased neuronal firing or decreased dopamine

competition for VMAT2 binding sites or a combination of both in

DRD.66 This finding was consistent with a SPECT study revealing

normal (99m)Tc-TRODAT-1 uptake as a measure of DAT in DRD.67

Other dystonia types in particular isolated idiopathic focal dystonias

have not been examined with these ligands.

Figure 1. Binding Sites of Relevant Radiotracers at a Dopaminergic Synapse.
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Functional imaging and dopamine pathways

Neuroimaging of dopaminergic receptors or dopamine release only

provides a limited view of dopaminergic pathways. The downstream

functional consequences of such defects may be identified with indirect

measures of neuronal functions. This may be achieved with PET or

fMRI during task- or drug-induced activation or at rest. Similarly,

structural imaging may identify changes in pathways related to

dopaminergic systems.

Task-related imaging

Task-related changes in regional brain activity can be used to map

brain responses and interrogate relevant brain pathways.

[18F]Fludeoxyglucose (FDG) and [15O]H2O PET studies measure

glucose metabolism and regional cerebral blood flow (rCBF),

respectively, while fMRI BOLD signals relate to hemodynamic

responses that change blood oxygen content. These measures

represent a surrogate for increased interneuronal synaptic activity

and changes in input to the region.68,69 Numerous task-related PET

and fMRIs have been completed in people with various types of

dystonia.70 Inconsistent findings in basal ganglia, sensorimotor cortex,

and cerebellum across many of these studies likely reflect variations in

the choice of task, differences in task performance, and presence of

dystonia.71–73 Sensory tasks may or may not have this same confound

depending upon whether the sensory task elicits any motor responses.

Several studies of vibration-induced brain responses revealed reduced

rCBF responses74,75 that may be influenced by dopaminergic

pathways.76

Resting state imaging

Similar to task-related imaging, resting state studies can be

performed with PET measures of metabolism and blood flow, or with

MRI measures of BOLD signals. Resting state studies minimize

confounds related to differences in task execution during scanning,

which is a major advantage compared with task-related imaging.

Many PET FDG studies have revealed involvement of dopaminergic

pathways. Galardi et al.77 demonstrated hypermetabolism in the basal

ganglia, thalamus, premotor–motor cortex, and cerebellum in the

isolated idiopathic cervical dystonia compared with healthy controls.

However, an FDG study of a group including generalized dystonia,

hemidystonia, and focal dystonias revealed decreased activity in

striatum and globus pallidus.78 Inclusion of hemidystonia, which is

commonly an acquired dystonia, clearly confounds interpretation of

these findings. Eidelberg and colleagues79–82 have applied a principal

components analysis method to identify changes in spatial covariance

patterns in FDG uptake to define metabolic networks associated with

dystonia, and identified increased contributions from posterior puta-

men, globus pallidus, cerebellum, and SMA (supplemental motor area)

in patients with blepharospasm and in DYT1 and DYT6 carriers,

regardless of the presence of clinical manifestation. A direct

comparison of regional glucose metabolism revealed genotype-related

metabolic changes including hypermetabolism in the putamen,

anterior cingulate, and cerebellum of DYT1 carriers, and hypometa-

bolism in the putamen and temporal cortex of DYT6 carriers.83

Remarkably, the phenotype-related activity pattern in the same study

did not include dopaminergic pathways.

rs-fMRI correlations are based on intrinsic fluctuations in the

BOLD signal that reflects slow variations in neuronal activity

propagating through connected networks. Changes in these fluctua-

tions indicate network dysfunction.84 Most rs-fMRI studies in isolated

idiopathic focal dystonias indicate reduced connectivity in putamen

and sensorimotor network regardless of the affected body part

(Table 1).85–89 However, a recent study in focal hand dystonia with

extensive cortical, subcortical, and cerebellar seeds did not show any

difference in putamenal functional connectivity but instead found

changes in functional connectivity of the globus pallidus and

cerebellum.90 While most research has focused on investigating the

correlations between low-frequency fluctuations, Zhou et al.91

analyzed the amplitude of these fluctuations, which revealed increased

amplitude in the putamen and globus pallidus and decreased

amplitude in the somatosensory region, thalamus, and cerebellum.

Overall, these rs-fMRI studies were conducted following various

protocols with different levels of quality assurance. Multiple compar-

ison and head motion correction are two major concerns in rs-fMRI

analyses. Most studies apply a family-wise error rate to correct for

multiple comparisons at the subject level, but only a few perform a

Bonferroni correction, which is a far more stringent correction at the

group level analysis. Some studies do not apply any correction, or

apply only small-volume correction for a priori regions (Table 1). It is

not surprising that such a heterogeneous level of control over false

discovery can contribute to variable and difficult to reproduce data.

