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Abstract

Background: While there is no breakthrough progress in the medical treatment of essential tremor (ET), in the past decades several remarkable achievements

happened in the surgical field, such as radiofrequency thalamotomy, thalamic deep brain stimulation, and gamma knife thalamotomy. The most recent advance in

this area is magnetic resonance-guided focused ultrasound (MRgFUS).

Methods: The purpose of this review is to discuss the new developments and trials of MRgFUS in the treatment of ET and other tremor disorders.

Results: MRgFUS is an incisionless surgery performed without anesthesia and ionizing radiation (no risk of cumulative dose and delayed side effects). Studies have

shown the safety and effectiveness of unilateral MRgFUS-thalamotomy in the treatment of ET. It has been successfully used in a few patients with Parkinson’s

disease-related tremor, and in fewer patients with fragile X-associated tremor/ataxia syndrome. The safety and long-term effects of the procedure are still unclear,

as temporary and permanent adverse events have been reported as well as recurrence of tremor.

Discussion: MRgFUS is a promising new surgical approach with a number of unknowns and unsolved issues. It represents a valuable option particularly for

patients who refused or could not be candidates for other procedures, deep brain stimulation in particular.
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Introduction

Essential tremor (ET) is a common movement disorder, the most

common one in the adult population. According to some studies its

prevalence reaches up to 9% in people older than 60 years.1 It usually

presents as a bilateral postural 8–12 Hz tremor of the hands, followed

by a kinetic and resting component too; the upper limbs are usually

symmetrically involved but with disease progression the head and

voice (less commonly legs, jaw, face, and trunk) may be involved too.2

The etiology of ET is not clearly understood probably as a result of

the heterogeneity of the underlying pathological process; in fact, ET

possibly represents a syndrome rather than a defined disease.3 Accord-

ingly, although a strong family history has been reported in many

families with an autosomal dominant pattern of inheritance, no major

causal gene has been identified so far.

A significant percentage of ET patients never visit a physician since

the symptoms are mild and non-disturbing; but in some patients the

symptoms (kinetic tremor in particular) are severe enough to inter-

fere with daily activities and cause social embarrassment.4 In these

cases treatment is recommended.1,5 Figure 1 depicts a possible treat-

ment flowchart of ET: the first-line agents are propranolol, primidone,

and topiramante, each of these agent should be used alone up to the
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highest tolerated dose and when ineffective they can be used in combi-

nation; many other second- and third-line agents can be added (e.g.,

gabapentin, clonazepam, botulinum neurotoxin injections) but these

rarely suffice. In this scenario (i.e., tremor affects the quality of life and

it is drug resistant), surgery should be considered. It has been estimated

that medical treatments are not effective or not tolerated in about 50%

of ET patients.1,6

While there is no significant progress in the medical field of ET, the

surgical field has been very active and there are advances in this area.7

The surgical modalities used for ET include three major categories: 1)

ablation (i.e., thalamotomy), 2) deep brain stimulation (DBS) of the

ventrointermedius nucleus (Vim) of the thalamus, and 3) non-invasive

(e.g., transcranial magnetic stimulation) and superficial brain stimula-

tion (e.g., extradural or subdural motor cortex stimulation), which

are still experimental and will not be discussed further.8 There are

different types of ablative therapies: a thalamotomy can be performed

by using radiofrequency (RF), the gamma knife (GK), and the recently

introduced magnetic resonance-guided focused ultrasound (MRgFUS).7,9

These ablative (i.e., destructive) techniques can be further divided into

invasive (RF) or non-invasive (GK and MRgFUS) techniques. Table 1

highlights the principal features of the non-experimental surgical

options available thus far.

In this review we will critically review the role of MRgFUS-

thalamotomy in the treatment of ET, explaining the technique, mech-

anism of action, benefits, and side effects.

Review methods

We performed a review by searching MEDLINE and using the key

words ‘‘focused ultrasound,’’ ‘‘magnetic resonance guided focused

ultrasound,’’ ‘‘focused ultrasound thalamotomy’’ or ‘‘magnetic reso-

nance guided focused ultrasound thalamotomy.’’ A targeted search of

the bibliographies of relevant articles was also performed to identify

additional studies. Only original articles published in English until

January 2017 were included in this review. In case of a partly over-

lapping patient population reported by the same group, the study with

the largest population was chosen and in case of a dual publication,

Figure 1. A Decision Tree for the Treatment of Tremor. In patients with a limb tremor, unilateral procedure (either DBS or ablation) may sometimes be

sufficient to reduce the disability. In the case of disabling bilateral limb, head, voice, or trunk tremors, a bilateral procedure is necessary. As bilateral thalamotomies

carry a high risk of dysarthria, dysphagia or balance problems, mostly Vim-DBS is applied. Other less studied targets are the Zi, especially in its caudal part (Raprl),

Vop and Voa nuclei of the thalamus (modified from ref. 75). BoNT, Botulinum Neurotoxin; DBS, Deep Brain Stimulation; EMG, Electromyogram; GA, General

Anesthesia; GKRS, Gamma Knife Radiosurgery; M/C, Midline and/or Contralateral Tremor; MCS, Motor Cortex Stimulation; MRgFUS, MRI-guided Focused

Ultrasound (of Vim); QoL, Quality of Life; Raprl, Prelemniscal Radiation; RF, Radiofrequency; rTMS, Repetitive Transcranial Magnetic Stimulation; Vim,

Ventrointermedius Nucleus of the Thalamus; Voa, Ventral Oral Anterior of the Thalamus; Vop, Ventral Oral Posterior Nucleus of the Thalamus. *To be considered in

patients with a severe bleeding risk (e.g., ongoing anticoagulation). **Medication reduction can contribute to the worsening of midline/contralateral tremor.
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the study was considered once. In total we included 30 articles on

MRgFUS in humans. Other included papers were reviews or original

articles on technical aspects and experimental uses (e.g., animal

studies) of FUS.

History

For years ultrasound has been used as an effective diagnostic tool in

almost all fields of medicine and also as a therapeutic instrument in

some areas. Examples of the latter are renal stones (lithotripsy) and

cataract surgery (phacoemulsification).10 The use of high-intensity

focused ultrasound (HIFU) for ablation of living tissues goes back to

the 1940s when Lynn11 ablated fresh liver tissue without destruction of

surrounding areas and then moved to the brain of living animals. The

Fry brothers further explored HIFU to ablate brain tissues.12,13 In

1959 their experience led to its first-time application in the treatment

of tremor in patients with Parkinson’s disease (PD) in whom the globus

pallidus was ablated after part of the skull bone was removed.14 Later

on, with the discovery of levodopa and afterward DBS, the role of

ultrasound in treating movement disorders faded out. In the 1990s

the combination of magnetic resonance imaging (MRI) with HIFU

brought renewed interest in its use for the treatment of neurologic

disorders.10

Technical aspects of MRgFUS

MRgFUS is a relatively new modality of treatment based on two

technologies, the aforementioned HIFU and MRI to plan targeting

and monitor the treatment real time, also using temperature maps.

Preclinical animal models demonstrated the safety, validity, and effi-

cacy of this technology in generating brain lesions and disrupting the

blood–brain barrier (BBB).15 Subsequently, HIFU entered clinical

practice, being widely used for a number of approved applications,

including accelerating fracture repair16 and non-invasive ablation of a

Table 1. The Features of the Neurosurgical Procedures Currently Used for Movement Disorders (listed chronologically).31,49,59

Radiofrequency Lesioning Deep Brain Stimulation Gamma Knife

Radio Surgery

MR-guided Focused

Ultrasound

Technique A probe inserted into the

brain is used to burn

neurons in a selected area

to create a focal lesion

One or more electrodes are

inserted into the brain and are

then connected to a

implantable pulse generator

providing constant electrical

stimulation to modulate

neuronal activity in the

targeted brain region

Ionizing radiations

are transmitted

through the intact

skull to generate a

permanent lesion in

a specific brain

region

Ultrasound waves are

transmitted through the

intact skull to generate a

permanent lesion in a

specific brain region

Targeting Neuroimaging, neuronal

recording, intra-operative

stimulation, intraoperative

test lesions

Neuroimaging, neuronal

recording, intra-operative

stimulation, (real-time MRI

guidance in selected centers)

Neuroimaging Neuroimaging, thermic

maps, real-time MRI

guidance, intraoperative

test lesions

Worldwide

experience

Over 50 years Over 30 years Over 15 years 4 years

Ablation

(irreversible effects)

Yes No Yes Yes

Use of general

anesthesia

No Yes No No

Invasive/incisions Yes Yes No No

Possibility of

bilateral procedure

No Yes No No

Device

implantation

No Yes No No

Benefit onset Immediate Delayed (when programming

is completed, up to 6 months)