Motion-induced signal change is another major challenge in analyzing

rs-fMRI data, as it causes spurious misleading correlations.92 Most

recent studies try to address this issue by censoring frames with

excessive movement and regressing various parameters such as the

global signal, or cerebrospinal fluid and white matter signal, in

addition to motion parameters. Indeed in many cases excessive frame

censoring could lead to exclusion of the subject from data analysis.93

However, many dystonia studies do not comment on motion

correction measures. Interestingly, no study mentions exclusion of

subjects due to excessive frame-to-frame movement.84–90,94

Application of improved analysis and motion correction methods

may enhance the quality and reproducibility of findings and reveal

new insights into functional consequences of altered dopaminergic

pathways as shown in idiopathic Parkinson disease.93

Structural imaging and dopamine pathways

Numerous earlier reports showed striatal abnormalities in CT scans of

idiopathic or secondary dystonias.95–98 With advances in MRI, many

studies have measured the gray matter volume of relevant structures

such as the caudate and putamen, thalamus and sensorimotor cortex in

different dystonia subtypes. Nonetheless, the patient population,

number of participants, strength of the magnetic field, data acquisition

and the processing method have been highly variable among these
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Table 1. Functional MRI in Isolated Idiopathic Focal Dystonias without Motor Activation

Study Idiopathic
Dystonia

No. of
Cases

Software/Method
of Analysis

Movement
Correction/
Covariates

Multiple
Comparisons

Networks/Seeds Findings

Dresel
et al.90

Hand dystonia 15 Spm8 CONN toolbox/seed
based and ICA

Six realignment
parameters, time
series of the averaged
CSF and the averaged
white matter signal

FWE Primary motor cortex, SMA,
somatosensory cortex,
lateral premotor cortex.
Based on other studies: left
lateral premotor cortex, left
thalamus, bilateral GP,
cerebello-thalamo-cortical
region

q FC of cerebellar
ROI with pre-SMA
and PMd cortex, Q
FC of cortical seeds
to thalamus and GP,
q negative
cerebello-cortical
FC

Hinkley
et al.85

Hand dystonia 11 SPM5/seed based. A Coh and
ICoh map developed for each
seed to overcome seed blur
causing artifacts

Seed-based definition of
networks in healthy controls.
5 mm radius seeds based on
previous studies: hand knob,
center of mass of putamen,
PCC

Q FC in BG and
SMN. No change in
DMN

Delnooz
et al.87

Cervical
dystonia 23 FEAT 5.98 (FSL) Using

FNIRT/ICA: individual level:
dual regression approach
Groupwise effects: FSL’s
randomize tool

FWE for cluster
correction and
Bonferroni across
networks

SMN, DMN, CN, ECN Q FC in SMN, q
FC in ECN, Q FC in
PVN

Delnooz
et al.86

Cervical
dystonia 23 FSL/seed based Time series of

averaged CSF and
averaged white matter
signal scanner drift,
time series of non-BG
regions

FWE for cluster
correction and
Bonferroni across
networks

Subject-specific functional
parcellation of BG based on
correlations with SMN, CN,
ECN, VN, FPN (Beckmann
2005114). Reanalysis with
focus on BG: correlation
between BG and mean of the
RSN

Q FC from right
mid-dorsal putamen/
right GPe to left
FPN;

Zhou et al.91 Blepharospasm 9 SPM2/ALFF 1.5 mm threshold of
frame exclusion

Uncorrected p-value q ALFF in putamen,
GP, insula, medial
PFC, Q ALFF in
SSR, thalami, CC,
cerebellum,

Mohammadi
et al.88

Writer’s
cramp 16 IC 3.09 (FSL)/ICA: individual

level: dual regression
approach, non-linear image
registration

Motion correction FEW threshold-free
cluster
enhancement

25 networks as a result of
ICA

Q FC in DMN and
in SMA

Castrop
et al., 89

Writer’s
cramp 12 SPM5/activation study, block

design: imagination of hand
movement

Small volume
correction

primary motor, PM, SMA,
and SM1, the thalamus, BG

Q Activation in
SM1, PM, SMA,
putamen, and
thalamus

Delnooz
et al.94

Writer’s
cramp 16 FSL 1.1/Seed based 36 correction

parameters EMG, sex,
and age

FWE From prior activation studies:
dorsal PFC, BG examined
against PMD and PCC as
control

Q FC of superior
parietal cortex to
PM

Q, Decreased; q, Increased; ALFF, Amplitude of Low Frequency Fluctuations; BG, Basal Ganglia; CC, Cingulate Cortex; CONN, A Functional Connectivity Toolbox; CSF, Cerebrospinal Fluid; DMN,

Default Mode Network (basal ganglia and cerebellum included); ECN, Executive Control Network; EMG, Electromyography; FC, Functional Connectivity; FEAT, A Software Package in FSL; FNIRT, An FSL

Software that Provides Non-linear Image Coregistration; FPN, Frontoparietal Network; FWE, Family-wise Error; FSL, A Comprehensive Library of Analysis Tools for Functional and Anatomical MRI Analysis;

GP(e), Globus Pallidus (external); ICA, Independent Component Analysis; ICoh, Imaginary Coherence; PCC, Posterior Cingulate Cortex; PFC, Prefrontal Cortex; PM, Premotor Cortex; PMD: Dorsal

premotor; PVN, Primary Visual Network; ROI, Region of Interest; RSN, Resting State Networks; SMA, Supplementary Motor Area; SM1, Sensory Motor Cortex; SMN, Sensory Motor Network; SPM,

Statistical Parametric Mapping, a Software Package for Image Analysis; SSR, Somatosensory Region.
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studies, which could explain the inconsistent findings. In fact,

some showed increased, decreased, or no change in putamenal

volume.60,99,100 Improved magnetization-prepared rapid gradient-echo

(MPRAGE) contrast and stronger magnetic fields may improve the

reliability of volumetric measurements in future studies.