Delayed (up to 1

year)

Immediate

Abbreviation: MRI, Magnetic Resonance Imaging.
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variety of benign and malignant tumors, such as uterine fibroids, breast

cancer, bone metastasis, and prostate tumors.17–21

The lesional power of ultrasound is based on two major mech-

anisms: thermal and non-thermal.10 As for the former, the therapeutic

goals of MRgFUS can be defined according to the level of ultrasound

energy provided: low-intensity FUS (LIFU) can reversibly affect neural

function, thus representing another way to perform neuromodulation;

moderate energy levels can be employed to safely open the BBB for

different aims (e.g., localized delivery of therapeutics); HIFU is

sufficient to create a coagulation lesion in the brain with the goal of

developing a minimally invasive way to create focal brain lesions. In

fact, at a temperature of over 44 C̊ for some seconds, irreversible cell

death by coagulative necrosis will occur.22 To reach these temperatures,

usually an equal amount of ultrasound energy is applied con-

tinuously. As the energy absorption in the ultrasound beam path is

lower, the surrounding tissue is spared.22 Ultrasound’s non-thermal

effects are due to alternating pressure and subsequently formation

of air bubbles, a process termed acoustic cavitation. It has been

hypothesized that adverse effects are due to non-thermal effects,

so that the production of bubbles should be avoided during the

procedure.23,24

Poor penetration of ultrasound in the skull was a barrier to using

ultrasound for intracranial and brain diseases. This problem was

solved by a system preventing the heating of the cranium bones. It

consists of a spherical, phased array, multi-element transducer helmet

operating at a frequency of 0.5–1.5 MHz that allows focusing of

ultrasound energy coupled with software that compensates for skull-

induced wavefront distortions.25,26

The typical patient treatment protocol includes a preoperative

computed tomography scan of the entire cranium to measure skull

thickness. On the treatment day, a frame is fixed to the shaved head of

the patient under local anesthesia; at the same time the scalp is

inspected for scars and other lesions that could compromise the

passage of ultrasound. Then an elastic diaphragm filled with cool water

is attached to the scalp and connected to the ultrasound transducer

(Exablate Neuro, Insightec, Tirat Carmel, Israel). The procedure is

done in an MRI unit without general anesthesia and sedatives.

During the procedure a series of low-power ‘‘sonications’’ (40–45 C̊)

confirmed the accurate targeting and focusing, as these ‘‘test lesions’’

do not induce permanent changes but are enough to induce a tran-

sient effect, either positive or negative. Next, by gradual increment

of the duration of sonication the lesion is progressively created

and enlarged until a satisfactory clinical effect is reached.27,28 The

temperature at the target is monitored by proton resonance frequency

through MR thermometry. The location and size of the lesion, the

clinical effects, and the side effects are monitored continuously by

assessing the alert patient during the surgery. Pain and burning

sensations, and the discomfort caused by prolonged lying are managed

accordingly, usually by an anesthesiologist who is present during the

procedure. Overall, the treatment lasts 3–4 hours and ends once

the clinical and radiologic effects are deemed satisfactory. Following

the procedure, the patient undergoes a neurological examination

in the recovery room, and post-treatment MR images are obtained to

assess the lesion location and size (Figure 2).

MRgFUS in neurological diseases

Virtually any brain structure can be targeted with MRgFUS using

a stereotactic atlas and neuroimaging. Refractory neuropathic pain

was the first application of this technology in a study on nine patients

with different types of pain in whom the centrolateral thalamus was

targeted: all of them reported immediate improvement and 57% pain

relief at the 1-year follow-up.29 More recently, MRgFUS targeting the

anterior limb of the internal capsule (capsulotomy) was performed in

four patients with obsessive compulsive disorder (OCD), resulting in a

33% reduction of the Yale–Brown OCD scale and a significant

improvement of anxiety and depression.30

Among the neurological indications, tremor is the most explored

disorder and also the first to receive Food and Drug Administration

(FDA) approval, in July 2016. This has been possible for several

reasons: 1) RF thalamotomy and Vim-DBS have a long tradition in

patients with medically refractory ET;9,31 2) the Vim is centrally

Figure 2. Neuroimaging of Neurosurgical Procedures for Tremor. Brain MRI of a tremor patient 1 day and 6 months after MRgFUS-thalamotomy of

the left hemisphere (right). CT scan of another tremor patient who underwent left RF-thalamotomy (arrow) followed by right Vim-DBS (left). DBS, Deep Brain

Stimulation; DWI, Diffusion-weighted Imaging; MRgFUS, MRI-guided Focused Ultrasound (of Vim); RF, Radiofrequency; T2w, T2-weighted Imaging; Vim,

Ventrointermedius Nucleus of the Thalamus.
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located within the brain, which reduces the distortional effects of the

skull on focusing the ultrasound energy; 3) tremor can be easily assessed

during the procedure; 4) tremor reduction can substantially reduce

disability with unilateral treatment just treating the dominant hand.

MRgFUS for tremor is the focus of this review and it will be

discussed in depth in the following paragraphs.

MRgFUS-thalamotomy in ET

There are multiple small-sample studies on the efficacy of

MRgFUS-thalamotomy in the treatment of ET. Lipsman and col-

leagues27 reported the very short-term results in four patients with

refractory ET: there was a remarkable reduction of tremor score of the

operated hand, by 89.4% and 81.3% at the 1- and 3-month follow-up

visits, respectively. One of their patients had persistent paresthesia and

another one developed deep vein thrombosis, probably related to the

long immobilization associated with the procedure.27 Elias et al.28

reported their results in 15 ET patients followed up for 1 year, showing

a significant improvement of hand tremor scores (reduced by 74.5%)

as well as quality of life and disability scores. Chang and colleagues24

performed unilateral MRgFUS-thalamotomy in 11 ET patients, but

the skull thickness did not allow the required therapeutic temperature

in the thalamus to be reached in three of them; analyzing the data of

eight patients up to 6 months after the procedure, the authors found a

significant improvement of tremor.24

The largest study published so far is a multicenter randomized con-

trolled clinical trial study that enrolled 76 ET patients and allocated

them to unilateral MRgFUS-thalamotomy or sham surgery with a 3:1

ratio.32 Hand tremor scores improved by 47% at the 3-month assess-

ment (primary endpoint), a significant difference from patients who

received a sham procedure (improved by only 1%); the benefit

decreased at the 12-month assessment (40% improvement compared

with baseline). Adverse events were commonly reported, including

paresthesia and balance disturbances, respectively seen in 14% and

9% of patients at the end of the observation period.32

Other targets of MRgFUS in ET

Gallay et al.33 used MRgFUS to perform cerebellothalamic tracto-

tomy (CTT) in 21 ET patients. Three of the patients successively

underwent a bilateral procedure 1 year later. All the patients showed

significant and sustained improvement of tremor scores at the 1-year

evaluation. However, pre-existing gait imbalance worsened in five

patients, only temporarily in four of them.33 Overall, the study showed

acceptable tolerance of bilateral CTT, which can be a potential

advantage of this target compared to Vim, where bilateral ablations

can cause serious side effects such as imbalance, gait problems, and

cognitive and speech disturbances.31

Vim-MRgFUS in non-ET tremors

Vim-MRgFUS has been used for tremor associated with PD.

Tremor ceased after treatment in all subjects in a case series of seven

patients but recurred in a mild form in three of them 6 months later;

the procedure was associated with a significant improvement in quality

of life.34 A blinded sham-controlled study for PD tremor is currently

ongoing and preliminary results are only available in abstract

form.35,36 In this study, 27 patients with tremor-dominant PD received

either a unilateral MRgFUS-thalamotomy or sham surgery with a 2:1

ratio. The sham group received surgery after 3 months. The 1-year

tremor scores for all 19 patients completing the follow-up period

showed a significant reduction of tremor scores by 41% and of the

Unified PD rating scale (UPDRS) on medication by 32%. However,

the 3 months results were not significantly different between the two

groups because of a significant placebo effect in patients receiving

sham surgery (22% tremor reduction).36

Reports on two patients with fragile X-associated tremor/ataxia

syndrome effectively and safely treated with unilateral MRgFUS-

thalamotomy have been recently published.37,38 We have seen the

same promising results in a small series of patients with dystonic

tremor and ET-like tremors seen in dystonia patients (tremor asso-

ciated with dystonia and tremor associated with dystonia gene)

(personal unpublished experience).