Diffusion tensor imaging

Another commonly used structural neuroimaging modality is DTI.

It is based on diffusion of water molecules in the tissue and provides

information about cellularity and integrity of aligned axons. Fractional

anisotropy describes the degree of restriction in water molecule

diffusion,101 such that a higher value is associated with aligned axons.

Mean diffusivity corresponds to diffusion of water molecules and has

higher values as the cellularity of the tissue declines.102 In particular,

diffusion tensor tractography permits in vivo mapping of structural

connectivity, where white matter fiber trajectories are reconstructed by

tracking the direction of fastest diffusion between two targets.

Similar to rs-fMRI, early DTI studies in dystonia show highly

inconsistent findings, usually including some elements of the basal

ganglia, cerebellum, and sensorimotor cortex.103 DTI findings depend

upon the investigated brain regions of interest (ROI). Many early DTI

studies did not include measures of basal ganglia connections.

Furthermore, most of these early DTI studies employed magnetic

resonance scanners with relatively low field strength of 1.5 T.

Fractional anisotropy and mean diffusivity measures vary significantly

between 3 T and 1.5 T magnets.104,105 A stronger magnetic field

presumably improves the signal-to-noise ratio at the cost of greater

distortion, which must be addressed. Field map corrections attempt to

compensate for low distortions, but such corrections have not yet been

applied to most studies.106 In addition, only a few studies have

implemented diffusion tensor tractography to determine structural

connectivity. Recent DTI studies have defined microstructural changes

such as subgyral white matter abnormalities of the sensorimotor cortex

and cerebello-thalamic tracts associated with genotype in both

manifesting and non-manifesting DYT1 and DYT6 carriers.107,108

They have further identified somatotopic white matter changes109 and

thalamocortical tract abnormalities110 related to clinical phenotype.

However, none of these studies included basal ganglia as ROI for the

tractography analysis, hence diffusion tensor tractography measures of

dopaminergic pathways remain to be determined in future studies.

Conclusion

Although specific genetic defects may cause some forms of dystonia,

in most cases its etiology remains unknown and treatment options

unsatisfactory. Neuroimaging can provide a valuable tool to investigate

the pathophysiology of dystonias. Overwhelming functional and

structural data suggest the involvement of basal ganglia and related

networks in various dystonia types. Increasing evidence also suggests

dysfunction of cerebellar pathways as a likely cause of dystonia. In fact,

a variety of anatomical and functional studies now suggest that

cerebellar and basal ganglia pathways are tightly interrelated.111 Thus,

dysfunction of dopaminergic pathways in basal ganglia could alter

cerebellar circuits and vice versa.93

Molecular imaging remains an effective neuroimaging modality to

investigate dopaminergic pathway involvement. PET imaging offers

strong evidence for altered D2/D3 receptor binding yet may miss

factors affecting dopamine homeostasis and the dopamine-related

subcellular signaling cascade, which also could alter function of these

pathways. The effect of dopamine is largely mediated through the

cyclic adenosine monophosphate/protein kinase A (cAMP/PKA)

signaling cascade and therefore controlled by phosphodiesterases

(PDEs). Different PDE isoforms are expressed in striatal dopaminergic

terminals, and the medium spiny neurons of direct and indirect

pathways. Indeed animal data suggest that PDE10 inhibitors activate

an indirect pathway.112 Novel PET radioligands are available for in vivo

human PET studies of PDE10A and should be employed in dystonia

research.113 Further, striatal specific protein Rhes can activate striatal

mTOR signaling, which is downstream of the GNAL dystonia gene.

Rhes and mTOR are modulated by dopaminergic pathways and

mediate striatal plasticity and could play a role in dystonia.20 Currently

no PET ligands are available for in vivo evaluation of these targets.

Functional or structural imaging in isolation cannot discern whether

altered basal ganglia network connections are causative, epiphenome-

non, or compensatory. However, such studies could help identify

network patterns suggestive of disease susceptibility, independent of

disease manifestation, and serve as subclinical markers of gene

expression. Alternatively, they can be used for monitoring target

engagement for disease-modifying therapies if the network pattern

correlates closely with the phenotype. In addition, functional and

structural neuroimaging data can guide histopathological studies.

Finally, combining structural and functional imaging with PET will

potentiate their effectiveness. Any region with abnormal radioligand

binding could serve as the ROI for rs-fMRI and diffusion tensor

tractography and provide information on downstream effects of the

molecular change.
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