Other targets of MRgFUS in non-ET tremors

Magara and colleagues39 for the first time performed unilateral

pallidothalamic tract (the confluence of the ansa lenticularis and

lenticular fasciculus) ablation using MRgFUS in 13 patients with

tremor-dominant PD. Their first four patients underwent the same

protocol used for thalamic procedures but they experienced recurrent

symptoms 3 months later. Therefore, the remaining nine patients were

treated with four or five repetitions of the same protocol. At the

3-month follow-up, an average reduction of 61% of the total score

UPDRS and 57% of the Global Symptom Relief was reported. The

use of multiple sonications was likely attributed to the different tissue

reactions of white matter tracts compared with grey matter, as also

observed in a patient receiving MRgFUS-anterior limb capsulotomy

for OCD.30,39

Na and coworkers40 reported the first unilateral MRgFUS-pallidotomy

in a PD patient with levodopa-induced dyskinesias who achieved a reduc-

tion of UPDRS on and off medication by 60% and 55%, respectively.

MRgFUS-thalamotomy compared to other surgical

modalities

Classic thalamotomy is done by inserting an electrode through a

craniotomy, generating thermal energy by means of RF. With intra-

operative microelectrode recording and macrostimulation, it is possible

to precisely assess the target for benefits and adverse effects before a

permanent ablation is made. No general anesthesia is needed. On the

other hand, the invasiveness of the technique increases the risk of

infection and hemorrhage.31 Unilateral or bilateral Vim-DBS share

similar features (particularly the invasiveness and targeting with

microelectrode recording and macrostimulation) and similar potential

risks of hemorrhage and infection, the latter being even higher as

hardware is implanted in the body and also because the battery has to

be changed every 3–6 years. In addition to hardware implantation,

DBS has two main differences: it requires general anesthesia (in order
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to insert the battery in the chest) and it can be adjusted to opti-

mize control of symptoms and side effects over the years. The

international randomized controlled trial comparing standard

RF-thalamotomy and Vim-DBS concluded that although both

treatments yield similar tremor control in the short-term, DBS is

safer and guarantees better tremor control in the longer term at the

price of possible hardware-related complications.41 Furthermore,

the reversibility of DBS allows the insertion of the electrode in the

hemisphere contralateral to the first operated side (regardless of the

first procedure type).42 In fact, DBS is the only non-ablative surgical

procedure used for tremor treatment, and it is well known that the

risk of gait and balance disturbance, and cognitive and speech

difficulties is intolerably high with bilateral ablative procedures.31

Targeting both hemispheres has the advantage of improving the

tremor of both body sides and also axial symptoms, such as head,

face, and voice tremor.43

Bilateral DBS (or DBS contralateral to another ablative treatment

previously done) is not risk-free with respect to ataxia symptoms;

however, these are usually reversible with further adjustments of

stimulating parameters.44 Recently, prolonged bilateral Vim-DBS has

been linked to a delayed pseudo-progressive ataxia syndrome that can

be reverted by turning stimulation off for several days.45

GK thalamotomy is a non-invasive and incisionless procedure

without risk of hemorrhage and infection.46,47 Targeting is based on

anatomy without microelectrode recording and stimulation of the

target before permanent ablation. Since its results are delayed for

weeks to months, assessment of the positive and side effects during the

procedure is not possible. These delayed effects can also cause further

progression of the lesion, thus causing unpredictable progressive side

effects.48,49

Tables 1 and 2 summarize the features of the current neurosurgical

approaches to tremor. No head to head randomized trial comparing

the newer surgical treatments has been performed so far and therefore

any comparison is speculative. Nevertheless, a comparison can be

certainly driven by clinical experience and previous comparative studies.

Huss and colleagues43 performed a retrospective study comparing the

results of unilateral MRgFUS-thalamotomy (15 patients) with bilateral

or unilateral thalamic DBS (57 and 13 patients, respectively). They

showed similar positive results regarding tremor reduction and quality

of life improvement across the three groups. Not surprisingly, this

study found better midline and bilateral tremor control with DBS

targeting both hemispheres; interestingly, unilateral Vim-DBS was

superior to unilateral MRgFUS-thalamotomy in the control of midline

tremors.43

Table 2. The Features of the Current Neurosurgical Approaches to Movement Disorders (listed chronologically).31,49,59

Radiofrequency

Lesioning

Deep Brain

Stimulation

Gamma Knife

Radio Surgery

MR-guided Focused

Ultrasound

Possible target(s) Vim Yes Yes Yes Yes

Vop Yes Yes No No

GPi Yes Yes (Yes)a Yes

STN (Yes)a Yes No No

Zi (Yes)a Yes No No

Effect on Tremor Effective Effective

(Vim.STN.GPi)

Effective but

delayed

Effective but

variable (Vim.GPi)

Bilateral/midline

signs

No Yes No No

Other outcome

attributes

Benefit onset Immediate Delayed (when

programming is

completed, up to

6 months)

Delayed (up to

1 year)

Immediate

Recurrence of

symptoms/tolerance

Yes (disease

progression)

Yes (disease progression) Yes (disease

progression)

Yes (disease

progression and

healing process)

Log-term data Yes Yes Yesa Unknown

Quality of the

evidence

fair good poor fair
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Table 2. Continued

Radiofrequency

Lesioning

Deep Brain

Stimulation

Gamma Knife

Radio Surgery

MR-guided Focused

Ultrasound

Risks Brain bleedingc Yes Yes No No?

Infection Yes Yes No No

Hardware

malfunction

No Yes No No

Temporary side

effectsd

Yes Yes No Yes

Permanent side

effectsd

Yes No Yes Yes

Hyper-response of

brain tissuee

No No Yes Yes

Radiation-related

(delayed effects)

No No Yes No

Other features Need of being

monitored/multiple

visits

No Yes No No

Need of battery

changes

No Yes No No

Adjustable over time No Yes No No

Reversible No Yesb No No

Possible in patients

with MRI

contraindications

Yes Yesf Yes No

‘‘Ideal’’ candidate

profile

Patients not able

to be regularly

seen (e.g., with

psychiatric

diseases), fragile

subjects (old

patients in whom

general

anesthesia is not

possible)

Young patients needing

long-term adjustments.

Only possible option for

patients requiring

bilateral or midline

tremor control

Patients with

bleeding risk

(e.g., on

anticoagulant

treatment), high

infection risk or

not able to be

regularly seen

(e.g., with

psychiatric

diseases)

Patients with high

infection risk or not

able to be regularly

seen (e.g., with

psychiatric diseases)

Not possible in

patients with high

skull thickness, not

possible in patients

with previous brain

surgery

Abbreviations: DBS, Deep Brain Stimulation; GPi, Globus Pallidus Pars Interna; MRI, Magnetic Resonance Imaging; STN, Subthalamic Nucleus;

Vim, Ventrointermedius Nucleus of the Thalamus; Vop, Ventro-oralis Posterior Nucleus of the Thalamus; Zi, Zona incerta.
aLimited experience.
bNot in case of intraoperative complications (e.g., stroke).
cCausing no symptoms, stroke-like symptoms, death.
dParesthesia, sensory loss, weakness, ataxia, visual field defects, speech and swallowing difficulties NOT caused by an intraoperative

complication (e.g., stroke).
eUnpredictable brain tissue reaction characterized by edema and non-radial spreading of the lesioning effects.
fBut no further MRI after the procedure (selected manufacturers).
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Although limited, the aforementioned considerations should guide

clinicians in the selection of the best surgical option for movement

disorders, tremor in particular. In our opinion, DBS has significant

advantages and should be favored when possible. Figure 1 depicts a

possible decision tree for the selection of tremor patients needing surgery.

The current hurdles of MRgFUS

During a relatively short period of time, MRgFUS has become

extremely popular and clinical experience is rapidly growing. This

process has already identified a number of problems, detailed in Table 3.

MRgFUS procedures have been associated with a variable outcome:

for example, tremor reduction ranged from –20% to +88% in the

largest RCT performed so far.32 The same trial has also found that

tremor control degraded by 23% over the first year, thus pointing to

the possibility that the combination of brain healing and tremor

progression will not guarantee enough symptomatic relief in the

medium and long term.32

MRgFUS is perceived as a safe procedure but it has been associated

with a relatively high number of persistent side effects: 9% of gait

disturbance and 14% of paresthesia 1 year after surgery in the recent

aforementioned large trial.32 MRgFUS-thalamotomy is created with-

out electrophysiological localization techniques that were developed

for RF thalamotomy (intraoperative recording and stimulation). Given

the fact that the main danger posed by RF-thalamotomy is not the

incision, burr hole, or electrode pass but the ablation itself, it has been

recently commented that ‘‘MRgFUS thalamotomy may actually be

riskier than classic RF-thalamotomy, which, in turn, is riskier than

DBS.’’50 On the other hand, during the MRgFUS procedure real-time

brain MRI is used to monitor target localization and the size of the

ablation area. Another still not fully elucidated problem is the unpredic-

table brain tissue reaction seen in some patients, a phenomenon already

reported in GK procedures.47 It consists of a large amount of edema and

non-radial spreading of lesioning effects. The former is typically asso-

ciated with transient adverse effects; the latter is more dangerous and its

Table 3. The Problems, Unknowns, and Possible Future Indications (based on experimental evidence) of FUS.

Problems

Variable effects on symptoms control

Decay of tremor control in the short term

Relatively high number of persistent side effects

Unpredictable hyper-response of brain tissue

Not suitable to target both hemispheres

Not possible in patients with MRI contraindications

Not possible in patients with high skull thickness

Not possible in patients with previous brain surgery

Limited experience

Patients’ misperception of being non-surgical

Unknowns

Long-term effects

Re-operation of the same brain area (e.g., in case of tremor recurrence)

Efficacy of lesioning less centered brain targets (e.g., GPi)

Safety of bilateral procedures

Efficacy of DTI MRI to better target brain nuclei/fibers

Safety of STN lesioning (risk of hemiballismus)

Bleeding risk in selected populations (e.g., patients on anticoagulants)

Impact of placebo effect in previous and future RCTs

Possible future applications

Opening the BBB using moderate-intensity pFUS to improve the delivery of therapeutic agents (growth factors and genes)60–68

Improving the spread of nanoparticles combined with CED for the delivery of protein and gene therapy to the brain69

Neuromodulation with a high degree of spatial resolution (either activation60,70 or suppression of neuronal activity71) using low-intensity pFUS

‘‘Enhanced sonication’’ through inertial cavitation by microbubbles compressed and expanded by FUS72

Sonothrombolysis of clotted blood in ICH, thereby facilitating minimally invasive evacuation of the clot via craniostomy and aspiration tube73

Abbreviations: BBB, Blood–Brain Barrier; CED, Convection Enhanced Delivery; DTI, Diffusion Tensor Imaging; FUS, Focused Ultrasound; GPi:

Globus Pallidus Pars Interna; ICH, Intracerebral Hemorrhage; pFUS, Pulsed-mode Focused Ultrasound; RTC, Randomized Controlled Trial;

STN, Subthalamic Nucleus.
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phenomenology probably relies on the anatomy of the targeted area (fiber

directions and ratio between neuronal bodies and axons).

Another problem of MRgFUS for movement disorders is related to

the fact that many patients need bilateral procedures and this limits in

particular the usefulness of this technique in pallidotomies performed

to treat diseases such as dystonia or PD. In addition, it is not empha-

sized enough that many patients cannot undergo MRgFUS; examples

include patients with pacemakers or other contraindications to MRI

or patients with high skull thickness. In fact, a study on 25 patients

(one with PD, 15 with ET, and nine with OCD) found that skull

volume and density significantly affect the maximum temperature

achieved in the deep brain.51 For example, patients with high skull

density may undergo skin lesions and local pain in order to receive

enough lesioning energy in the deep brain. Another contraindication

of MRgFUS is a history of previous brain surgery, because some of

these patients’ brain areas may receive more energy than predicted by

software, assuming that the entire skull is intact.

Probably the most important hurdle of MRgFUS is related to the

many unknowns of a relatively new treatment that gained popularity

rather fast. In this respect, although public opinion and patients

perceive it as a ‘‘non-surgical’’ intervention, MRgFUS is not risk-free.

This virtually puts many people at risk, as ET is the most prevalent

movement disorder and up to 50% of patients become refractory or

intolerant to medication.6

Table 3 also lists the unknowns of MRgFUS: we already touched on

the possible long-term decay of benefit and it is currently unknown

whether reoperation of the same target is feasible and safe. The

lesioning power of MRgFUS is very strong in the central brain target

(such as the thalamus) but full impact on more lateral structures such as

the GPi is currently unknown. As mentioned earlier, MRgFUS is only

performed unilaterally in patients with movement disorders because of

safety concerns. However, it has been used to induce bilateral lesions in

other indications and it is therefore possible that the further develop-

ment of targeting procedures will make bilateral lesions possible with

a staged fashion. For example, diffusion tensor imaging (DTI) MRI

might be particularly suitable for tremor patients since Vim is a

functional rather than anatomical target, representing the entry zone

of the cerebello-dento-thalamic tract. We have successfully proved that

DTI MRI might be useful in targeting Vim with MRgFUS.37 DTI

MRI might be used to safely target smaller and riskier structures, such

as the subthalamus. In fact, although subthalamotomy is rarely perfor-

med because of the risk of hemiballism, we are aware of a few centers

trying to perform MRgFUS-subthalamotomies in PD patients.

MRgFUS is an incisionless procedure with no risk of infection,

cerebrospinal fluid leakage, and possibly bleeding. As for the last one,

the real risk is still unexplored, particularly in patients at risk such as in

the case of coagulopathy or anticoagulant use.

Finally, many patients are now requesting MRgFUS because they

like the non-invasive fashion of the procedure. Not surprisingly, studies

are now dealing with impressive placebo effects. For instance, a case

report of a PD patient has reported an impressive reduction of UPDRS

off medication but no changes in L-dopa equivalent daily dosage;40

more importantly, a still ongoing sham-controlled study has found a

non-significant effect of MRgFUS-thalamotomy at the 3-month visit

(primary endpoint) because of a 22% improvement in the sham group

(vs. 50% in the active treatment group).36

The (possible) future of MRgFUS in tremor conditions

Some of the possible future applications of MRgFUS listed in Table 3

are very close to an experimental application in humans. Among them,

‘‘enhanced sonication’’ might represent a future modality of perform-

ing lesions in tremor patients, particularly for patients with high skull

density and/or a too lateral target. The most promising application is

the possibility of neuromodulate brain circuits with high spatial resolu-

tion. In fact, MRgFUS can be used to change neuronal function with-

out causing lesion and ablation. The role of HIFU using temperatures

not able to induce permanent ablations is well known since it is used

for thalamic mapping during MRgFUS-thalamotomy. In some of

these cases, a sustained improvement of tremor even without ablating

the Vim has been reported.27 A similar approach has been successfully

used in the animal model of epilepsy.52

In addition to HIFU, another promising way to neuromodulate

brain targets is using LIFU, particularly with the so-called pulsed-

mode FUS.9,10

The neuromodulating property of FUS is probably related to

changes of voltage-gated ion channels and neuronal membrane

permeability resulting in modulation of action potentials.53,54

Animal experiments employed LIFU to stimulate the hippocampal,

motor cortex, and frontal eye field.53,55,56

In human volunteers stimulation of the primary sensory cortex

caused electroencephalography changes and tactile perception.57,58

Conclusion

Stereotactic brain lesioning has been used for decades and it is a

well-established effective treatment for medically refractory patients

with ET and certain patients with PD (asymmetric tremor-dominant

or dyskinetic patients).31 The scientific community shifted attention

from lesioning to DBS when the latter became the standard of

care. With the very recent FDA approval (July 2016) of MRgFUS-

thalamotomy for refractory unilateral ET, both preclinical and clinical

research on this technique are rapidly expanding for several indica-

tions. We are therefore witnessing a revival of ablative procedures.

In this article, we reviewed recent clinical trials and some of the

preclinical experimental works using MRgFUS for the treatment of

tremor.

MRgFUS seems to be an outstanding achievement in interventional

neurology and functional neurosurgery. This technology is the result of

developments in HIFU and modern MRI techniques. It is a non-

invasive and incisionless procedure able to ablate deep brain tissue, its

therapeutic effects are immediate, and patients can return quickly to

normal life. In contrast to RF ablative surgeries and DBS, MRgFUS

has no risk of infection and (possibly) bleeding and it does not use

ionizing irradiation. There are promising results of its effectiveness in

ET and other tremor syndromes. Other studies in other movement

MRgFUS in Tremor Rohani M, Fasano A

Tremor and Other Hyperkinetic Movements
http://www.tremorjournal.org

The Center for Digital Research and Scholarship
Columbia University Libraries/Information Services9



disorders and neurologic diseases are underway. There are also promising

results of MRgFUS in neuromodulation and focal disruption of the

BBB for therapeutic goals.

Our review has also emphasized the many problems and unknowns

related to this novel procedure. It is too early to draw definite con-

clusions on the value and unsolved issues of MRgFUS, but the good

news is that one more option is now available for tremor patients. We

believe that a deep understanding of the efficacy and safety of these

procedures is needed for the appropriate selection of the surgical

patients. Future studies comparing the different treatment modalities

are certainly needed.
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